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Fresnel diffraction by a circular aperture
with off-axis illumination and

its use in deconvolution of microscope images
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The Fresnel approximation for off-axis illumination of a circular aperture is reexamined. The point-spread
function for an aberration-free system can be expressed in terms of redefined optical coordinates. An im-
proved expression is given for contours of constant intensity in the focal plane. The variation in axial width
of the focal spot with angle of offset is discussed. The predictions are compared with exact calculations of the
Rayleigh–Sommerfeld diffraction integral. Limitations for application in deconvolution of microscope images
formed with objectives of finite tube length are discussed. © 2004 Optical Society of America
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1. INTRODUCTION
Surprisingly few papers have considered diffraction by a
circular aperture illuminated by a focused, off-axis beam,
even though this is an important basis in the imaging of
extended objects. With recent improvements in compu-
tational speed, it is now straightforward to calculate the
focal distribution by direct evaluation of the Rayleigh–
Sommerfeld diffraction integral. However, there are a
number of reasons why simplified theories based on the
Fresnel approximation still are important. They are use-
ful in understanding trends in the focusing behavior that
are difficult to predict from numerical calculations. They
can be used to investigate large distances from the focus
where direct computational methods tend to fail. They
can also be used as an accurate model of the imaging pro-
cess for image restoration. So the Fresnel theories still
have a place, and, moreover, comparison with results
from direct computation to explore the validity of various
approximations is now feasible.

Murty1 and Zverev2 considered resolution based on the
cutoff of the angular spectrum for a focused off-axis beam
in the small-angle approximation. Sheppard and
Hegedus3 extended this treatment to the highly conver-
gent case, as can occur in lithographic lenses, for ex-
ample.

Born and Wolf4 (p. 435) analyze the on-axis focusing of
light in the paraxial Debye approximation, valid for an in-
finite value of the Fresnel number. They develop an ex-
pression for the focal amplitude in terms of dimensionless
transverse and axial optical coordinates v, u, respectively.
For an aberration-free system, they go on to derive an
analytic expression for the amplitude in terms of the
Lommel functions of two variables (Ref. 5, pp. 537–550).
The diffraction integral is cast in a form invariant with
wavelength and numerical aperture. Li and Wolf6 pro-
posed a Fresnel theory for focusing by a lens of finite
value of the Fresnel number. They gave new forms for
the dimensionless optical coordinates v, u, thus allowing
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the diffraction integral to be expressed in a form invari-
ant with Fresnel number. Sheppard,7 Gibson and
Lanni,8 and Sheppard et al.9 generalized this theory for
off-axis illumination.

Sheppard and Hrynevych10 described a different ap-
proach to Fresnel diffraction, including off-axis illumina-
tion, with optical coordinates defined by the aperture
edge, corresponding to critical points in the asymptotic
expansion.

The Gibson and Lanni theory is widely used for image
restoration by deconvolution, although we show later that
its validity has limitations for the usual practical imple-
mentation. The connection between the theories of
Murty1 and Gibson and Lanni8 is also discussed.

2. FRESNEL APPROXIMATION FOR
OFF-AXIS ILLUMINATION
As a starting point for the derivation of the Fresnel ap-
proximation, we take the first Rayleigh–Sommerfeld dif-
fraction integral (RS1) in the form

U~P ! 5 2
i

l
E E A

exp@2ik~r 2 s !#

rs

zP

s S 1 1
i

ks D dS,

(1)

where k 5 2p/l; A is the source strength; r, s are the dis-
tances of a point in the aperture from the focus and the
observation point, respectively; and the integration is per-
formed over the plane of the aperture. The Cartesian co-
ordinates of the focus and the observation point are xF ,
yF , zF , and xP , yP , zP , respectively, and their distances
from the center of the aperture are rF , rP . For a point in
the circular aperture, radius a, with cylindrical coordi-
nates (ar, u, 0), the distances r, s can be calculated in
terms of a square root by using the Pythagorean theorem.
For a focusing system of small numerical aperture (on the
image side), the square root can be expanded by the bino-
mial theorem and the distances r, s expressed as
2004 Optical Society of America
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where only terms of the second order of ar/rF,P are re-
tained.

