
4.5.2 Приближение абсолютно интегрируемых функций бесконечно
дифференцируемыми

Теорема 4.11. Любую функцию f(x) ∈ L1(R) можно приблизить бесконечно
дифференцируемыми функциями fn(x) ∈ C∞:

||f − fn||L1 =

∫
R
|f(x)− fn(x)| dx→ 0, n→ ∞.

Доказательство. Рассмотрим функцию k(x) ⩾ 0 со следующими свойствами∫
R
k(x) dx = 1, k(x) ∈ C∞.

Тогда для функции kε(x) = 1
ε
k(x

ε
) выполняется равенство∫

R
kε(x) dx = 1,

и свертка
kε ∗ f(x) ∈ C∞.

Покажем, что ||f(x)− kε ∗ f(x)||L1 → 0 при ε→ 0 .
Действительно,

||f(x)− kε ∗ f(x)||L1 = ||f(x)
∫ ∞

−∞
kε(y) dy −

∫ ∞

−∞
kε(y)f(x− y) dy||L1 =

= ||
∫ ∞

−∞
kε(y)(f(x)− f(x− y)) dy||L1 =

=

∫ ∞

−∞
|
∫ ∞

−∞
kε(y)(f(x)− f(x− y)) dy|dx.

Повторный интеграл∫ ∞

−∞

∫ ∞

−∞
|kε(y)||f(x)− f(x− y)| dx dy <∞,

в силу следующей оценки:∫ ∞

−∞

∫ ∞

−∞
|kε(y)||f(x)− f(x− y)| dx dy =

∫ ∞

−∞
kε(y)

∫ ∞

−∞
|f(x)− f(x− y)| dx dy ⩽

⩽
∫ ∞

−∞
kε(y) 2||f ||L1 dy = 2||f ||L1 <∞.

Таким образом, существует равный ему повторный интеграл∫ ∞

−∞

∫ ∞

−∞
kε(y)|f(x)− f(x− y)| dy dx.

Следовательно,

||f(x)− kε ∗ f(x)||L1 =

∫ ∞

−∞

∫ ∞

−∞
kε(y)|f(x)− f(x− y)| dy dx =

=

∫ ∞

−∞
kε(y)

∫ ∞

−∞
|f(x)− f(x− y)| dx dy.



Так как, kε(y) = 1
ε
k(y

ε
), то после замены переменной получим, что

||f(x)− kε ∗ f(x)||L1 =

∫ ∞

−∞
kε(y)

∫ ∞

−∞
|f(x)− f(x− y)| dx dy =

=

∫ ∞

−∞
k(y)

∫ ∞

−∞
|f(x)− f(x− εy)| dx dy.

Далее, справедлива оценка∫ ∞

−∞
|f(x)− f(x− εy)| dx = ||f(x)− f(x− εy)||L1 ⩽ 2||f ||L1 , ∀ε > 0,

и при ε→ 0 ∫ ∞

−∞
|f(x)− f(x− εy)| dx→ 0,

по теореме о непрерывности сдвига в пространстве L1.
Поэтому, для функции

gε(y) = k(y)

∫ ∞

−∞
|f(x)− f(x− εy)| dx,

выполнены свойства
gε(y) ⩽ 2||f ||L1k(y) = G(y),

при этом, ∫ ∞

−∞
G(y)dy = 2||f ||L1 <∞,

и при ε→ 0
gε(y) → 0.

Поэтому по теореме о предельном переходе в интегралах, зависящих от
параметра∫ ∞

−∞
k(y)

∫ ∞

−∞
|f(x)− f(x− εy)| dx dy =

∫ ∞

−∞
gε(y)dy → 0, ε→ 0,

т.е.
||f(x)− kε ∗ f(x)||L1 → 0, ε→ 0.

Таким образом, для любой функции f(x) ∈ L1(R) можно построить по-
следовательность бесконечно дифференцируемых функций fn(x) ∈ C∞ таких,
что

||f(x)− fn(x)||L1 → 0, при n→ ∞.

Следовательно, для класса функций C∞ выполняется свойство плотности
в пространстве L1: произвольная функция f(x) ∈ L1(R) может быть приближе-
на функциями из класса C∞.

Это утверждение может быть усилено.
Определение. Непрерывная функция называется финитной в (a, b), ес-

ли замыкание множества точек, в которых она не равна нулю, ограничено и
содержится в (a, b).

Следствие. Любую абсолютно интегрируемую на конечном интервале
(a, b) функцию f(x) ∈ L1(a, b) можно приблизить финитными в (a, b) беско-
нечно дифференцируемыми функциями fn(x) ∈ C∞

0 (a, b).



Доказательство. Для любого ε′ > 0 можно выбрать числа a1, b1 такие, что
[a1, b1] ⊂ (a, b) и

||f ||L1((a,b)\[a1,b1]) =

∫
(a,b)\[a1,b1]

|f(x)|dx < ε′/2.

Далее, пусть число ε′′ выбрано так, что выполняются неравенства

a < a1 − ε′′ < a1, b1 < b1 + ε′′ < b.

Рассмотрим функцию

f0(x) = recta1,b1(x)f(x) =

{
f(x), x ∈ (a1, b1),
0, x /∈ (a1, b1),

и функцию k(x) ⩾ 0 со следующими свойствами∫
R
k(x) dx = 1, k(x) ∈ C∞,

k(x) = 0, |x| ⩾ 1.

В качестве такой функции можно взять усредняющую функцию Соболева:

k(x) =

{
a e

− 1
1−x2 , |x| < 1,
0, |x| ⩾ 1,

a =

(∫ 1

−1

e
− 1

1−x2 dx

)−1

.

Тогда для функции kε(x) = 1
ε
k(x

ε
) выполняются равенства∫

R
kε(x) dx = 1,

kε(x) = 0, |x| ⩾ ε.

Используя свойства свертки, получим что

kε ∗ f0(x) ∈ C∞

и
kε ∗ f0(x) = 0, x /∈ (a1 − ε, b1 + ε).

Таким образом, при 0 < ε < ε′′ функция kε ∗ fA(x) ∈ C∞
0 (a, b).

В силу неравенства Минковского

||f(x)− kε ∗ f0(x)||L1(a,b) ⩽ ||f(x)− f0(x)||L1(a,b) + ||f0(x)− kε ∗ f0(x)||L1(a,b) =

= ||f(x)||L1((a,b)\[a1,b1]) + ||f0(x)− kε ∗ f0(x)||L1(a,b) <

< ε′/2 + ||f0(x)− kε ∗ f0(x)||L1(R).

Второе слагаемое по теореме 4.11 может быть также сделано меньше ε′/2
за счёт выбора значения ε, так как функция kε ∗ f0(x) аппроксимирует в L1(R)
функцию f0(x). Таким образом, kε ∗ f0(x) → f(x) при ε→ 0.


