Задание по молекулярной физике и термодинамике. ФИТ, 2 к.

Сдать до 1.11.2017

- 1. Оценить давление атмосферного воздуха на высоте полета пассажирского лайнера -8 км, считая атмосферу изотермической $T = 0^{\theta} C$. Найти отношений концентраций азота N_2 и кислорода O_2 на этой высоте, азота и углекислого газа. Чему равна длина свободного пробега молекул газа на этой высоте? Диаметр молекулы dпринять равным $3A^{\theta}$.
- 2. Как изменится длина свободного пробега молекул и наиболее вероятная скорость при увеличении давления атмосферного воздуха в 4 раза. Рассмотреть процессы: а) изохорический; б) изотермический; в) адиабатический. Считать показатель адиабаты воздуха $\gamma = 1,4$.
- 3. Определить мощность двигателя компрессора, если в процессе изотермического сжатия плотность моля идеального газа повышается компрессором в *4* раза. Какая мощность необходима при адиабатическом сжатии? В начальном состоянии газ находится при нормальных условиях.
- 4. При температуре наружного воздуха равной $T_{\theta} = -10^{-\theta} C$ для поддержания комфортной температуры в коттедже требуется мощность нагревателей $W = 20 \ \kappa Bm$. Оценить мощность двигателя кондиционера, работающего как тепловой насос по обратному циклу Карно, для поддержания такой температуры в коттедже.
- 5. Два одинаковых сосуда разделены перегородкой с отверстием. В сосудах содержится разреженный идеальный газ. Начальная температура стенок сосудов T_{θ} , концентрация молекул газа в сосудах n_{θ} . Температуру одного из сосудов увеличили в 4 раза. Найти изменение концентрации и длины свободного пробега молекул в сосудах. Рассмотреть случаи: а) малого по сравнению с длиной свободного пробега размера отверстия; б) размер отверстия много больше длины свободного пробега.

Составил проф. Кочеев А.А.