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Preface

The Lecture Notes are based on the TCC (Graduate Taught Course Center)

course given by me in Trinity Terms of 2009-2011 at Mathematical Institute

of Oxford University. Chapters 1-3 contain material discussed in Trinity

Term of 2009 (16 hours in total), Chapters 4-5 contain lectures of 2010 (16

hours), and, finally, lectures of 2011 are covered by Chapter 6 (16 hours).

Chapters 1-5 can be regarded as an Introduction to the Mathemati-

cal Theory of the Navier-Stokes equations, relying mainly on the classical

PDE’s approach. First, the notion of weak solutions is introduced, then

their existence is proven (where it is possible), and, afterwards, differentia-

bility properties are analyzed. In other words, we treat the Navier-Stokes

equations as a particular case, maybe very difficult, of the theory of nonlin-

ear PDE’s. From this point of view, the Lectures Notes do not pretend to

be a complete mathematical theory of the Navier-Stokes equations. There

are different approaches, for example, more related to harmonic analysis,

etc. A corresponding list of references (incomplete, of course) is given at

the end of the Lecture Notes.

Finally, Chapters 6 and 7 contain more advanced material, which reflects

my scientific interests.

I also would like to thank Tim Shilkin for careful reading of Lecture

Notes and for his valuable suggestions.

v
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Chapter 1

Preliminaries

1.1 Notation

Let us denote by Ω a domain (open connected set) in R
n. Then, C∞

0 (Ω;Rm)

is set of all infinitely differentiable functions from Ω into R
m, having a

compact support in Ω. If m = 1, we use abbreviation C∞
0 (Ω). However,

even in the case of functions with values in R
m, we shall drop the space Rm

in the notation of the corresponding spaces very often.

A Lebesgue space Lp(Ω) is endowed with the standard norm

‖f‖p,Ω =
(∫

Ω

|f(x)|pdx
) 1

p

if 1 ≤ p <∞ and

‖f‖∞,Ω = ess sup
x∈Ω

|f(x)|

if p = ∞.

Lemma 1.1. Let 1 ≤ p <∞. Then, Lp(Ω) = [C∞
0 (Ω)]Lp(Ω), i.e., Lp(Ω) is

the completion of C∞
0 (Ω) in Lp(Ω).

In what follows, we always assume that the exponent of integrability is

finite unless otherwise is specially indicated.

We say that a distribution u, defined in Ω, belongs to the Sobolev space

W k
s (Ω) if and only if all its weak derivatives up to order k are integrable in

Ω with the power s. The norm of this space is defined as

‖u‖Wk
s (Ω) =

k∑

i=0

‖∇iu‖s,Ω.

We also let
◦
W

k
s (Ω) = [C∞

0 (Ω)]W
k
s (Ω).

1
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It is said that a distribution u, defined in Ω, belongs to the space Lk
s (Ω)

if and only if all its weak derivatives of order k are integrable in Ω with the

power s. This space can be endowed with the usual semi-norm

‖u‖Lk
s(Ω) = ‖∇ku‖s,Ω.

Theorem 1.1. Lk
s (Ω) ⊂ Ls,loc(Ω).

Proof For simplicity, let us consider the case k = 1 only. We have a

distribution T such that∫

Ω

g(x)ϕ(x)dx = −T (∇ϕ) = − < T,∇ϕ >

for ϕ ∈ C∞
0 (Ω) with g = (gi) ∈ Ls(Ω). Our aim is to show that T is in fact

a regular distribution, i.e., there exists a function u ∈ Ls,loc(Ω) such that

T = Tu.

Consider a subdomain Ω0 ⋐ Ω, i.e., a bounded domain Ω0 ⊂ Ω such

that the closure of Ω0 belongs to Ω. Let 0 < ̺ < dist(Ω0, ∂Ω). Define a

linear functional l : L1(Ω0) → R in the following way

l(ψ) :=< T,ψ̺ >

for ψ ∈ L1(Ω0) where

ψ̺(x) =

∫

Ω

̟̺(x − y)ψ(y)dy

and ̟̺ is a standard mollifier. Obviously, ψ̺ ∈ C∞
0 (Ω). It is easy to check

that l is a bounded functional on L1(Ω0) and thus there exists a function

u̺0 ∈ L∞(Ω0) such that

l(ψ) =

∫

Ω0

u̺0(x)ψ(x)dx

for all ψ ∈ L1(Ω0). Next, for any ϕ ∈ C∞
0 (Ω0), we have

− < T,∇ϕρ >=

∫

Ω

gϕρdx =

∫

Ω

g̺ϕdx.

On the other hand, by known properties of mollification we find

− < T,∇ϕρ >= − < T, (∇ϕ)ρ >= −
∫

Ω0

u̺0∇ϕdx.

The latter means that

g̺ = ∇u̺0
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in Ω0. Here, u
̺
0 = u̺0 − [u̺0]Ω0 and

[u̺0]Ω0 :=
1

|Ω0|

∫

Ω0

u̺0dx.

Assuming that Ω0 has a sufficiently smooth boundary, we can apply the

Poincaré-Sobolev inequality

‖u̺0‖s,Ω0 ≤ c(n, s,Ω0)‖g̺‖s,Ω0 ≤ c(n, s,Ω0)‖g‖s,Ω.
Without loss of generality, we may assume that

u̺0 ⇀ u0

in Ls(Ω0). And thus

g = ∇u0
in Ω0.

Next, we take a sequence of domains with sufficiently smooth boundary

such that Ωk ⋐ Ω, Ωk ⋐ Ωk+1 for any natural k and

Ω =

∞⋃

k=0

Ωk.

Now, a required function u can be defined as follows. We let w = u0 in Ω0.

Then, repeating the above procedure, we find a function u1 ∈ Ls(Ω1) such

that g = ∇u1 in Ω1. It is easy to see that u1 −w = C0 on Ω0. Then we let

w = u1 − C0 on Ω1 \ Ω0. Since w − u1 = −C0 in Ω1, g = ∇w in Ω1 and

w ∈ Ls(Ω1). We can extend function w to Ω2 in the same way and so on.

So, we have constructed a function w ∈ Ls,loc(Ω) such that

< Tw,∇ϕ >=
∫

Ω

w(x)∇ϕ(x)dx = −
∫

Ω

g(x)ϕ(x)dx

for all ϕ ∈ C∞
0 (Ω) and thus < T − Tw,∇ϕ >= 0 for the same ϕ. Hence,

there is a constant c such that T = Tw+c. Letting u = w + c, we complete

the proof. �

In a similar way, we can show that if um ∈ C∞
0 (Ω) is a Cauchy sequence

in Lk
s (Ω), i.e., ‖um−ur‖Lk

s(Ω) → 0 as m and r tend to ∞, then there exists

u ∈ Lk
s (Ω) such that ‖um − u‖Lk

s(Ω) → 0 as m tends ∞. Indeed, supposing

for simplicity that k = 1, we may assume that ∇um converges to g ∈ Ls(Ω).

Our aim is to find a function u ∈ Ls,loc such that g = ∇u in Ω.

Now, let domains Ωk be as in the proof of the previous statement. By

Poincaré-Sobolev inequality, we have

‖um − ur − ([um]Ω0 − [ur]Ω0)‖s,Ω0 ≤ c(n, s,Ω0)‖∇(um − ur)‖s,Ω0 ≤
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≤ c(n, s,Ω0)‖∇(um − ur)‖s,Ω → 0

as m and r go to ∞. So,

um − [um]Ω0 → u0

in Ls(Ω0) and ∇u0 = g in Ω0. Repeating this procedure in a bigger do-

main Ω1, we finish our proof using the same arguments as in the previous

theorem.

Unfortunately, if a sequence um ∈ C∞
0 (Ω) converges to u ∈ Lk

s (Ω) in

Lk
s (Ω), it converges there to u+w with ∇kw = 0 as well. This tells us that

in general we should operate with equivalence classes generated by u ∼ w

if ∇k(u − w) = 0 in Ω. So, we can introduce a Banach space
◦
Lk
s (Ω) that

consists of all equivalence classes containing an element u such that there

exists a sequence um ∈ C∞
0 (Ω) with ‖∇(um − u)‖s,Ω as m→ ∞.

In many interesting cases, we can get rid of equivalence classes selecting

a “good” representative from each of them. This usually happens if we

can control a weaker norm. For example, if Ω is bounded, the Friedrichs

inequality is valid:

‖u‖s,Ω ≤ c‖u‖Lk
s(Ω)

for any u ∈ C∞
0 (Ω) with a positive constant independent of u. So, if

um ∈ C∞
0 (Ω) converges to w ∈ Lk

s (Ω) in Lk
s(Ω), then we can select a

special element u ∈ [w] such that um → u in Ls(Ω) and work with it in

what follows. So, we have

Proposition 1.2. For bounded domains Ω,
◦
L
k
s (Ω) =

◦
W

k
s (Ω).

For unbounded domains, things are more complicated. Let us con-

sider, for example, the space
◦
L1
2(Ω). If n ≥ 3, then we can use Gagliardo-

Nirenberg inequality

‖u‖p,Ω ≤ c(n)‖∇u‖2,Ω
for any u ∈ C∞

0 (Ω) with p = 2n/(n − 2). This inequality allows to avoid

using equivalence classes for ANY domain Ω in R
n.

For n = 2, a half-plane R
2
+ = {x ∈ R

2 : x2 > 0} is still a “good” case

thanks to the following inequality:

‖u‖2,Π ≤ ‖∇u‖2,Π
for any u ∈ C∞

0 (R2
+) with Π = {−∞ < x1 < ∞, 0 < x2 < 1}. The proof

of it is the same as for the Friedrichs inequality.
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1.2 Newtonian Potential

The fundamental solution to the Laplace equation is

E(x) =
1

ωnn(n− 2)

1

|x|n−2

if n ≥ 3 and

E(x) =
1

2π
ln

1

|x|
if n = 2, where ωn is the volume of unit ball in R

n.

For a given function f : Rn → R, we define the Newtonian potential of

f as the following convolution:

u = E ⋆ f

or

u(x) =

∫

Rn

E(x − y)f(y)dy.

In what follows, we are going to use a standard cut-off function ϕ ∈
C∞

0 (Rn), having the following properties:

0 ≤ ϕ(x) ≤ 1 x ∈ R
n,

ϕ(x) = 1 x ∈ B(1), ϕ(x) = 0 x /∈ B(2),

ϕR(x) = ϕ(x/R).

Here, B(R) is a ball of radius R centred at the origin.

Proposition 2.3. Let f ∈ Lp(R
n) with 1 < p < ∞ and u = E ⋆ f . The

following statements are true:

(i)
∫
Rn

|∇2u|pdx ≤ c(n, p)
∫
Rn

|f |pdx,

(ii) u ∈
◦
L2
p(R

n),

(iii) △u = −f
in R

n.

Proof (i) follows from the theory of singular integrals. (iii) follows

from (i), (ii), and from the classical PDE theory.
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Let us prove (ii), assuming that n ≥ 3. By Lemma 1.1, there exists a

sequence fm ∈ C∞
0 (Rn) such that fm → f in Lp(R

n). Since supp fm is a

compact set in R
n,

|∇ium(x)| ≤ c(m, i)

|x|n−2+i

for all x ∈ R
n, for i = 0, 1, 2, for all m = 1, 2, ..., and for some positive

c(m, i). Here, um = E ⋆ fm.

Our aim is to show that

um ∈
◦
L
2
p(R

n).

Indeed, we have∫

Rn

|∇2(ϕRum − um)|pdx ≤ c
[ ∫

Rn\B(R)

|∇2um|pdx+

+
1

Rp

∫

B(2R)\B(R)

|∇um|pdx+
1

R2p

∫

B(2R)\B(R)

|um|pdx
]
≤

≤ c

∫

Rn\B(R)

|∇2um|pdx+ C(m)
[ 1

Rp

Rn

R(n−1)p
+

1

R2p

Rn

R(n−2)p

]
→ 0

as R → ∞ for each fixed m.

On the other hand, by (i), we have

‖∇2u−∇2um‖p,Rn ≤ c‖f − fm‖p,Rn → 0

as R → ∞. This implies (ii). �

Particular cases

1. Let f(x′, xn) = −f(x′,−xn), where x′ = (x1, x2, ..., xn−1). Then

u(x′, xn) = −u(x′,−xn)
and u, u,n = ∂u/∂xn, and u,nn are in Lp,loc(R

n) that implies u(x′, 0) = 0.

