
6.1 Формула Фурье для абсолютно интегрируемых функ-
ций L1.

Используя фильтрующие свойства свёртки можно показать, что формула
Фурье будет справедлива и в случае, когда f(x), f̂(ω) ∈ L1, т.е. при условии
абсолютной интегрируемости самой функции и её преобразования Фурье, без
каких-либо условий на производную.

Теорема 6.1. Пусть функции f(x) и f̂(ω) являются абсолютно интегрируе-
мыми. Тогда формула Фурье

f = F−1[F [f ]],

справедлива, как равенство функций в L1.
Если, дополнительно, функция f(x) непрерывна и ограничена, то формула

Фурье выполняется ∀x ∈ R

f(x) = F−1[F [f ]](x).

Доказательство. Пусть функция v(x) обладает следующими свойствами:

v(x) ⩾ 0,

∫ ∞

−∞
v(x)dx = 1,

для неё выполняется формула Фурье

v(x) = F−1[v̂](x),

а преобразования Фурье v̂(ω) ∈ L1, ограничено: sup |v̂(ω)| ⩽ Cv̂, и v̂(0) = 1.
В качестве такой функции можно взять, например, функцию Гаусса

v(x) =
1√
π
e−x

2 ⇐⇒ v̂(ω) = e−ω
2/4.

Рассмотрим функцию vε(x) =
1
ε
v(x

ε
) и покажем, что свёртка

fε = vε ∗ f(x),

с одной стороны, сходится к функции f(x) (в L1 или поточечно), а с другой,
сходится к функции

1

2π

∫ ∞

−∞
f̂(ω)eiωx dω.



Так как
∫∞
−∞ vε(x

′)dx′ = 1, то можно записать, что

f(x)− vε ∗ f(x) =

= f(x)

∫ ∞

−∞
vε(x

′)dx′ −
∫ ∞

−∞
vε(x

′)f(x− x′)dx′ =

=

∫ ∞

−∞
vε(x

′)(f(x)− f(x− x′))dx′ =

=

∫ ∞

−∞

1

ε
v(x′/ε)(f(x)− f(x− x′))dx,

и после замены переменной приходим к равенству

f(x)− vε ∗ f(x) =
∫ ∞

−∞
v(x′)(f(x)− f(x− εx′))dx′.

Если функция f(x) ограничена: sup f(x) ⩽ Cf , и непрерывна, то выраже-
ние под интегралом

|v(x′)(f(x)− f(x− εx′))| ⩽ 2Cf v(x
′),

и при ε→ 0 стремится к нулю, так как

f(x)− f(x− εx′) → 0.

Так как
∫∞
−∞ v(x′)dx′ = 1, то можно перейти к пределу под знаком инте-

грала, и получить, что ∀x ∈ R

fε(x) = vε ∗ f(x) → f(x), ε→ 0.

В случае, когда функция f(x) только абсолютно интегрируема, то fε(x) →
f(x) в L1, т.е.

||f − fε||L1 → 0, ε→ 0.

Действительно,

||f − fε||L1 =

∫ ∞

−∞
|f(x)− vε ∗ f(x)| dx =

=

∫ ∞

−∞
|
∫ ∞

−∞
v(x′)(f(x)− f(x− εx′))dx′|dx ⩽

⩽
∫ ∞

−∞

∫ ∞

−∞
v(x′)|f(x)− f(x− εx′)|dx′dx.



Так как повторный интеграл∫ ∞

−∞

∫ ∞

−∞
v(x′)|f(x)− f(x− εx′)|dxdx′ ⩽

⩽
∫ ∞

−∞
v(x′)2

∫ ∞

−∞
|f |dx′ = 2||f ||L1 <∞,

то, сменив порядок интегрирования, получим

||f − fε||L1 ⩽
∫ ∞

−∞
v(x′)

∫ ∞

−∞
|f(x)− f(x− εx′)|dxdx′.

Выражение под интегралом ограничено

v(x′)

∫ ∞

−∞
|f(x)− f(x− εx′)|dx ⩽ v(x′) 2||f ||L1 ,

причем интегрируемой функцией, так как∫ ∞

−∞
v(x′)dx′ = 1,

и стремится к нулю в силу теоремы о непрерывности сдвига в L1:∫ ∞

−∞
|f(x)− f(x− εx′)|dx→ 0, ε→ 0.

Поэтому можно перейти к пределу под знаком интеграла и получить, что

||f − fε||L1 → 0, ε→ 0,

т.е. fε → f в L1.
Покажем теперь, что также

fε(x) →
1

2π

∫ ∞

−∞
f̂(ω)eiωxdω.

По свойству коммутативности свёртки можно записать, что

fε(x) = vε ∗ f(x) =
∫ ∞

−∞
vε(x− x′)f(x′)dx′ =

=

∫ ∞

−∞

1

ε
v

(
x− x′

ε

)
f(x′)dx′.

Так как для функции v(x) выполняется формула Фурье, то

fε(x) =

∫ ∞

−∞

1

ε
F−1[v̂]

(
x− x′

ε

)
f(x′)dx′ =

=

∫ ∞

−∞

1

2πε

∫ ∞

−∞
v̂(ω)ei

x−x′
ε

ωdωf(x′)dx′.



В полученном интеграле можно сменить порядок интегрирования, так как
повторный интеграл∫ ∞

−∞
|v̂(ω)|

∫ ∞

−∞
|f(x′)|dx′dω ⩽ ||f ||L1||v̂||L1 <∞,

в силу того, что v̂(ω) ∈ L1.
Поэтому

fε(x) =
1

2π

∫ ∞

−∞

1

ε
v̂(ω)eix

ω
ε

∫ ∞

−∞
f(x′)e−ix

′ ω
ε dx′dω =

=
1

2π

∫ ∞

−∞

1

ε
v̂(ω)eix

ω
ε f̂(

ω

ε
)dω,

и сделав замену переменной, получим

fε(x) =
1

2π

∫ ∞

−∞
v̂(εω)eixωf̂(ω)dω.

Так как преобразование Фурье v̂(ω) ограничено, то выражение под инте-
гралом также ограничено

|v̂(εω)eixωf̂(ω)| ⩽ Cv̂|f̂(ω)|,

причем интегрируемой функцией, так как по условию преобразование Фурье
f̂(ω) ∈ L1.

Поэтому предельный переход под знаком интеграла возможен, и так как
v̂(0) = 1, то

lim
ε→0

fε(x) =
1

2π

∫ ∞

−∞
f̂(ω)eixωdω,

для почти всех x ∈ R в случае, когда f(x) ∈ L1, и ∀x ∈ R в случае, когда
функция f(x) непрерывна.