Following Gibson and Lanni,8 introducing the variables
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rF,P
, zF,P 5

1

rF,P
(4)

into Eqs. (2) and (3) gives

r 2 s 5 ~rF 2 rP! 2 ar@~jF 2 jP!cos u

1 ~hF 2 hP!sin u#

1
a2r2

2
F zFS 1 2

jF
2 1 hF

2

2
D

2 zPS 1 2
jP

2 1 hP
2

2
D G

2
a2r2

4
$@zF~jF

2 2 hF
2 ! 2 zP~jP

2 2 hP
2 !#cos 2u

1 2~jFhFzF 2 jPhPzP!sin 2u%. (5)

This expression, representing a form of the Fresnel ap-
proximation, is exact for small-enough values of the nu-
merical aperture. Note that it was given incorrectly in
Eq. (7) of Ref. 9. Harvey11 has described how the higher-
order phase terms can be regarded as equivalent to aber-
rations of various types. Thus the four terms in Eq. (5)
represent the piston, tilt, defocus (including curvature of
field), and astigmatism terms. There are no other aber-
ration terms (e.g., coma, distortion, or spherical aberra-
tion) for this order of the expansion. If we retain only the
terms to first order in ar/rF,P , we obtain

r 2 s 5 ~rF 2 rP! 2 ar@~jF 2 jP!cos u

1 ~hF 2 hP!sin u#. (6)

This represents the Fraunhofer approximation, as was as-
sumed by Murty.1 The only aberration terms in this case
are piston and tilt, as the assumption of small numerical
aperture has made the depth of field so large that defocus
is negligible.

The Rayleigh–Sommerfeld diffraction integral, Eq. (1),
can be simplified by assuming that A is constant, zP /s
' 1, ks @ 1, and in the denominator r 5 rF , s 5 rP , to
give, after putting dS 5 a2rdrdu,

U~P ! 5 2iNAzPE
0

2pE
0

1

exp@2ik~r 2 s !#rdrdu, (7)

where we define the Fresnel number as
N 5 a2/lrF . (8)

For calculation of the focal field, various different levels of
approximation can be assumed, in order of decreasing ac-
curacy:

I. Exact. Exact computation from RS1, Eq. (1).
II. Fresnel with astigmatism. Calculation from the

approximate RS1 [Eq. (7)] with full second-order approxi-
mation for r 2 s [Eq. (5)]. In general the integral cannot
be evaluated analytically.

III. Fresnel, improved. As II, but the astigmatism
term of Eq. (5) is neglected. This is justified by the ob-
servation that because it can be positive or negative it
tends to cancel out on integration over u. For an
aberration-free system the Lommel theory4 can be ap-
plied. We then have

U~P ! 5 2iNAzPE
0

1

J0~vr!expS 2
1

2
iur2D rdr, (9)

where the optical coordinates v, u can be expressed in
terms of the variables j, h, z:

v 5 ka@~jP 2 jF!2 1 ~hP 2 hF!2#1/2, (10)

u 5 ka2~vP 2 vF!, vP,F 5 zP,F@1

2
1
2 ~jP,F

2 1 hP,F
2 !#. (11)

Thus the diffraction integral is expressed in a three-
dimensional space-invariant form in terms of the vari-
ables j, h, v.

IV. Fresnel, Gibson and Lanni. As III, but the curva-
ture of field terms are neglected. Equations (9) and (10)
still apply, but now

u 5 ka2~zP 2 zF!. (12)

V. Fresnel, approximate. An approximation is made
to v, given in Eq. (19).

VI. Fresnel, Murty. A further approximation is made
to v, given in Eq. (20).

For any of the Fresnel theories, the Fraunhofer approxi-
mation follows when we put u 5 0. Alternatively, calcu-
lation from the approximate RS1 [Eq. (7)] with the first-
order approximation for r 2 s [Eq. (6)] leads to u 5 0.
Then

U~P ! 5 2iNAzPE
0

1

J0~vr!rdr 5 2iNAzP

J1~v !

v
,

(13)

with v given by Eq. (10).

3. INTENSITY IN THE FOCAL PLANE
Let us consider the case of imaging in the focal plane,
when zF 5 zP 5 d, and taking, without loss of generality,
yF 5 0. According to Eq. (5), for II there is a defocus
term and an astigmatism term. The integral cannot be
evaluated analytically. For III, the Lommel theory can
be applied, with optical coordinates
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so that again there is a defocus term. Similarly, for IV
there is also a defocus term given by Eq. (12) even in the
focal plane, and Eq. (14) is still valid for the transverse
optical coordinate.