So, the Newtonian potential u solves the following Dirichlet problem in

half-space:

△u = −f (1.2.1)

in R
n
+ = {x = (x′, xn) : xn > 0},

u(x′, 0) = 0

for any x′.
2. The same arguments show that if f(x′, xn) = f(x′,−xn) then u

solves the Neumann boundary value problem, i.e., it satisfies (1.2.1) and

the Neumann boundary condition

u,n(x
′, 0) = 0

for any x′.
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1.3 Equation divu = b

We start with the simplest case Ω = R
n.

Proposition 3.4. Let 1 < s < ∞. Given b ∈ Ls(R
n), there exists u ∈

◦
L1
s(R

n) with the following properties:

(i) div u = b

in R
n,

(ii) ‖∇u‖s,Rn ≤ c(s, n)‖b‖s,Rn.

Proof We let h = E ⋆ b. By Proposition 2.3, ∇h ∈
◦
L1
s(R

n). If we let

u = −∇h, then, by the same statement,

‖∇u‖s,Rn = ‖∇2h‖s,Rn ≤ c(s, n)‖b‖s,Rn

and

div u = −div∇h = −△h = b. �

In the case of the half-space, i.e., Ω = R
n
+ := {x = (x′, xn) : x′ ∈

R
n−1, xn > 0}, we have

Proposition 3.5. Let 1 < s < ∞. Given b ∈ Ls(R
n
+), there exists u ∈

◦
L1
s(R

n
+) with the following properties:

(i) div u = b

in R
n
+,

(ii) ‖∇u‖s,Rn
+
≤ c(s, n)‖b‖s,Rn

+
.

Remark 1.1. The above vector-valued function u satisfies the homoge-

neous boundary condition u|xn=0 = 0 in the sense of traces in Sobolev

spaces.

Proof of Proposition 3.5 To show the essence of the matter, let us

consider a special case n = 3 and s = 2.

Let b ∈ C∞
0 (R3

+) and b̂ is the even extension of b to R
3. Clearly, b̂ ∈

C∞
0 (R3). Letting h = −E ⋆ b̂, we see that

△h = b̂ = b in R
3
+, h,3|x3=0 = 0 (1.3.1)

and

‖∇2h‖2,R3
+
≤ c‖b‖2,R3

+
. (1.3.2)
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The idea is to look for u in the form

u = ∇h+ rotA,

where A is unknown vector field. Obviously,

div u = △h = b in R
3
+.

Equations for A is coming from condition u|x3=0 = 0 that leads to the

following relations

rotA = −∇h

at x3 = 0. We are seeking A, satisfying additional assumptions:

A|x3=0 = 0, A3 ≡ 0 in R
3
+.

So, the main equations for A = (A1, A2, 0) are:

Aα,3(x
′, 0) = Bα(x

′) α = 1, 2,

where B1(x
′) = h,2(x

′, 0) and B2(x
′) = −h,1(x′, 0) are known functions.

The theory of traces for functions from Sobolev spaces suggests to seek

A in the form:

Aα(x
′, x3) = x3

∫

R2

Bα(x
′ + y′x3)K(y′)dy′,

where a functionK ∈ C∞
0 (R2) is supposed to obey the following conditions:

K(x′) = 0 x′ /∈ B′ = {x′ ∈ R
2 : |x′| < 1},

∫

R2

K(y′)dy′ = 1.

Now, our aim is to show that functions

u1 = h,1 +A2,3,

u2 = h,2 −A1,3,

u3 = h,3 +A1,2 −A2,1,

with A described above, satisfy all the requirements.

Indeed, direct calculations gives us:

Aα,3(x) = x3

∫

R2

∂Bα

∂zβ
(x′ + y′x3)yβK(y′)dy′ +

∫

R2

Bα(x
′ + y′x3)K(y′)dy′.

(1.3.3)
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Noticing that

∂Bα

∂zβ
=
∂Bα

∂yβ

1

x3

and integrating by parts with respect yβ, we can transform the right-hand

side of (1.3.3) to the form

Aα,3(x) = −
∫

R2

[
Bα(x

′ + y′x3)−Bα(x
′)
] ∂

∂yβ
(yβK(y′))dy′+

+

∫

R2

Bα(x
′ + y′x3)K(y′)dy′.

By the choice of K, Aα,3(x
′, 0) = Bα(x

′), α = 1, 2.

Now, our goal is to show the validity of the estimate

‖∇2Aα‖2,R3
+
≤ c‖b‖2,R3

+
, α = 1, 2, (1.3.4)

with some universal constant c. To this end, let us discuss a typical state-

ment from the theory of traces in Sobolev spaces.

Lemma 1.2. For any smooth function f : R3
+ → R, vanishing for suffi-

ciently large |x|, the following inequality holds:

‖f‖2
L

1
2
2 (R2)

:=

∫

R2

∫

R2

|f(x′, 0)− f(y′, 0)|2 dx′dy′

|x′ − y′|3 ≤ c

∫

R3
+

|∇f |2dx (1.3.5)

with some universal constant c.

Proof By the shift in variables, we can rewrite the left-hand side of

the latter inequality in the following way:

‖f‖2
L

1
2
2 (R2)

=

∫

R2

dz′

|z′|3
∫

R2

|f(x′ + z′, 0)− f(x′, 0)|2dx′.

Applying the triangle inequality, we find

|f(x′ + z′, 0)− f(x′, 0)| ≤ |f(x′ + z′, |z′|)− f(x′, |z′|)|+

+|f(x′ + z′, |z′|)− f(x′ + z′, 0)|+ |f(x′, |z′|)− f(x′, 0)|. (1.3.6)

According to (1.3.6), we should evaluate three integrals. In the first one,

the polar coordinates z′ = (̺ cosϕ, ̺ sinϕ) are used to derive identity:

I1 =

∫

R2

dz′

|z′|3
∫

R2

|f(x′, |z′|)− f(x′, 0)|2dx′ =



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 10

10 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

= 2π

∫

R2

dx′
∞∫

0

1

̺2
|f(x′, ̺)− f(x′, 0)|2d̺.

The right-hand side of it can be bounded from above with the help of

Hardy’s inequality:
∞∫

0

t−p|g(t)− g(0)|pdt ≤
( p

p− 1

)p
∞∫

0

|g′(t)|pdt

with 1 < p <∞. So,

I1 ≤ 2π

∫

R2

dx′4

∞∫

0

∣∣∣ ∂
∂̺
f(x′, ̺)

∣∣∣
2

d̺ ≤ 8π

∫

R3
+

|∇f |2dx.

Applying similar arguments to I3, we show

I2 =

∫

R2

dz′

|z′|3
∫

R2

|f(x′ + z′, |z′|)− f(x′ + z′, 0)|2dx′ =

=

∫

R2

dz′

|z′|3
∫

R2

|f(y′, |z′|)− f(y′, 0)|2dy′ ≤ 8π

∫

R3
+

|∇f |2dx.

To estimate the third term, we exploit the following simple inequality

|f(x′ + z′, |z′|)− f(x′, |z′|)| =
∣∣∣

1∫

0

∂f

∂t
(x′ + tz′, |z′|)dt

∣∣∣ ≤

≤ |z′|
( 1∫

0

|∇xf(x
′ + tz′, |z′|)|2dt

) 1
2

,

which give us

I3 =

∫

R2

dz′

|z′|3
∫

R2

|f(x′ + z′, |z′|)− f(x′, |z′|)|2dx′ ≤

≤
∫

R2

dz′

|z′|

1∫

0

dt

∫

R2

|∇x′f(x′ + tz′, |z′|)|2dx′ =

=

∫

R2

dz′

|z′|

∫

R2

|∇y′f(y′, |z′|)|2dy′.



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 11

Preliminaries 11

It remains to make the change of variables z′ = (̺ cosϕ, ̺ sinϕ)

I3 ≤ 2π

∫

R3
+

|∇f |2dx

and complete our proof. �

Now, our goal is to show that (1.3.5) holds for any function f of class

C2, having the decay

|f(x)| ≤ c

|x| , (1.3.7)

with a positive constant c.

Denoting by B′(R) the unit disk centered at the origin and letting fR =

fϕR, where ϕR is a standard cut-off function, we have
∫

B′(R)

∫

B′(R)

|f(x′, 0)− f(y′, 0)|2
|x′ − y′|3 dx′dy′ =

=

∫

B′(R)

∫

B′(R)

|fR(x′, 0)− fR(y
′, 0)|2

|x′ − y′|3 dx′dy′ ≤

≤ c

∫

R3
+

ϕR|∇f |2dx+
c

R2

∫

(B(2R)\B(R))∩R3
+

|f |2dx ≤

≤ c

∫

R3
+

|∇f |2dx+
c

R
.

Passing to the limit as R → ∞ and using Fatou’s lemma, we deduce (1.3.5).

Next, we observe that it is sufficient to show

‖∇2Aα‖2,R3
+
≤ c‖∇h(·, 0)‖

L
1
2
2 (R2)

. (1.3.8)

Indeed, since

|∇h(x)| ≤ c(b)

|x|2

for |x| ≫ 1, one can derive from (1.3.5) and (1.3.2) that

‖∇h(·, 0)‖
L

1
2
2 (R2)

≤ c‖∇2h‖2,R3
+
≤ c‖b‖2,R3

+
.

Then, statement (ii) of Proposition 3.5 for this particular class of b follows.
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Now, let us prove (1.3.8), directly working out the second derivatives of

A,

Aα,β3(x
′, x3) = −

∫

R2

∂

∂xβ
Bα(x

′ + y′x3)
∂

∂yγ
(yγK(y′))dy′+

+

∫

R2

∂

∂xβ
Bα(x

′ + y′x3)K(y′)dy′.

Obviously,

∂

∂xβ
Bα(x

′ + y′x3) =
∂

∂yβ
Bα(x

′ + y′x3)
1

x3
.

Then

S = Aα,β3(x) =
1

x3

∫

R2

δBα(x
′, y′, x3)Kβ(y

′)dy′,

where

δBα(x
′, y′, x3) := Bα(x

′ + y′x3)−Bα(x
′)

and

Kβ(y
′) := (yγK(y′)),βγ −K,β(y

′).

Now, we have

∫

R3
+

S2dx ≤ c

∞∫

0

dx3

∫

R2

dx′
( 1

x3

∫

R2

|δBα(x
′, y′, x3)||Kβ(y

′)|dy′
)2

and, by Hölder inequality,

∫

R3
+

S2dx ≤ c

∞∫

0

dx3

∫

R2

dx′
1

x23

∫

R2

|Kβ(z
′)|dz′

∫

R2

|δBα(x
′, y′, x3)|2|Kβ(y

′)|dy′ ≤

≤ c

∫

R2

|Kβ(y
′)|dy′

∞∫

0

dx3
x23

∫

R2

|Bα(x
′ + y′x3)−Bα(x

′)|2dx′.

Introducing polar coordinates y′ = ̺(cosϕ, sinϕ), we find

∫

R3
+

S2dx ≤ c

1∫

0

2π∫

0

̺d̺dϕ

∞∫

0

dx3
x23

∫

R2

|Bα(x
′+̺(cosϕ, sinϕ)x3)−Bα(x

′)|2dx′.
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If we set z′ = x3(cosϕ, sinϕ), then

∫

R3
+

S2dx ≤ c

1∫

0

̺d̺

∫

R2

dz′

|z′|3
∫

R2

|Bα(x
′ + z′̺)−Bα(x

′)|2dx′.

Letting y′ = z′̺, we show

∫

R3
+

S2dx ≤ c

1∫

0

d̺

∫

R2

∫

R2

|Bα(x
′ + y′)−Bα(x

′)|2
|y′|3 dx′dy′ ≤

≤
∫

R2

∫

R2

|Bα(z
′)−Bα(y

′)|2
|z′ − y′|3 dz′dy′ ≤ c‖∇h(·, 0)‖2

L
1
2
2 (R2)

. (1.3.9)

With the remaining second derivatives, we proceed as follows:

Aα,33(x) =
1

x3

∫

R2

(Bα(x
′ + y′x3)−Bα(x

′))K̃(y′)dy′,

where

K̃(y′) := (yγ(yβK(y′)),β)),γ − (yγK(y′)),γ ,

and

Aα,βγ(x) =
1

x3

∫

R2

(Bα(x
′ + y′x3)−Bα(x

′))(K(y′)),βγdy
′.

So, similar arguments as above lead to the required bound
∫

R3
+

(A2
α,33 +A2

α,βγ)dx ≤ c‖∇h(·, 0)‖2
L

1
2
2 (R2)

.

Hence, inequality (1.3.8) for smooth compactly supported functions b is

proven.

Now, our aim is to show that

u ∈
◦
L
1
2(R

3
+) (1.3.10)

for any b ∈ C∞
0 (R3

+). The proof of (1.3.10) consists of two parts.

Step 1. First, let us check that ∇h ∈ L2(R
3
+). Indeed, since ∇2h ∈

L2(R
3
+), an embedding theorem implies ∇h ∈ L2(B+(1)), where B+(R) :=

{x ∈ B(R) : x3 > 0}. We know that

|∇h(x)| ≤ c(b)

|x|2
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for |x| ≫ 1. So,

∫

B+(R)

|∇h|2dx ≤
∫

B+(1)

|∇h|2dx+
∫

B+(R)\B+(1)

|∇h|2dx ≤ ...+c(b)

R∫

1

d̺

̺2
≤ c(b)

for any R > 1.

Step 2. Let us show that ∇Aα ∈ L2(R
3
+). We know

Aα,3(x) =

∫

R2

Bα(x
′ + y′x3)K0(y

′)dy′,

where

K0(y
′) = K(y′)− (yβK(y′)),β .

Let α = 1. Then B1(x
′) = h,2(x

′, 0) and

B1(x
′ + y′x3) =

∂

∂y2
h(x′ + y′x3, 0)

1

x3
.

So,

A1,3(x) = − 1

x3

∫

R2

(h(x′ + y′x3, 0)− h(x′, 0))
∂

∂y2
K0(y

′)dy′.

Repeating the evaluation of Aα,β3, we find
∫

R3
+

A2
1,3dx ≤ c‖h(·, 0)‖

L
1
2
2 (R(2)

.

Since |h(x)| ≤ c(b)/|x| for |x| ≫ 1, one can derive with the help of Lemma

1.2 the inequality

‖h(·, 0)‖
L

1
2
2 (R(2)

≤ c‖∇h‖2,R3
+
.

This means that, by Step 1, A1,3 ∈ L2(R
3
+). The same holds true for A2,3.

The proof of the fact that Aα,β ∈ L2(R
3
+) is an exercise. So, it has been

proven that

u ∈ L2(R
3
+) (1.3.11)

provided b ∈ C∞
0 (R3

+).

Now, we wish to finish the proof of (1.3.10). Letting uR = ϕRu, one

can observe that∫

R3
+

|∇(u− uR)|2dx ≤ c

∫

R3
+\B+(R)

|∇u|2dx+ c
1

R2

∫

B+(2R)\B+(R)

|u|2dx→ 0
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as R → ∞.

The function uR is not compactly supported in R
3
+ and we need to cut

it in the direction of x3. To this end, let us introduce the following cut-off

function: χ(t) = 0 if −∞ < t ≤ ε/2, χ(t) = 2(t− ε/2)/ε if ε/2 < t ≤ ε, and

χ(t) = 1 if t > ε. Considering uR,ε(x) = uR(x)χ(x3), we have

∫

R3
+

|∇(uR − uR,ε)|2dx ≤ c

ε∫

0

dx3

∫

R2

|∇uR|2dx′ +
1

ε2

∫

R2

dx′
ε∫

0

|uR|2dx3.

The first integrals on the right-hand side of the last inequality tends to zero

as ε→ 0. To show that the second term does the same, we are going to use

two facts. Firstly, uR(x
′, 0) = 0 and secondly, by the Friedrichs inequality,

ε∫

0

|uR(x′, x3)|2dx3 ≤ cε2
ε∫

0

∣∣∣ ∂

∂x3
uR(x

′, x3)
∣∣∣
2

dx3.

So, combining the above inequalities, we show that

∫

R3
+

|∇(uR − uR,ε)|2dx ≤ c

ε∫

0

∫

R2

|∇uR|2dx→ 0

as ε→ 0 for each fixed R > 0.

It remains to mollify uR,ε. The mollification (uR,ε)τ belongs to C∞
0 (R3

+)

for 0 < τ ≤ τ(R, ε) and
∫

R3
+

|∇(uR,ε − (uR,ε)τ )|2dx→ 0

as τ → 0 for each fixed R and ε. So, (1.3.10) is proven.

Now, we are going to extend our result to functions b ∈ L2(R
3
+). Given

b ∈ L2(R
3
+), there exists b(m) ∈ C∞

0 (R3
+) such that ‖b(m) − b‖2,R3

+
→ 0 as

m→ ∞. We know that there is u(m) ∈
◦
L1
2(R

3
+) having the properties:

div u(m) = b(m)

in R
3
+ and

‖∇u(m)‖2,R3
+
≤ c‖b(m)‖2,R3

+
.

Moreover, by construction

‖∇u(m) −∇u(k)‖2,R3
+
≤ c‖b(m) − b(k)‖2,R3

+
,
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which implies that

u(m) → u

in L1
2(R

3
+). �

Let us mention some consequences and generalizations.

Theorem 3.6. Let Ω ⊂ R
n be a bounded domain with Lipschitz boundary,

1 < p <∞, and let

L̄p(Ω) := {b ∈ Lp(Ω) :

∫

Ω

b(x)dx = 0}.

Then, for any b ∈ L̄p(Ω), there exists u ∈
◦
L1
2(Ω) with the following proper-

ties:

div u = b

in Ω and

‖∇u‖p,Ω ≤ c(p, n,Ω)‖b‖p,Ω.

Remark 1.2. For bounded domains, we need a restriction on b:
∫

Ω

b(x)dx = 0,

which is called the compatibility condition.

Remark 1.3. Proof of Theorem 3.6 is based on Propositions 3.4 and 3.5,

decomposition of the unity, and changes of coordinates. It is quite involved

but does not contain new ideas.

Remark 1.4. There is a different approach to the proof of Theorem 3.6,

which is due to Bogovskii. It is simpler than the above proof. But it relies

upon the theory of singular integrals.

1.4 Nečas Imbedding Theorem

The main result of this section reads:

Theorem 4.7. Let 1 < r <∞ and let Ω be a domain in R
n. Assume that

the gradient of a distribution p, defined in Ω, has the property:

< ∇p, w >≤ K‖∇w‖r′,Ω



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 17

Preliminaries 17

for any w ∈ C∞
0 (Ω;Rn).

The following statements are valid:

(i) p ∈ Lr,loc(Ω) and for any Ω′ ⋐ Ω there exists a constant c(r, n,Ω′,Ω)
such that

∫

Ω′

|p− a|rdx ≤ cK

for some constant a;

(ii) if Ω = R
n or R

n
+ and p ∈ Lr(Ω), then there exists a constant c(r, n)

such that
∫

Ω

|p|rdx ≤ cK

(iii) if Ω is a bounded Lipschitz domain, then p ∈ Lr(Ω) and there exists a

constant c(r, n,Ω) such that
∫

Ω

|p− a|rdx ≤ cK

for some constant a.

Proof

(i) Without loss of generality, we may assume that a bounded domain Ω′

has Lipschitz boundary. We claim that there exists a constant c(r, n,Ω′,Ω)
such that

| < p, q > | ≤ cK‖q‖r′,Ω′ (1.4.1)

for any q ∈ C∞
0 (Ω′) with [q]Ω′ = 0. The latter would imply that p is a

regular distribution. Here,

[q]ω =
1

|ω|

∫

ω

q(x)dx.

By Theorem 3.6, there exists u ∈
◦
L1
r′(Ω

′) such that

div u = q

in Ω′ and

‖∇u‖r′,Ω′ ≤ c(r, n,Ω′)‖q‖r′,Ω′ .
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Functions u and q are supposed to be extended by zero outside Ω′. Let us
mollify u in a standard way

(u)̺(x) =

∫

Ω′

ω̺(x− y)u(y)dy =

∫

Ω

ω̺(x− y)u(y)dy =

∫

Rn

ω̺(x − y)u(y)dy

with the help of a smooth mollifier ω̺. So, (u)̺ ∈ C∞
0 (Ω) for 0 < ̺ <

̺0(Ω
′,Ω). Moreover, we know that

∇(u)̺ = (∇u)̺
and thus

div (u)̺ = (q)̺,

‖∇(u)̺‖r′,Ω ≤ ‖∇u‖r′,Ω ≤ c‖q‖r′,Ω,
by the known mollification properties.

Now, we have (in the sense of distributions)

< ∇p, (u)̺ >= − < p, div (u)̺ >= − < p, (q)̺ >,

which implies

| < p, (q)̺ > | ≤ K‖∇(u)̺‖r′,Ω ≤ cK‖q‖r′,Ω.
It is worthy to notice that there exists a compactK0 such that Ω′ ⊂ K0 ⊂ Ω,

support of ∇k(q)̺ and support of ∇kq belong to K0, and

∇k(q)̺ → ∇kq

uniformly in K0 for any k = 0, 1, ... as ̺→ 0 and thus

< p, (q)̺ >→< p, q >

as ̺→ 0. Tending ̺→ 0, we then find (1.4.1).

It follows from Banach and Riesz theorems that there exist P ∈ Lr(Ω
′)

such that ‖P‖r,Ω′ ≤ cK and

< p, q >=

∫

Ω′

Pqdx

for any q ∈ C∞
0 (Ω′) with [q]Ω′ = 0.

Now, let us test the latter identity with q = div u for an arbitrary

u ∈ C∞
0 (Ω′) (it is supposed that all the functions are extended by zero to

the whole domain Ω). As a result, we have

< ∇p, u >= − < p, divu >= −
∫

Ω′

Pdiv udx.
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This means that ∇(p|Ω′ − P ) = 0. And thus, by Theorem 1.1, p − P =

constant on Ω′. So, part (i) is proven.
(ii) According to (i), our distribution v is regular and, therefore,

< p, q >=

∫

Ω

p(x)q(x)dx

for any q ∈ C∞
0 (Ω).

Given q ∈ C∞
0 (Ω), we find u ∈

◦
L1
r′(Ω) such that div u = q in Ω and

‖∇u‖r′,Ω ≤ c‖q‖r′,Ω.

By the definition of
◦
L1
r′(Ω), there exists a sequence u(m) ∈ C∞

0 (Ω) such

that

∇u(m) → ∇u in Lr′(Ω)

and thus

q(m) := div u(m) → q in Lr′(Ω)

as m→ ∞. Then, as it has been pointed out above, we should have

< ∇p, u(m) >= −
∫

Ω

pdiv u(m)dx = −
∫

Ω

pq(m)dx ≤ cK‖∇u(m)‖r′,Ω.

Passing to the limit, we find the estimate

−
∫

Ω

pqdx ≤ cK‖q‖r′,Ω, (1.4.2)

which allows us to state that

‖p‖r,Ω ≤ cK.

(iii) Here, it is enough to repeat the same arguments as in (i), replacing Ω′

with Ω, under the additional restriction on q that is [q]Ω = 0. As a result,

we get estimate (1.4.2) that holds for any q ∈ C∞
0 (Ω) provided [q]Ω = 0.

Repeating arguments, used at the end of the proof of the statement (i), we

conclude that there exists P ∈ Lr(Ω) such that ‖P‖r,Ω ≤ cK and P = p−a
for some constant a. �

We end up this section with recollecting known facts related to duality

between function spaces. For a given Banach space V , let V ′ be its dual

one, i.e., the space of all bounded linear functionals on V . Very often, we

need to identify V ′ with a particular function space and such a choice as a
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rule depends on the problem under consideration. There is a relatively gen-

eral construction that is very popular in the theory of evolution problems.

To describe it, let us state the corresponding standing assumptions. We are

given a reflexive Banach space V with the norm ‖ · ‖V and a Hilbert space

with the scalar product (·, ·). It is supposed that V is continuously imbed-

ded intoH , i.e., there exists a constant c such that ‖v‖H =
√
(v, v) ≤ c‖v‖V

for any v ∈ V and let V be dense in H .

As usual, we identify H ′ with H itself, i.e., H ′ = H (in the known

functional analysis sense). Now, let us fix f ∈ H , then v 7→ (f, v) is a

bounded linear functional on V and thus there exists v′f ∈ V ′ with the

properties:

< v′f , v >= (f, v) ∀v ∈ V

and

‖v′f‖V ′ ≤ c‖f‖H ∀f ∈ H.

So, we have a bounded linear operator τ : H → V ′ (one-to-one by density)

defined by the identity τf = v′f for f ∈ H .

Obviously, τ(H) is a linear manifold of V ′. Moreover, it is dense there.

To see that, assume it is not, i.e., there exists v′0 ∈ V ′ but v′0 /∈ [τ(H)]V
′

.