The geometry of Eq. (14) is not readily apparent be-
cause of the rP in the denominator of the second expres-
sion, so we now make a further approximation V to v.
Introducing a shift of the origin of the coordinate system

xP8 5 xP 2 d tan x, (16)

Fig. 1. Contours of constant v for x 5 60°, (a) calculated from
the expression of Gibson and Lanni8 [IV, Eq. (15)], (b) calculated
from Eq. (19) (V), and (c) as in the theory of Murty [VI, Eq. (20)].
so that

rP 5 ~xP8
2 1 2dxP8 tan x 1 yP

2 1 d2 sec2 x!1/2, (17)

and assuming that xP8 /d, yP /d are small so that terms up
to second order are retained, we obtain
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Then, with substitution of approximation (18) into Eq.
(14), the optical coordinate v is approximated by

v 5 kaH F xP8
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This approximation (V) allows the geometry to be appre-
ciated. Equation (19) shows that contours of constant v
are approximately ellipses, as predicted by Murty. Thus
the width of the diffraction pattern in the y direction is
increased by a factor cos x and in the x direction by a fac-
tor cos3 x, also as predicted by Murty.1 However, unlike
Murty, we see that the center of the ellipse moves to
larger values of xP as v increases. As an example, Fig.
1(b) shows contours of constant v for the case when x
5 60°, calculated directly from Eq. (19) (V). The con-
tours are elliptical for small v but become distorted as v
increases. For comparison, Fig. 1(a) is calculated from
the expression of Gibson and Lanni [IV, Eq. (15)]. Thus
V gives a reasonable prediction of the shape of the con-
tours described by IV close to the focal point.

Murty retained only the first two terms, d sec x
1 xP8 sin x, for rP in approximation (18). Neglecting
term of higher than second order then leads to Murty’s ex-
pression (VI) for v:

v 5
ka

d
$xP8

2 cos6 x 1 yP
2 cos2 x%1/2, (20)

which clearly shows that contours of constant v corre-
spond to ellipses centered on the geometrical focal point,
shown in Fig. 1(c). Figure 2 shows the intensity distri-
bution in the focal plane about the geometrical focus cal-
culated directly from Eq. (1) for l 5 633 nm, d
5 160 mm, x 5 60°, and N 5 10, corresponding to a
5 1.423 mm, together with the Murty contour for the
first zero in intensity that occurs when v 5 3.832. The
figure shows excellent agreement between the Murty pre-
diction (VI) and the exact calculation (I) for this set of pa-
rameters, but it would be expected to break down as xP8 /d,
yP /d become larger.

Returning to the axial optical coordinate given by Eq.
(15) for III, and using Murty’s approximation for rP , we
have in the focal plane to the first order in xP8 /d

u 5 2
2ka2xP8

d2
sin x cos2 x~1 2

3
4 sin2 x!, (21)

whereas for IV,
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Fig. 2. Intensity distribution in the focal plane, for l 5 633 nm, d 5 160 mm, x 5 60°, and N 5 10, corresponding to a
5 1.423 mm, calculated by exact computation of Eq. (1) (I), and the contour for the first minimum (v 5 3.832) from Murty’s expression
[VI, Eq. (20)].
u 5 2
ka2xP8

d2
sin x cos2 x. (22)

Although Eqs. (21) and (22) give very different results, we
find that for the parameters of Fig. 2, u is negligible in the
focal plane in the region where the intensity is appre-
ciable. This is a consequence of the tubular shape of the
focal spot.4

4. INTENSITY ALONG A LINE FROM THE
CENTER OF THE APERTURE TO THE
FOCAL POINT
For an observation point on the line from the center of the
aperture to the focal point and an offset angle x,

jP 5 jF 5 j 5 sin x,

hP 5 hF 5 0. (23)

We can compare the intensity predicted by three different
approximate theories for (r 2 s). For II, the integral in
u can now be performed, so that, normalizing the inten-
sity by the value at rP 5 rF , we obtain
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.

(24)
If we neglect the astigmatism term (III), the integral in
Eq. (9) reduces to the form described by Born and Wolf for
v 5 0,4 so that

I2 /I20 5 S rF

rP
D 25 sinFpN

2 S rF

rP
2 1 D S 1 2

sin2 x

2 D G
pN

2 S rF

rP
2 1 D S 1 2

sin2 x

2 D 6
2

,

(25)

and from the Gibson and Lanni model (IV),

I1 /I10 5 S rF
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D 25 sinFpN

2 S rF

rP
2 1 D G

pN

2 S rF

rP
2 1 D 6

2

. (26)

These three predictions are compared in Fig. 3 for the
cases when x 5 30° and 60° and N 5 10. By checking
comparisons with the exact theory I, we showed that II is
accurate for typical values of a/f (<0.02). For small off-
set angles, the axial width of the focus predicted by II and
III increases with increasing angle of offset by a factor
@1 2 (sin2 x)/2#, while IV does not predict an increase in
width. Model III gives a good prediction for the behavior
for x less than ;30°, but by 60°, model III overemphasizes
the decrease in resolution. The relative shape of the
curves predicted by the three models is independent of
Fresnel number, all becoming more asymmetric for small
values of N. To investigate the breakdown of III, we
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studied the variation of the width of the curves at half in-
tensity for large N, and the results are shown in Fig. 4.
It is seen that III agrees well with II for x less than ;30°
when the width has increased by a factor of 1.2, whereas
IV predicts no change in width.