By the Hahn-Banach theorem, there exists v′′ ∈ V ′′ := (V ′)′ with the

properties < v′′, v′0 >= 1 and < v′′, v′ >= 0 for any v′ ∈ τ(H). Since V

is reflexive, there should be v ∈ V so that < v′′, v′ >=< v′, v > for any

v′ ∈ V ′. This gives us: < v′0, v >= 1 and < v′f , v >= (f, v) = 0 for any

f ∈ H . Therefore, v = 0 and we get a contradiction. The latter allows us

to identify V ′ with the closure of τ(H) in V ′. But we can go further and

identify duality relation between V and V ′ with the scalar product (·, ·) on
H . Very often, we call such an identification of V ′ the space dual to V

relative to the Hilbert space H .

So, under our standing assumptions, v′ ∈ V ′ means that there exists a

sequence sequence fm ∈ H such that

sup{|(fk − fn, v)| : ‖v‖V = 1} → 0

as k, n → ∞ and (v′, v) is just notation for lim
k→∞

(fk, v) that exists for all

v ∈ V . Moreover,

‖v′‖V ′ = sup{|(v′, v)| : ‖v‖V = 1}.

If a domain Ω is such that the space
◦
L1
r′(Ω) is continuously imbedded

into the space L2(Ω), all standing assumptions with the particular choice
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of spaces V =
◦
L1
r′(Ω) and H = L2(Ω) hold. In this case, we shall denote by

L−1
r (Ω) an identification of the space

( ◦
L1
r′(Ω)

)′
according to the aforesaid

scheme and the main assumption of Theorem 4.7 can be replaced with the

following one:

∇p ∈ L−1
r (Ω).

1.5 Spaces of Solenoidal Vector Fields

First, let us introduce the set of all smooth divergence free vector fields

compactly supported in Ω:

C∞
0,0(Ω) := {v ∈ C∞

0 (Ω) : div v = 0 inΩ}.
Next, for 1 ≤ r <∞, we define the following “energy” spaces

◦
J
1
r(Ω) := [C∞

0,0(Ω)]
L1

r(Ω)

and

Ĵ1
r(Ω) := {v ∈

◦
L
1
r(Ω) : div v = 0 inΩ}.

In general,

Ĵ1
r(Ω) ⊇

◦
J
1
r(Ω).

For r = 2, we use abbreviations:

V (Ω) :=
◦
J
1
2(Ω), V̂ (Ω) := Ĵ1

2(Ω).

Here, it is an example of a domain in R
3

Ω⋆ = R
3 \ {x = (0, x2, x3), x

2
2 + x23 ≥ 1},

for which

V̂ (Ω∗) \ V (Ω∗) 6= ∅.
This example is due to J. Heywood.

There is a wide class of domains for which the above spaces coincide.

For example, we have

Theorem 5.8. Let 1 < m < ∞ and let Ω be R
n, or R

n
+, or a bounded

domain with Lipschitz boundary. Then
◦
J
1
m(Ω) = Ĵ1

m(Ω).

Proof See next section.
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1.6 Linear Functionals Vanishing on Divergence Free

Vector Fields

Proposition 6.9. Let Ω = R
n or R

n
+ or be a bounded Lipschitz domain.

Assume that 1 < s <∞. Let, further, l :
◦
L1
s(Ω) → R be a linear functional

having the following properties:

|l(v)| ≤ c‖∇v‖s,Ω

for any v ∈
◦
L1
s(Ω) and

l(v) = 0

for any v ∈ Ĵ1
s(Ω).

Then there exists a function p ∈ Ls′(Ω), s
′ = s/(s− 1), such that

l(v) =

∫

Ω

pdiv vdx

for any v ∈
◦
L1
s(Ω).

Proof Let us consider case Ω = R
n or Rn

+.

We define a linear functional G : Ls(Ω) → R as follows. Given q ∈
Ls(Ω), take any u ∈

◦
L1
s(Ω) such that div u = q and let G(q) = l(u). By

Proposition 3.5, there is at least one function u with this property. Next,

one should show that functional G is well-defined, i.e., for any v ∈
◦
L1
s(Ω)

with div v = q, we have l(u) = l(v). Indeed, u − v ∈ Ĵ1
s (Ω) and by our

assumptions l(u− v) = 0 = l(u)− l(v).

It is not a difficult exercise to verify that G is a linear functional.

Now, we can select a special vector-valued function u ∈
◦
L1
s(Ω), for which

we have the identity div u = q and the estimate

‖∇u‖s,Ω ≤ c‖q‖s,Ω.

The latter implies

G(q) = l(u) ≤ c‖∇u‖s,Ω ≤ c‖q‖s,Ω
for any q ∈ Ls(Ω). So, the functional G is bounded on Ls(Ω) and by Riesz

theorem, there exists p ∈ Ls′(Ω) such that

G(q) =

∫

Ω

pqdx
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for any q ∈ Ls(Ω). Now, for each u ∈
◦
L1
s(Ω), we have the identity

l(u) = G(div u) =

∫

Ω

pdiv udx.

For bounded Lipschitz domains, one should replace the space Ls(Ω)

with its subspace

L̄s(Ω) = {q ∈ Ls(Ω) : [q]Ω = 0}
and use the same arguments as above. �

However, we can assume that our functional vanish on
◦
J1
s(Ω) only.

Theorem 6.10. Let Ω = R
n or R

n
+ or be a bounded Lipschitz domain.

Assume that 1 < s <∞. Let, further, l :
◦
L1
s(Ω) → R be a linear functional

having the following properties:

|l(v)| ≤ c‖∇v‖s,Ω

for any v ∈
◦
L1
s(Ω) and

l(v) = 0

for any v ∈
◦
J1
s(Ω).

Then there exists a function p ∈ Ls′(Ω), s
′ = s/(s− 1), such that

l(v) =

∫

Ω

pdiv vdx

for any v ∈
◦
L1
s(Ω).

Proof We start with bounded domains. Let us consider a sequence of

bounded smooth domains Ωm, m = 1, 2, ..., with the following properties:

Ωm ⊂ Ωm+1

and

Ω =

∞⋃

m=1

Ωm.

Given v ∈
◦
L1
s(Ωm), define vm = v in Ωm and vm = 0 outside Ωm.

Obviously, vm ∈
◦
L1
s(Ω). We also define a linear functional lm :

◦
L1
s(Ωm) → R

as follows:

lm(v) := l(vm)
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for any v ∈
◦
L1
s(Ωm). It is bounded and, moreover,

|lm(v)| ≤ c‖∇v‖s,Ωm

with a constant c independent of m.

Using standard properties of mollification, one can show the following

fact: if v ∈ Ĵ1
s(Ωm), then vm ∈

◦
J1
s(Ω). This immediately implies that

lm(v) = 0 for any v ∈ Ĵ1
s(Ωm). According to Proposition 6.9, there exists

pm ∈ Ls′(Ωm) such that

lm(v) =

∫

Ωm

pmdiv vdx

for any v ∈
◦
L1
s(Ωm). Obviously, pm is defined up to an arbitrary constant.

Moreover, pm+1 − pm = c(m) = constant in Ωm. So, we can change pm+1

adding a constant to achieve the identity pm+1 = pm in Ωm that makes it

possible to introduce a function p ∈ Ls′,loc(Ω) so that p = pm on Ωm. By

construction, it satisfies identity

l(v) =

∫

Ω

pdiv vdx, (1.6.1)

and the inequality

l(v) ≤ c‖∇v‖s,Ω
for every v ∈ C∞

0 (Ω) and, as it follows from Theorem 4.7, p ∈ Ls′(Ω). If

so, identity (1.6.1) can be extended to all functions v ∈
◦
L1
s(Ω) by density

arguments.

Let us consider the case Ω = R
n
+. The case Ω = R

3 can be treated in

the same and even easier. Our arguments are similar to previous ones. Let

Ωm = Ω + en
1
m . To show that v ∈ Ĵ1

s(Ωm) implies vm ∈
◦
J1
s(Ω), we find

a sequence v(k) ∈ C∞
0 (Ωm) such that ‖∇v(k) − ∇v‖s,Ωm → 0 as k → ∞.

Let suppv(k) ⊂ B+(en
1
m , Rk) = B+(Rk) + en

1
m for some Rk > 0. By

scaling arguments, we can find a function w(k) ∈
◦
L1
s(B+(en

1
m , Rk)) with

the following properties:

divw(k) = divv(k)

in B+(en
1
m , Rk) and

‖∇w(k)‖s,B+(en
1
m ,Rk)

≤ c‖divv(k)‖s,B+(en
1
m ,Rk)

.

One should emphasize that a constant in the above inequality is indepen-

dent of k.
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We let further u(k) = v(k) − w(k) so that u(k) ∈
◦
L1
s(B+(en

1
m , Rk)),

divu(k)m = 0 in Ω, and

‖∇u(k)m −∇vm‖2,Ω ≤ ‖∇v(k)m −∇vm‖2,Ω + ‖∇w(k)m‖2,Ω → 0

as k → ∞. Obviously,

(u(k)m)̺ ∈ C∞
0,0(Ω)

for fixed k and sufficiently small ̺ > 0 and

∇(u(k)m)̺ = (∇u(k)m)̺ → ∇u(k)m

in Ls(Ω) as ̺→ 0. So, the required implication has been proven.

By Proposition 6.9, there exists pm ∈ Ls′(Ωm). Obviously, pm+1 = pm
in Ωm. So, we may define a function p so that p = pm in Ωm. Next, we

have

lm(v) =

∫

Ωm

pmdivvdx ≤ C‖∇v‖s,Ωm

for any v ∈ C∞
0 (Ωm) and thus

< ∇pm, v >≤ C‖∇v‖s,Ωm

for any v ∈ C∞
0 (Ωm). From Theorem 4.7 it follows that

‖p‖s′,Ωm ≤ cC

for any natural number m. This certainly implies that p ∈ Ls′(Ω). �

Proof of Theorem 5.8 Indeed, assume that there exists v∗ ∈ Ĵ1
s(Ω)

but v∗ /∈
◦
J1
s(Ω). By Banach theorem, there exists a functional

l∗ ∈
( ◦
L
1
s(Ω)

)′

with the following properties:

l∗(v∗) = 1

and

l∗(v) = 0

for any v ∈
◦
J1
s(Ω). By Theorem 6.10, there exists p ∈ Ls′(Ω) such that

l∗(v) =

∫

Ω

pdiv vdx

for all v ∈
◦
L1
s(Ω). However,

l∗(v∗) =

∫

Ω

pdiv v∗dx = 0

since v∗ ∈ Ĵ1
s(Ω). This is a contradiction. �
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1.7 Helmholtz-Weyl Decomposition

Let
◦
J(Ω) := [C∞

0,0(Ω)]
L2(Ω)

and

G(Ω) := {v ∈ L2(Ω;R
n) : v = ∇p for some distribution p}.

Remark 1.5. We know that if a distribution p ∈ G(Ω), then in general

p ∈ L2,loc(Ω). However, if Ω is a bounded Lipschitz domain, then in fact

p ∈ L2(Ω).

Theorem 7.11. (Ladyzhenskaya) For any domain Ω ∈ R
n,

L2(Ω) :=
◦
J(Ω)⊕G(Ω).

Proof Obviously, our statement is equivalent to the following identity

G(Ω) = (
◦
J(Ω))

⊥.

Step 1 Let Ω be a bounded Lipschitz domain. It is easy to see that

G(Ω) ⊆ (
◦
J(Ω))

⊥,

since
∫

Ω

v · ∇pdx = 0

for any p ∈ G(Ω) and for any v ∈ C∞
0,0(Ω). Now, assume

u ∈ (
◦
J(Ω))

⊥,

i.e., u ∈ L2(Ω) and
∫

Ω

u · vdx = 0

for any v ∈ C∞
0,0(Ω). By Poincaré inequality,

l(v) =

∫

Ω

u · vdx ≤
( ∫

Ω

|u|2
) 1

2
(∫

Ω

|v|2
) 1

2 ≤

≤ c(Ω)‖u‖2,Ω‖∇v‖2,Ω
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for any v ∈
◦
L1
2(Ω). So, l :

◦
L1
2(Ω) =

◦
W 1

2(Ω) → R is bounded and l(v) = 0

for any v ∈
◦
J1
2(Ω) =: V (Ω).

By Theorem 6.10, there exists p ∈ L2(Ω) such that

l(v) =

∫

Ω

pdiv vdx

for any v ∈
◦
L1
2(Ω). Therefore, u = ∇p and thus p ∈ G(Ω) and

(
◦
J(Ω))

⊥ ⊆ G(Ω).

Step 2 We proceed in a similar way as in the proof of Theorem 6.10.

Consider a sequence of domains Ωj with the properties: Ωj ⊂ Ωj+1 and

Ω =

∞⋃

j=1

Ωj ,

where Ωj is a bounded Lipschitz domain.

Since v ∈ L2(Ω) ⇒ v ∈ L2(Ωj), we can state that, for any j,

v = u(j) +∇p(j),
where

u(j) ∈
◦
J(Ωj), p(j) ∈ W 1

2 (Ωj).

We know that p(j) is defined up to a constant, which can be fixed by the

condition ∫

B∗

p(j)dx = 0,

where B∗ is a fixed ball belonging to Ω1.

Here, we are going to make use of the following version of Poincaré’s

inequality
∫

Ω̃

|q|2dx ≤ c(n, Ω̃, B∗)
[ ∫

Ω̃

|∇q|2dx +
∣∣∣
∫

B∗

qdx
∣∣∣
2]

(1.7.1)

that holds in a bounded Lipschitz domain Ω̃ containing the ball B∗. A

proof of (1.7.1) is based on standard compactness arguments and can be

regarded as a good exercise.

We further let ũ(j) = u(j) in Ωj and ũ(j) = 0 outside Ωj . It is easy to

check that ũ(j) ∈
◦
J(Ω) and

‖ũ(j)‖2,Ω = ‖u(j)‖2,Ωj ≤ ‖v‖2,Ωj ≤ ‖v‖2,Ω
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and, hence, without loss of generality, we may assume that

ũ(j) ⇀ u

in L2(Ω) and

u ∈
◦
J(Ω).

Next, by (1.7.1), we have for j ≥ s∫

Ωs

|p(j)|2dx ≤ c(s)

∫

Ωs

|∇p(j)|2dx ≤ c(s)‖v‖22,Ω.

Letting s = 1, we find a subsequence {j1k}∞k=1 so that

p(j
1
k) ⇀ p1, ∇p(j1k) ⇀ ∇p1,

in L2(Ω1). Then we let s = 2 and select a subsequence {j2k}∞k=1 of {j1k}∞k=1

such that

p(j
2
k) ⇀ p2, ∇p(j2k) ⇀ ∇p2

in L2(Ω2). Obviously, p2 = p1 in Ω1. Proceeding in the same way, we find

a subsequence {jlk}∞k=1 of {jl−1
k }∞k=1 such that

p(j
l
k) ⇀ pl, ∇p(jlk) ⇀ ∇pl

in L2(Ωl). For the same reason, pl = pl−1 in Ωl−1. Hence, the function p,

defined

p = pl

in Ωl, is well-defined. Using the celebrated diagonal Cantor process, we

find a subsequence p(js) such that

p(js) ⇀ p, ∇p(js) ⇀ ∇p
in L2(ω) for each ω ⋐ Ω. Moreover, we have the estimate∫

ω

|∇p|2dx ≤
∫

Ω

|v|2dx

for any ω ⋐ Ω. So, it is easy to deduce from here that p ∈ G(Ω).

Now, fix w ∈ C∞
0 (Ω). We have∫

Ωjs

v · wdx =

∫

Ωjs

∇p(js) · wdx +

∫

Ωjs

u(js) · wdx.

For sufficiently large s0, suppw ⊂ Ωjs0
and thus for s > s0∫

Ωjs0

v · wdx =

∫

Ωjs0

∇p(js) · wdx+

∫

Ωjs0

u(js) · wdx.

Passing s → ∞, we show that v = u +∇p. Orthogonality and uniqueness

can be proven in a standard way (exercise). �
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1.8 Comments

The main goal for writing up Chapter 1 is to show author’s preferences

how the theory of function spaces related to the Navier-Stokes equations

can be developed. In our approach, the basic things are estimates of certain

solutions to the equation div u = f and their applications to the derivation

of the Nečas embedding theorem. Each part of this theory can be given in

either more compact way or even in a different way. For example, in Section

3, one could apply very nice Bogovskii’s approach, see [Bogovskii (1980)],

based on the theory of singular integrals. For more generic and detailed

investigation of spaces arising in the Navier-Stokes theory, we refer the

reader to monographs [Ladyzhenskaya (1970)], [Temam (2010)], and [Galdi

(2000)].
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Chapter 2

Linear Stationary Problem

2.1 Existence and Uniqueness of Weak Solutions

Let us consider the Dirichlet problem for the Stokes system




−△u+∇p = f

div u = 0

in Ω, (2.1.1)

u|∂Ω = 0 (2.1.2)

and if n = 3 and Ω is unbounded then u(x) → u0 as |x| → ∞.

In what follows, we always consider the simplest case

u0 = 0.

Let

(f, g) :=

∫

Ω

f(x)g(x)dx.

If u and p are smooth, then, for any v ∈ C∞
0,0(Ω), integration by parts

gives the following identity:
∫

Ω

(−△u+∇p) · vdx =

∫

Ω

∇u : ∇vdx = (∇u,∇v) = (f, v),

which shows how weak solutions can be defined.

Let us list our standing assumptions: n = 2 or 3 and

f ∈ (L1
2(Ω))

′.

For example, the above condition holds if f = divF with F ∈ L2(Ω;M
n×n),

where M
n×n is the space of real-valued n× n-matrices.

31
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Definition 2.1. A function u ∈ V̂ (Ω) is called a weak solution to boundary

value problem (2.1.1) and (2.1.2) if and only if

(∇u,∇v) =< f, v >

for any v ∈ C∞
0,0(Ω).

Remark 2.1. If the domain Ω is such that Poincaré inequality holds in it:

‖w‖2,Ω ≤ c‖∇w‖2,Ω
for any w ∈ C∞

0 (Ω), then the space (L1
2(Ω))

′ can be identified with the

space L−1
2 (Ω) and < f, v >= (f, v), see Section 4 of Chapter 1 for details.

Remark 2.2. Boundary conditions are understood in the sense of traces,

see the definition of spaces
◦
L1
2(Ω) and V̂ (Ω) in Sections 1 and 5 of Chapter

1. If Ω is unbounded and n = 3, then condition u(x) → 0 as |x| → ∞ holds

in the following sense:

( ∫

Ω

|u|6dx
) 1

6 ≤ c
(∫

Ω

|∇u|2dx
) 1

2

.

Lemma 2.1. (Existence). Assume that the domain Ω is such that if v ∈
◦
L1
2(Ω) and ‖∇v‖2,Ω = 0, then v = 0. Given f , there exists at least one

weak solution to boundary value problem (2.1.1) and (2.1.2) that satisfies

the estimate

‖∇u‖2,Ω ≤ ‖f‖(L1
2(Ω))′ .

Proof Indeed, [u, v] = (∇u,∇v) is a scalar product in V̂ (Ω). On the

other hand, l(v) =< f, v > defines the linear functional on C∞
0,0(Ω) that is

bounded on V (Ω):

|l(v)| ≤ ‖f‖(L1
2(Ω))′‖v‖◦

L1
2(Ω)

.

Now, the required existence is an easy consequence of the Banach extension

theorem and Riesz representation theorem. �

If the assumption of the lemma does not hold, one should work with

equivalence classes.

Lemma 2.2. (Uniqueness). Assume that Ω either R
3 or R

n
+ or bounded

domain in R
n with Lipschitz boundary. Then problem (2.1.1) and (2.1.2)

has a unique weak solution.
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Proof As we know from Chapter 1, in this case,

V̂ (Ω) = V (Ω). (2.1.3)

Assume that there are two different solutions u1 and u2. Then

(∇(u1 − u2),∇v) = 0

for every v ∈ C∞
0,0(Ω) and, by (2.1.3),

‖∇(u1 − u2)‖2,Ω = 0.

This immediately implies u1 = u2. �

If n = 2 and Ω = R
2, the uniqueness takes place in the equivalence

classes, i.e., u1 − u2 ∈ [0]. The equivalence class [0] consists of functions

that are constant in R
2.

To recover the pressure, let us assume that Ω satisfies conditions of

Theorem 6.10 of Chapter 1 and consider the following linear functional

l(v) = (∇u,∇v)− < f, v > .

It is bounded in
◦
L1
2(Ω) and vanishes in V (Ω). By Theorem 6.10 of Chapter

1, there exists a function p ∈ L2(Ω) such that

(∇u,∇v)− < f, v >= (p, div v)

for any v ∈
◦
L1
2(Ω). In other words, functions u and p satisfy the Stokes

system in the sense of distributions. �

2.2 Coercive Estimates

Proposition 2.1. Let Ω be a domain with smooth boundary (Ω = R
n or

R
n
+ or bounded domain). Let functions

f ∈ L2(Ω), g ∈ W 1
2 (Ω), u ∈ V (Ω), p ∈ L2(Ω),

with [g]Ω = 0 if Ω is bounded, satisfy the nonhomogeneous Stokes system




−△u+∇p = f

div u = g

in Ω,

in the sense of distributions.

Then ∇2u,∇p ∈ L2(Ω) and the coercive estimate

‖∇2u‖2,Ω + ‖∇p‖2,Ω ≤ c(n,Ω)(‖∇g‖2,Ω + ‖f‖2,Ω)
holds.
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Proof To demonstrate the essence of the matter, we restrict ourselves to

the case Ω = R
3
+.

Step 1 Here, we are going to estimate tangential derivatives of u, i.e.,

derivatives with respect to xα, α = 1, 2. Let h = (h1, h2, 0) be a vector in

R
3 and △hf(x) := f(x+ h)− f(x). We have





−△△hu+∇△hp = △hf

div△hu = △hg

with △hu ∈ V (R3
+). According to Proposition 3.5 of Chapter 1, there exists

wh ∈ V (R3
+) such that divwh = △hg and

‖∇wh‖2,R3
+
≤ c‖△hg‖2,R3

+

with a constant c independent of h. Then the previous system can be

transformed to the following form:




−△(△hu− wh) +∇△hp = △hf +△wh

div (△hu− wh) = 0

in R
3
+.

Let us denote ∆hu−wh by v. We know that v ∈ V (R3
+) and, therefore,

there exists a sequence vk ∈ C∞
0 (R3

+) such that ‖∇(vk − v)‖2,R3
+
→ 0 as

k → ∞.

Testing the above system with vk, we find

Ik = (∇v,∇vk) = (∆hf, v
k)− (∇wh,∇vk).

Our aim is to estimate the first term of the right-hand side in the above

identity. Indeed, we have

(∆hf, v
k) = −

∫

R3
+

f(x+ h) ·∆hv(x)dx ≤ ‖f‖2,R3
+

( ∫

R3
+

|△hv|2dx
) 1

2

.

Since h · e3 = 0, it is not difficult to show that

(∆hf, v
k) ≤ |h|‖f‖2,R3

+
‖∇vk‖2,R3

+
.

Passing to the limit as k → ∞, we find

‖∇v‖2,R3
+
≤ |h|‖f‖2,R3

+
+ ‖∇wh‖2,R3

+
.

So, we have

1

|h| ‖∇(△hu)‖2,R3
+
≤ c

[
‖f‖2,R3

+
+

1

|h| ‖△hg‖2,R3
+

]
.
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Tending h to zero, we find the bound for tangential derivatives of v

‖∇u,α‖2,R3
+
≤ cI,

where α = 1, 2 and

I = ‖f‖2,R3
+
+ ‖∇g‖2,R3

+
.

To estimate tangential derivatives of the pressure, we come back to the

system at the beginning of Step 1. The first equation there can be re-written

as follows:

∇△hp = △△hu+△hf

with h = (h1, h2, 0). We know that there exists a function wh ∈
◦
L1
2(R

3
+)

such that divwh = △hp in R
3
+ and

‖∇wh‖2,R3
+
≤ c‖△hp‖2,R3

+
.

We also can find a sequence wk
h ∈ C∞

0 (R3
+) such that ∇wk

h → ∇wh in

L2(R
3
+) and

∫

R3
+

△hpdivw
k
hdx =

∫

R3
+

∇(△hu) : ∇wk
hdx+

∫

R3
+

△hf · wk
hdx.

The last term on the right-hand side can be treated as above and, as a

result, we have

(△hf, w
k
h) ≤ h‖f‖2,R3

+
‖∇wk

h‖2,R3
+
.

Applying Hölder inequality, the above estimate, and passing to the limit as

k → ∞, we show that

‖△hp‖2,R3
+
≤ c(‖∇△hu‖2,R3

+
+ h‖f‖2,R3

+
)

and, hence,

‖p,α‖2,R3
+
≤ cI.

Step 2 Let us start with evaluation of terms u3,33 and p,3. u3,33 can

be estimated simply with the help of the equation div u = uα,α + u3,3 = g.