5. APPLICATION TO THREE-DIMENSIONAL
MICROSCOPY
The expressions of Gibson and Lanni8 have been widely
used for microscope image restoration. However, here
we discuss the limitations. The treatment presented
above assumes an aberration-free imaging system, but it
is known that for an optical system of high numerical ap-
erture (in object space) that satisfies the sine condition,
spherical aberration is introduced for a change in the ef-
fective tube length. For an object point situated distant

Fig. 3. Intensity along the line from the center of the aperture
to the focal point for offset angles of 30° and 60° and N 5 10:
(II) retaining the astigmatism term [Eq. (24)], (III) improved
theory incorporating an extra defocus term dependent on the
transverse coordinates of the focus and observation points [Eq.
(25)], and (IV) theory of Gibson and Lanni [Eq. (26)]. II was
shown to agree with the exact expression I for typical param-
eters.

Fig. 4. Relative width of the intensity variation along the line
from the center of the aperture to the focal point. The behavior
for II and III is shown. The Fresnel number is assumed large.
For comparison, IV predicts a constant value of unity.
from the focal plane of the objective, the image becomes
distorted axially in image space.12 In practice in three-
dimensional microscopy, the image detector is retained in
the image plane and the object is scanned axially, and a
series of two-dimensional images are recorded with the
detector. An arbitrary object point is imaged out of focus
but with zP 5 d 5 constant, where d is the correct tube
length for the objective. Thus no spherical aberration is
introduced for the object in the plane of the detector when
the object is in focus, but there is a spatially variant
spherical aberration term that cannot be accurately mod-
eled with the Lommel function model.

Even when the aberration effect is neglected, because
the aperture stop of the objective lens is positioned in the
back focal plane of the lens, rays from a point distant xo ,
yo from the axis are deflected at a constant angle x to the
detector as the object is scanned axially. The center of
the image of the point xo , yo remains at a point xP
5 Mxo , yP 5 Myo , zP 5 d on the detector, where M is
the magnification from object to detector. The coordi-
nates of a general point on the detector are

jP 5
xP

~d2 1 xP
2 1 yP

2 !1/2
, hP 5

yP

~d2 1 xP
2 1 yP

2 !1/2
,

zP 5
1

~d2 1 xP
2 1 yP

2 !1/2
. (27)

We also have for the focus at an axial scan position zs

jF 5
Mxo

~d2 1 M2~xo
2 1 yo

2!1/2
,

hF 5
Myo

~d2 1 M2~xo
2 1 yo

2!1/2
,

zF 5
d 2 M2~zo 2 zs!

d~d2 1 M2~xo
2 1 yo

2!1/2
, (28)

where zo is the axial coordinate of the object point, so that
jF , hF are constant during an axial scan. We notice that
although the coordinates xP , yP appear in Eq. (27), zs oc-
curs in Eq. (28). Thus the image is not given by a spa-
tially invariant point-spread function. However, it is
possible to make the system approximately spatially in-
variant by assuming xP ' Mxo , yP ' Myo to give

zP 2 zF '
M2zo

d~d2 1 M2~xo
2 1 yo

2!1/2

2
M2zs

d~d2 1 xP
2 1 yP

2 !1/2
. (29)

Nevertheless, it seems that more accurate restoration can
be achieved by considering the imaging process in the ob-
ject space rather than in the image space, by using the
principle of reciprocity.
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6. DISCUSSION
The Fresnel approximation for off-axis illumination of a
circular aperture in the scalar paraxial domain has been
reexamined. Various degrees of approximation have
been investigated. A new approximate expression [V, Eq.
(19)] for the shape of contours of equal intensity in the fo-
cal plane has been presented. This expression describes
a distortion of the contours in comparison with those of
elliptical shape predicted by Murty [VI, Eq. (20)].1 The
Murty expression is accurate for large values of the
Fresnel number, when the intensity is appreciable only in
the region of focus. An expression for the defocus optical
coordinate [III, Eq. (11)] has been shown to be more accu-
rate than that of Gibson and Lanni8 [IV, Eq. (12)] for
points not in the focal plane. The approximation is accu-
rate for offset angles up to ;30° but breaks down for
larger angles. These results are useful in appreciating
general trends in the off-axis illumination of a circular ap-
erture by a focused beam. Limitations in three-
dimensional microscopy and deconvolution of microscope
images with a finite-tube-length objective have been dis-
cussed.
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