This gives us u3,33 = g,3 − uα,3α and thus

‖u3,33‖2,R3
+
≤ cI.

As to the second term, the above estimate, the equation p,3 = f3 + △u3,
and bounds for tangential derivatives lead to the inequality

‖p,3‖2,R3
+
≤ cI.
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So, the full gradient of the pressure p obeys the estimate

‖∇p‖2,R3
+
≤ cI.

The remaining part of the second derivatives can be estimated with the

help of the equation uα,33 = −uα,ββ + p,α − fα and previous bounds. So,

we have

‖∇2u‖2,R3
+
≤ cI

and this completes the proof. �

Remark 2.3. The Stokes system holds a.e. in Ω provided assumptions of

Proposition 2.1 are satisfied.

In fact, we have more general statement, which is called Cattabriga-

Solonnikov estimates.

Theorem 2.2. Assume that all assumptions of Proposition 2.1 are fulfilled.

Let Ω be a bounded domain with sufficiently smooth boundary. In addition,

assume that

f ∈W k
r (Ω), g ∈W k+1

r (Ω)

with [g]Ω = 0 and with integer k. Then

‖∇2u‖Wk
r (Ω) + ‖∇p‖Wk

r (Ω) ≤ c(n, r, k,Ω)
[
‖f‖Wk

r (Ω) + ‖∇g‖Wk
r (Ω)

]
.

2.3 Local Regularity

Proposition 3.3. Assume that we are given functions

v ∈ W 1
2 (B+), q ∈ L2(B+), f ∈ L2(B+), g ∈ W 1

2 (B+),

satisfying the Stokes system



−△v +∇q = f

div v = g

in B+

and the boundary condition

v|x3=0 = 0.

Then, for any τ ∈]0, 1[,
∇2v,∇q ∈ L2(B+(τ))

and the following estimate is valid:

‖∇2v‖2,B+(τ) + ‖∇q‖2,B+(τ) ≤ c(τ)
[
‖f‖2,B+ + ‖q‖2,B++

+‖g‖W 1
2 (B+) + ‖v‖W 1

2 (B+)

]
.
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Proof Let a cut-off function ϕ ∈ C∞
0 (R3) possess the properties: 0 ≤ ϕ ≤

1, ϕ ≡ 1 in B(τ), and ϕ ≡ 0 outside B(1). Introducing new functions

u = ϕv and p = ϕq, we can verify that they satisfy the following system:




−△u+∇p = f̃ = ϕf − 2∇v∇ϕ− v△ϕ+ q∇ϕ ∈ L2(R
3
+)

div v = g̃ = ϕg + v · ∇ϕ ∈W 1
2 (R

3
+)

in R
3
+.

By assumptions, u ∈
◦
L1
2(R

3
+) and p ∈ L2(R

3
+) and thus we are in a position

to apply Proposition 2.1, which reads that ∇2u, ∇p ∈ L2(R
3
+) and

‖∇2u‖2,R3
+
+ ‖∇p‖2,R3

+
≤ c

[
‖∇g̃‖2,R3

+
+ ‖f̃‖2,R3

+

]
.

Then all the statements of Proposition 3.3 follow. �

The statement below can be proven in the same way as Proposition 3.3.

Proposition 3.4. Assume that we are given functions

v ∈ W 1
2 (B), q ∈ L2(B), f ∈ L2(B), g ∈ W 1

2 (B),

satisfying




−△v +∇q = f

div v = g

in B.

Then, for any τ ∈]0, 1[,
∇2v,∇q ∈ L2(B(τ))

and the following estimate is valid:

‖∇2v‖2,B(τ) + ‖∇q‖2,B(τ) ≤ c(τ)
[
‖f‖2,B + ‖q‖2,B+

+‖g‖W 1
2 (B) + ‖v‖W 1

2 (B)

]
.

2.4 Further Local Regularity Results, n = 2, 3

Proposition 4.5. Assume that a divergence free vector field v ∈ W 1
2 (B)

obeys the identity ∫

B

∇v : ∇wdx = 0

for any w ∈ C∞
0,0(B). Then

sup
x∈B(1/2)

|∇v(x)|2 ≤ c(n)

∫

B

|∇v|2dx.



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 38

38 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

Proof As it has been explained, one can introduce the pressure q ∈ L2(B)

with [q]B = 0 such that




−△v +∇q = 0

div v = 0

in B

in the sense of distributions and

‖q‖2,B ≤ c‖∇v‖2,B. (2.4.1)

Step 1 Let v̄ = v − [v]B and fix 1/2 < τ1 < 1. By previous results, see

Proposition 3.4,
∫

B(τ1)

(|∇2v|2 + |∇q|2)dx ≤ c(τ1, n)
[ ∫

B

|v̄|2dx+

∫

B

|∇v|2dx+

∫

B

|q|2dx
]
.

According to Poincaré’s inequality
∫

B

|v̄|2dx ≤ c(n)

∫

B

|∇v|2dx

and estimate (2.4.1), one can state that
∫

B(τ1)

(|∇2v|2 + |∇q|2)dx ≤ c(τ1, n)

∫

B

|∇v|2dx ≡ cI.

Step 2 Now, obviously, functions v,k and q,k obey the system




−△v,k +∇q,k = 0

div v,k = 0

in B(τ1)

in the sense of distributions. Repeating the previous arguments in two balls

B(τ2) and B(τ1) with 1/2 < τ2 < τ1, we find
∫

B(τ2)

(|∇2v,k|2+|∇q,k|2)dx ≤ c(τ2, τ1, n)

∫

B(τ1)

(|∇2v|2+|∇q|2)dx ≤ c(τ2, τ1, n)I.

As a result,

∫

B(1/2)

( l∑

i=1

|∇iv|2 +
l−1∑

i=1

|∇iq|2
)
dx ≤ c(l, n)I.

Taking l = 3 and using Sobolev’s imbedding theorem, we show

sup
x∈B(1/2)

(|∇v(x)|2 + |q(x)|2) ≤ c(n)I. �
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The proof of the following statement is slightly more complicated but

still can be made along similar lines.

Proposition 4.6. Assume that a divergence free vector field v ∈ W 1
2 (B+)

satisfies the boundary condition

v|x3=0 = 0

and the identity ∫

B+

∇v : ∇wdx = 0

for any w ∈ C∞
0,0(B+). Then

sup
x∈B+(1/2)

|∇v(x)|2 ≤ c(n)

∫

B+

|∇v|2dx.

Proof First, we recover the pressure q ∈ L2(B+) with [q]B+ = 0 such that




−△v +∇q = 0

div v = 0

in B+

in the sense of distributions with the estimate

‖q‖2,B+ ≤ c‖∇v‖2,B+ . (2.4.2)

Fix 1/2 < τ1 < 1. By Proposition 3.3, we have additional regularity so that
∫

B+(τ1)

(|∇2v|2 + |∇q|2)dx ≤ c(τ1, n)

∫

B+

[
|v|2 + |∇v|2 + |q|2

]
dx.

Since v|x3=0 = 0, Poincaré type inequality ensures the bound:
∫

B+

|v|2dx ≤ c(n)

∫

B+

|∇v|2dx

and, by (2.4.2),
∫

B+(τ1)

(|∇2v|2 + |∇q|2)dx ≤ c(τ1, n)

∫

B+

|∇v|2dx ≡ cI.

Tangential derivatives of v and q satisfy the same equations and boundary

conditions: 



−△v,α +∇q,α = 0

div v,α = 0

in B+
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and

v,α|x3=0 = 0.

Assume that n = 3 (n = 2 is an exercise). We have for 1/2 < τ2 < τ1
∫

B+(τ2)

(|∇2v,α|2 + |∇q,α|2)dx ≤ c(τ1, n)

∫

B+

|∇v|2dx ≡ cI.

It remains to evaluate vi,333 and q,33. To this end, we are going to exploit

the incompressibility condition: v3,333 = −vα,α33 ∈ L2(B+(τ2)), which

gives us the bound
∫

B+(τ2)

|∇3v3|2dx ≤ cI.

To estimate vα,333, α = 1, 2, one can make use of the identity

q,3i = △v3,i

and conclude that
∫

B+(τ2)

|∇q,3|2dx ≤ cI.

Now, exploiting the equations −△vα,3 + q,α3 = 0 one more time, we find

vα,333 = −vα,ββ3 + qα3 ∈ L2(B+(τ2)).

The latter implies
∫

B+(τ2)

|vα,333|2dx ≤ cI.

So, the final estimate
∫

B+(τ2)

(|∇3v|2 + |∇2v|2 + |∇v|2 + |∇2q|2 + |∇q|2 + |q|2)dx ≤ cI

comes out and it implies

sup
x∈B+(1/2)

|∇v(x)|2 ≤ c(n)I. �
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2.5 Stokes Operator in Bounded Domains

In this section, we always assume that a bounded domain Ω ∈ R
n has

smooth boundary, and n = 2 or 3.

By Ladyzhenskaya’s theorem, given f ∈ L2(Ω), there exists a unique

f1 ∈
◦
J(Ω) such that

f = f1 +∇q
with q ∈ W 1

2 (Ω). We let Pf := f1. The operator P : L2(Ω) → L2(Ω) is

called the Leray projector.

It is worthy to notice that the Dirichlet problem




−△u+∇p = f ∈ L2(Ω)

div u = 0

in Ω,

u|∂Ω = 0

can be transformed into the equivalent one




−△u+∇p1 = f1 ∈
◦
J(Ω)

div u = 0

in Ω,

u|∂Ω = 0,

where f1 = Pf and p1 = p − q. So, without loss of generality, we always

may assume that the right-hand side in the Stokes system belongs to
◦
J(Ω).

We know that

‖∇2u‖2,Ω + ‖∇p‖2,Ω ≤ c‖f‖2,Ω.
We can also re-write the Dirichlet problem in the operator form

△̃u = f,

where

△̃ := P△ :
◦
J(Ω) →

◦
J(Ω)

is a unbounded operator with the domain of the definition

dom △̃ := {u ∈W 2
2 (Ω) : div u = 0, u|∂Ω = 0 } =

◦
J
1
2(Ω) ∩W 2

2 (Ω).

It is called the Stokes operator.
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The Stokes operator △̃ has the similar properties as the Laplace oper-

ator under the Dirichlet boundary conditions. Let us list these properties:

(i) the Stokes operator has a discrete spectrum

−△̃u = λu, u ∈
◦
J(Ω), u 6= 0,

0 < λ1 < λ2 < ... < λm < ..., λm → ∞,

(ii) dimker (−△̃ − λkI) is finite for each k ∈ N,

(iii) the set {ϕk}∞k=1 of eigenvectors (eigenfunctions) of the Stokes operator

is an orthogonal basis in
◦
J(Ω) so that (ϕk, ϕj) = δij ,

(iv) the set {ϕk}∞k=1 is an orthogonal system in
◦
J1
2(Ω) as well as in dom △̃

so that λk = ‖∇ϕk‖22,Ω = ‖△̃ϕk‖2,Ω,

(v) if f ∈
◦
J(Ω), then ‖f‖22,Ω =

∑∞
k=1 |ck|2 < ∞, where ck = (f, ϕk), and

the series
∑∞

k=1 ckϕk converges to f in L2(Ω),

if f ∈
◦
J1
2(Ω), then ‖∇f‖22,Ω =

∑∞
k=1 |ck|2λk <∞ and series

∑∞
k=1 ckϕk

converges to f in W 1
2 (Ω),

if f ∈ dom △̃, then ‖△̃f‖22,Ω =
∑∞

k=1 |ck|2λ2k <∞ and series
∑∞

k=1 ckϕk

converges to f in W 2
2 (Ω).

The proof of all above statements is based on the Hilbert-Schmidt the-

orem and the compactness of the embedding of W 1
2 (Ω) into L2(Ω).

Let us describe extension of △̃ to
◦
J1
2(Ω). We know that

△̃ :
◦
J
1
2(Ω) ∩W 2

2 (Ω) →
◦
J(Ω)

is a bijection. Given u ∈
◦
J1
2(Ω) ∩W 2

2 (Ω), we have

(−△̃u, v) = (−△u+∇p, v) = (−△u, v) = (∇u,∇v)

for any v ∈ C∞
0,0(Ω). From the latter identity, we immediately derive the

following estimate

‖△̃u‖
(
◦
J1
2(Ω))′

≤ ‖∇u‖2,Ω = ‖u‖ ◦
J1
2(Ω)

.

Here, we use the identification of the dual space (
◦
J1
2(Ω))

′ described in Sec-

tion 4 of Chapter 1 with V =
◦
J1
2(Ω) and H =

◦
J(Ω) and in what follows

we are not going to introduce any special notation for this particular iden-

tification. Since the space
◦
J1
2(Ω) ∩W 2

2 (Ω) is dense in
◦
J1
2(Ω), there exists
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a unique extension of the Stokes operator △̃ (denoted again by △̃) from
◦
J1
2(Ω) ∩W 2

2 (Ω) to
◦
J1
2(Ω). Moreover, we have the following statement:

Proposition 5.7. (i) The extension △̃ :
◦
J1
2(Ω) → (

◦
J1
2(Ω))

′ is a bijection.

(ii) If f ∈ (
◦
J1
2(Ω))

′, then

‖f‖2
(
◦
J1
2(Ω))′

=

∞∑

k=1

f2
k/λk,

where fk = (f, ϕk).

Proof of Proposition 5.7 Obviously, △̃ :
◦
J1
2(Ω) → △̃(

◦
J1
2(Ω)) is a

bijection. Our aim is to show that

△̃(
◦
J
1
2(Ω)) = (

◦
J
1
2(Ω))

′. (2.5.1)

Lemma 2.3.

(i) for f ∈ (
◦
J1
2(Ω))

′, we have

‖f‖2
(
◦
J1
2(Ω))′

≤
∞∑

k=1

f2
k/λk.

(ii) if

∞∑

k=1

f2
k/λk <∞,

then the series
∑∞

k=1 fkϕk converges to f in (
◦
J1
2(Ω))

′, f ∈ △̃(
◦
J1
2(Ω)), and

‖f‖2
(
◦
J1
2(Ω))′

=

∞∑

k=1

f2
k/λk.

Proof Fix an arbitrary function a ∈
◦
J1
2(Ω)), then

aN =

N∑

k=1

akϕk → a

in
◦
J1
2(Ω)). So,

(f, a) = lim
N→∞

(f, aN ) = lim
N→∞

N∑

k=1

fkak ≤
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≤
( N∑

k=1

f2
k/λk

) 1
2
( N∑

k=1

a2kλk

) 1
2 ≤

( ∞∑

k=1

f2
k/λk

) 1
2 ‖∇a‖2,Ω.

The latter certainly implies (i).

(ii) First, let us show that the series
∑∞

k=1 fkϕk converges in (
◦
J1
2(Ω))

′.
Indeed, let fN =

∑N
k=1 fkϕk and then, by (i),

‖fN − fM‖2
(
◦
J1
2(Ω))′

≤
N∑

k=M+1

f2
k/λk → 0

as M,N → 0.

We denote by f ∈ (
◦
J1
2(Ω))

′ the sum of our series. Then, by (i),

‖f − fN‖2
(
◦
J1
2(Ω))′

≤
∞∑

k=N+1

f2
k/λk → 0

and thus

‖fN‖
(
◦
J1

2(Ω))′
→ ‖f‖

(
◦
J1
2(Ω))′

.

Now, the goal is to prove that f ∈ △̃(
◦
J1
2(Ω)). Indeed, we have

fN =

N∑

k=1

fkϕk = △̃
( N∑

k=1

fkϕk/λk

)
= △̃uN ,

where

uN =

N∑

k=1

fkϕk/λk ∈
◦
J
1
2(Ω) ∩W 2

2 (Ω).

By direct calculations,

‖∇uN −∇uM‖22,Ω =
N∑

k=M+1

f2
k/λk → 0.

Then, by definition of the extension of △̃,

△̃uN → △̃u = f.

Next, we have

‖fN‖2
(
◦
J1
2(Ω))′

= ‖△̃uN‖2
(
◦
J1

2(Ω))′
= ‖∇uN‖22,Ω =

N∑

k=1

f2
k/λk → ‖f‖2

(
◦
J1
2(Ω))′

.�

Lemma 2.4.

△̃(
◦
J
1
2(Ω)) = {f ∈ (

◦
J
1
2(Ω))

′ :
∞∑

k=1

f2
k/λk <∞} =: U.
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Proof According to Lemma 2.3 (ii), we have

U ⊆ △̃(
◦
J
1
2(Ω)).

Now, assume that f ⊆ △̃(
◦
J1
2(Ω)), i.e., f = △̃u for some u ∈

◦
J1
2(Ω).

Then we have

fk = (f, ϕk) = (△̃ u, ϕk) = (u, △̃ϕk) = λkuk.

Since

‖∇u‖22,Ω =

∞∑

k=1

u2kλk <∞,

we find
∞∑

k=1

f2
k/λk <∞.

So, f ∈ U and thus U ∈ △̃(
◦
J1
2(Ω)). �

Now, we proceed with the proof of Proposition 5.7. We are done, if the

implication

f ∈ (
◦
J
1
2(Ω))

′ ⇒
∞∑

k=1

f2
k/λk <∞

is shown. To this end, we let

ak = fk/λk, aN =

N∑

k=1

akϕk.

Then

‖∇aN‖22,Ω =

N∑

k=1

|ak|2‖∇ϕk‖22,Ω =

N∑

k=1

f2
k/λk.

So, we have

(f, aN ) =

N∑

k=1

f2
k/λk ≤ ‖f‖

(
◦
J1
2(Ω))′

‖∇aN‖2,Ω = ‖f‖
(
◦
J1
2(Ω))′

( N∑

k=1

f2
k/λk

) 1
2

,

which implies
N∑

k=1

f2
k/λk ≤ ‖f‖2

(
◦
J1
2(Ω))′

for any natural number N . This completes the proof of Proposition 5.7. �

2.6 Comments

Chapter 2 contains standard results on linear stationary Stokes system

including the notion of Stokes operator in smooth bounded domains. In

addition, various global and local interior and boundary regularity results

are discussed.



May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 47

Chapter 3

Non-Linear Stationary Problem

3.1 Existence of Weak Solutions

Consider the Dirichlet boundary value problem for the classical stationary

Navier-Stokes system




−ν△u+ u · ∇u+∇p = f

div u = 0

in Ω, (3.1.1)

u|∂Ω = 0 (3.1.2)

and if n = 3 and Ω is unbounded then u(x) → 0 as |x| → ∞. Here, ν is a

positive parameter called viscosity. We always assume that

f ∈ (L1
2(Ω))

′.

Definition 3.1. A function u ∈ V̂ (Ω) is called a weak solution to boundary

value problem (3.1.1) and (3.1.2) if

ν(∇u,∇v) = (u⊗ u,∇v)+ < f, v >

for any v ∈ C∞
0,0(Ω).

For n = 2 or 3, the imbedding theorems ensure that

u ∈ L4,loc(Ω).

So, the first term on the right-hand side in the identity of Definition 3.1 is

well-defined.

If domain Ω is bounded and has Lipschitz boundary, then

u ∈ L4(Ω).

Proposition 1.1. Let Ω be a bounded Lipschitz domain. Then boundary

value problem (3.1.1) and (3.1.2) has at least one weak solution.

47
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Proof Let us reduce our boundary value problem to a fixed point problem

and try to apply the celebrated Leray-Schauder principle.

Theorem 1.2. (Leray-Schauder principle) Let X be a separable Banach

space, B : X → X be a continuous operator. Assume that the operator B

has the following additional properties:

(i) B is a compact operator, i.e., it maps bounded sets of X into pre-

compact sets of X. In other words, B is a completely continuous operator;

(ii) all possible solutions to the equation

u = λB(u)

satisfy the inequality ‖u‖X < R with R independent of λ ∈ [0, 1].

Then operator B has at least one fixed point u, i.e., u = B(u).

We define, as usual, [u, v] := (∇u,∇v) a scalar product on V (Ω) that

coincides with V̂ (Ω) under assumptions of the proposition. It is not difficult

to show that, for any w ∈ V (Ω),

divw ⊗ w ∈ L−1
2 (Ω).

As it has been pointed out in Chapter 2, Section 1, for bounded domains, we

can identify the space (L1
2(Ω))

′ with the space L−1
2 (Ω) and replace < ·, · >

with (·, ·).
According to statements of Chapter 2, given w ∈ V (Ω), there exists a

unique u ∈ V (Ω) such that

ν(∇u,∇v) = (w ⊗ w,∇v) + (f, v)

for any v ∈ V (Ω). By Riesz representation theorem, we can define an

operator A : V (Ω) → V (Ω) so that

[A(w), v] := (w ⊗ w,∇v)
and

[F, v] := (f, v).

So, the previous identity can be re-written in the operator form

u =
1

ν
(A(w) + F ).

Then, the existence of weak solutions is equivalent to the existence of fixed

point of the above operator equation.

First, let us show that A is a completely continuous operator. To this

end, we take an arbitrary weakly converging sequence such that

w(k) ⇀ w
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in V (Ω). Then, the compactness of the imbedding of V (Ω) into L4(Ω) gives

us:

w(k) ⊗ w(k) → w ⊗ w

in L2(Ω). From the main identity, it follows that

ν[u(k) − u(m), v] = (w(k) ⊗ w(k) − w(m) ⊗ w(m),∇v) = 0

for any v ∈ V (Ω). It remains to insert v = u(k) − u(m) into the above

relation and make use of the fact that

‖w(k) ⊗ w(k) − w(m) ⊗ w(m)‖2,Ω → 0

as k,m→ ∞. So, complete continuity of A has been proven.

Now, we need to get estimates of all possible solutions to the equation

νuλ = λA(uλ) + F,

depending on a parameter λ ∈ [0, 1]. Since (uλ ⊗ uλ,∇uλ) = 0, we have

ν[uλ, uλ] = (uλ ⊗ uλ,∇uλ) + (f, uλ) ≤ ‖f‖L−1
2 (Ω)‖∇uλ‖2,Ω

and thus

‖∇uλ‖2,Ω ≤ 1

ν
‖f‖L−1

2 (Ω).

The right-hand side of the above inequality is independent of λ and thus

the existence of at least one fixed point follows from the Leray-Schauder

principle. �

Regarding the uniqueness of weak solutions, we have the following state-

ment.

Lemma 3.1. Assume that all assumptions of Proposition 1.1 hold. Let in

addition

c20(n,Ω)

ν2
‖f‖L−1

2 (Ω) < 1,

where c0(n,Ω) is a constant in the inequality

‖v‖4,Ω ≤ c0(n,Ω)‖∇v‖2,Ω (3.1.3)

for any v ∈
◦
L1
2(Ω).

Then, our boundary value problem (3.1.1) and (3.1.2) has a unique weak

solution.
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Proof Let u1 and u2 be two different solutions to boundary value problem

(3.1.1), (3.1.2). Then, we have

ν[u1 − u2, u1 − u2] = (u1 ⊗ u1 − u2 ⊗ u2,∇(u1 − u2)) =

= (u1 ⊗ (u1 − u2),∇(u1 − u2)) + ((u1 − u2)⊗ u2,∇(u1 − u2)) =

= (u1 ⊗ (u1 − u2),∇(u1 − u2)) ≤ ‖u1‖4,Ω‖u1 − u2‖4,Ω‖∇(u1 − u2)‖2,Ω.
Applying inequality (3.1.3) twice and taking into account the last esti-

mate in the proof of Proposition 1.1 for u1, i.e.,

‖∇u1‖2,Ω ≤ 1

ν
‖f‖L−1

2 (Ω),

we find

ν‖∇(u1 − u2)‖22,Ω ≤ c20‖∇u1‖22,Ω‖∇(u1 − u2)‖22,Ω ≤

≤ c20
ν
‖∇(u1 − u2)‖22,Ω‖f‖L−1

2 (Ω).

This, by a contradiction, implies the statement of the lemma. �

Proposition 1.3. Assume that unbounded domain Ω is either R
3 or R

n
+,

n = 2, 3. Then problem (3.1.1) and (3.1.2) has at least one weak solution

satisfying the estimate

‖∇u‖2,Ω ≤ 1

ν
‖f‖(L1

2(Ω))′ .

Proof Let R ≫ 1. Consider problem (3.1.1), (3.1.2) in ΩR := B(R) ∩ Ω.

By Proposition 1.1, there exists uR ∈ V (ΩR), satisfying the identity

ν(∇uR,∇v)ΩR = (uR ⊗ uR,∇v)ΩR + (f, v)ΩR

for any v ∈ C∞
0,0(ΩR). Extending uR by zero to the whole domain Ω, we

notice that

‖∇uR‖2,Ω = ‖∇uR‖2,ΩR ≤ 1

ν
‖f‖L−1

2 (ΩR) ≤
1

ν
‖f‖(L1

2(Ω))′ .

The latter allows us to select a subsequence, still denoted by uR, with the

following properties:

∇uR ⇀ ∇u
in L2(Ω) and

uR → u
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in L2,loc(Ω). For n = 3, this follows from Hölder inequality, boundedness

in L6(Ω), and compactness of the imbedding of W 1
2 (B(R)) into L2(B(R))

for any fixed R > 1. If n = 2, we can use the inequality

‖w‖2,R×]o,a[ ≤ c(a)‖∇w‖R2
+

that is valid for any function w ∈ C∞
0 (R2

+) and for all a > 1.

It remains to pass to the limits as R → ∞ in the identity for uR and

show that

ν(∇u,∇v) = (u⊗ u,∇v)+ < f, v >

for any v ∈ C∞
0,0(Ω), which means that u is a required weak solution. �

Now, the question is whether we can recover the pressure? We shall

consider two cases.

Case 1 Here, we assume that Ω is a bounded domain with Lipschitz

boundary. Since, for v ∈ C∞
0 (Ω),

l(v) := ν(∇u,∇v)− (u⊗ u,∇v)− (f, v) ≤

≤ C‖∇v‖2,Ω,
with a positive constant C = C(ν, ‖∇u‖2,Ω, ‖u‖4,Ω, ‖f‖L−1

2 (Ω)), and l(v) =

0 for any v ∈ C∞
0,0(Ω), we can use the same arguments as before to recover

the pressure. According to them, there exists p ∈ L2(Ω) such that

ν(∇u,∇v) = (u ⊗ u,∇v) + (f, v) + (p, div v)

for any v ∈ C∞
0 (Ω).

Case 2 Here, we can use a similar procedure, described in Section 1,

where

Ω =

∞⋃

m=1

Ωm, Ωm ⊂ Ωm+1,

and Ωm is a bounded Lipschitz domain. Since u ∈ L4,loc(Ω) implies u ∈
L4(Ωm), one can state that there exists pm ∈ L2(Ωm) such that

ν(∇u,∇v) = (u ⊗ u,∇v)+ < f, v > +(pm, div v)

for any v ∈ C∞
0 (Ωm). Moreover, we can fix pm so that pm = pm+1 in

Ωm. So, now, if we introduce a function p, letting p = pm in Ωm, then

p ∈ L2,loc(Ω) and the following identity is valid:

ν(∇u,∇v) = (u⊗ u,∇v)+ < f, v > +(p, div v)

for any v ∈ C∞
0 (Ω).
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3.2 Regularity of Weak Solutions

We need the following auxiliary statement.

Lemma 3.2. Let a non-decreasing function Φ :]0, R0] → R+ satisfy the

following condition:

Φ(̺) ≤ c
(( ̺

R

)m

+ ε
)
Φ(R) + CRs (3.2.1)

for any 0 < ̺ < R ≤ R0, for some positive constants c, C, ε > 0, and for

some m > s > 0.

There exist positive numbers ε0 = ε0(m, s, c) and c1 = c1(m, s, c) such

that if ε < ε0, then

Φ(̺) ≤ c1

[( ̺

R0

)s

+ C̺s
]

(3.2.2)

for any 0 < ̺ ≤ R0.

Proof Let ̺ = τR, 0 < τ < 1, ε0 = τm. So, if ε < ε0, then

Φ(τR) ≤ 2cτmΦ(R) + CRs = 2cτ
m−s

2 τ
m+s

2 Φ(R) + CRs ≤

≤ τ
m+s

2 Φ(R) + CRs.

If we select ε0 so that 2cτ
m−s

2 ≤ 1, then, after iterations, we have

Φ(τkR0) ≤ τk
m+s

2 Φ(R0) + CτsRs
0(1 + τ

m+s
2 + ...+ τ

m+s
2 (k−1)) ≤

≤ τk
m+s

2 Φ(R0) + CτsRs
0

1

1− τ
m−s

2

.

Given 0 < ̺ ≤ R0, we find an integer number k such that

R0τ
k+1 < ̺ ≤ R0τ

k.

Then

Φ(̺) ≤ Φ(τkR0) ≤
(1
τ

̺

R

)s

Φ(R0) + C
(̺
τ

)s 1

1− τ
m−s

2

. �

We are going to prove the following local estimates for weak solutions

to the non-linear stationary Navier-Stokes system.

Lemma 3.3. Let a divergence free vector-valued function u ∈ W 1
2 (B(R))

and a tensor-valued function F ∈ Lr(B(R)), with r > n = 3, satisfy the

identity
∫

B(R)

∇u : ∇vdx =

∫

B(R)

u⊗ u : ∇vdx+

∫

B(R)

F : ∇vdx
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for any v ∈ C∞
0,0(B(R)).

Then,
∫

B(̺)

|∇u|2dx ≤ c
(( ̺

R

)3

+R
( ∫

B(R)

|u|6dx
) 1

3
) ∫

B(R)

|∇u|2dx+

+cR3(1− 2
r )
( ∫

B(R)

|F |rdx
) 2

r

for 0 < ̺ ≤ R. Here, c is a universal positive constant.

Lemma 3.4. Let a divergence free vector-valued function u ∈ W 1
2 (B+(R)),

with u|x3=0 = 0, and a tensor-valued function F ∈ Lr(B+(R)), with r >

n = 3, satisfy the identity∫

B+(R)

∇u : ∇vdx =

∫

B+(R)

u⊗ u : ∇vdx+

∫

B+(R)

F : ∇vdx

for any v ∈ C∞
0,0(B+(R)).

Then,
∫

B+(̺)

|∇u|2dx ≤ c
(( ̺

R

)3

+R
( ∫

B+(R)

|u|6dx
) 1

3
) ∫

B+(R)

|∇u|2dx+

+cR3(1− 2
r )
( ∫

B+(R)

|F |rdx
) 2

r

for 0 < ̺ ≤ R. Here, c is a universal positive constant.

Proof of Lemma 3.3 We know that div u ⊗ u ∈ L−1
2 (B(R)). Hence,

there exist

ũR ∈
◦
J
1
2(B(R)), p̃R ∈ L2(B(R)),

with [p̃R]B(R)) = 0, so that




−ν△ũR +∇p̃R = −div u⊗ u− divF

div ũR = 0

in B(R). (3.2.3)

Multiplying the first equation in (3.2.3) by ũR and integrating the product

by parts, we find
∫

B(R)

|∇ũR|2dx =

∫

B(R)

(u⊗ u− [u⊗ u]B(R)) : ∇ũRdx+

∫

B(R)

F : ũRdx
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and, therefore, after application of the Cauchy-Schwartz inequality, we get
∫

B(R)

|∇ũR|2dx ≤ 2
( ∫

B(R)

|u⊗ u− [u⊗ u]B(R)|2dx+

∫

B(R)

|F |2dx
)
.

Next, we treat the first term on the right-hand side of the latter relation

with the help of Gagliardo-Nirenberg inequality and, then, with the help of

Hölder inequality. As a result, we have
∫

B(R)

|u⊗ u− [u⊗ u]B(R)|2dx ≤ c
( ∫

B(R)

|∇(u⊗ u)| 65 dx
) 5

3 ≤

≤ c
( ∫

B(R)

|u| 65 |∇u| 65 dx
) 5

3 ≤ c
( ∫

B(R)

|u|6dx
) 1

3
( ∫

B(R)

|∇u| 32 dx
) 4

3 ≤

≤ c
( ∫

B(R)

|u|6dx
) 1

3

R

∫

B(R)

|∇u|2dx,

where c is a universal constant.

Let uR = u− ũR. This function satisfies the identity
∫

B(R)

∇uR : ∇vdx = 0

for any v ∈ C∞
0,0(B(R)). By the results of Chapter 2, see Section 2, we have

the following estimate
∫

B(̺)

|∇uR|2dx ≤ c
( ̺
R

)3
∫

B(R)

|∇uR|2dx,

which, in turn, implies another one:
∫

B(̺)

|∇u|2dx ≤ c
( ̺
R

)3
∫

B(R)

|∇u|2dx + c

∫

B(R)

|∇ũR|2dx.

At first, we apply our earlier estimates for
∫

B(R)

|∇ũR|2dx

and, then, Hölder’s inequality for the term, containing F , in order to get

the estimate of Lemma 3.3.
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Lemma 3.5. (Ch.-B. Morrey) Let u ∈W 1
m(Ω) satisfy the condition

∫

B(̺)

|∇u|mdx ≤ K̺n−m+mα

for some 0 < α < 1 and for any B(x0, ̺) ⊂ Ω ⊂ R
n such that 0 < ̺ < ̺0

with two positive constants K and ̺0.

Then u ∈ Cα
loc(Ω), i.e., u ∈ Cα(Ω1) for any subdomain Ω1 ⋐ Ω.

Here, Cα(ω) is a Hölder space with the norm ‖u‖Cα(ω) := ‖u‖C(ω)+[u]α,ω,

where

[u]α,ω := sup
{ |u(x)− u(y)|

|x− y|α : x, y ∈ ω, x 6= y
}
.

Lemma 3.6. Assume that all assumptions of Lemma 3.3 hold with R = a.

Then

u ∈ C
1− 3

r

loc (B(a)).

Proof We remind that the case n = 3 is considered only. Fix Ω1 ⋐ B(a)

and find Ω such that Ω1 ⋐ Ω ⋐ B(a). By shift, we have, for any B(x0, R) ⊂
B(a), the following estimate

Φ(x0, ̺) ≤ c
[(( ̺

R

)3

+RA
)
Φ(x0, R) + CR3−2+2α

]
,

with α = 1− 3/R,

Φ(x0, R) :=

∫

B(x0,R)

|∇u|2dx, A :=
( ∫

B(a)

|u|6dx
) 1

3

, C :=
( ∫

B(a)

|F |rdx
) 2

r

.

Now, we apply Lemma 3.2 with m = 3, s = 3− 2 + 2α = 1 + 2α. If we let

R0 :=
1

2
min

{
dist (∂B(a),Ω),

ε0
A

}
,

then B(x0, R) ⊂ B(a) for any x0 ∈ Ω and AR < ε0 as long as 0 < R < R0.

Hence,

Φ(x0, ̺) ≤ c1

[( ̺
R 0

)3−2+2α

Φ(x0, R) + C̺3−2+2α
]

for any x0 ∈ Ω and for any 0 < ̺ ≤ R0. So, we have
∫

B(x0,̺)

|∇u|2dx ≤ K̺3−2+2α

for any 0 < ̺ ≤ R0, where K = K(r, ‖u‖W 1
2 (B(a)), ‖F‖r,B(a), R0) provided

B(x0, ̺) ⊂ Ω. �
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Lemma 3.7. Assume that all assumptions of Lemma 3.4 hold with R = a.

Then

u ∈ Cα(B̄+(b))

for any 0 < b < a with α = 1− 3/r.

ProofWe have two types of estimates. The first one is so-called “interior”.

For any b1 ∈]b, a[, the following estimate is valid:

Φ(x0, ̺) ≤ K̺1+2α (3.2.4)

for x0 ∈ B+(b1), x30 ≥ 1
2 (a− b1), and 0 < ̺ ≤ R0 = 1

2 min{a− b1, ̺0} with

̺0 = ε0/A. Here, K depends on r, R0, ‖u‖W 1
2 (B+(a)), and ‖F‖r,B+(a).

The second estimate is “boundary” one:

Φ+(x0, ̺) :=

∫

B+(x0,̺)

|∇u|2dx ≤ K+̺
1+2α (3.2.5)

for x0 = (x′0, 0), |x′0| < 1
2 (a − b1), 0 < ̺ ≤ R0, and K+ depends on the

same arguments as K.

Now, let us denote by ũ extension of u to the whole ball B(a) by zero

and let

Φ̃(x0, ̺) :=

∫

B(x0,̺)

|∇ũ|2dx

with 0 < ̺ ≤ R0 and x0 ∈ B(b1).

Consider two cases: x30 ≥ 1
2 (a − b1) and x30 <

1
2 (a − b1). In the first

case, we may use our “interior” estimate (3.2.4) and the definition of ũ. As

a result, we arrive at the inequality

Φ̃(x0, ̺) ≤ K̺1+2α. (3.2.6)

In the second case, we first assume that x30 > 0 and if x30 ≥ ̺, we still

have estimate (3.2.6). Now, suppose that x30 < ̺. Then, by (3.2.5), we

have

Φ̃(x0, ̺) =

∫

B(x0,̺)∩B+(a)

|∇u|2dx ≤
∫

B+((x′
0,0),̺+x30)

|∇u|2dx ≤

≤ K+(̺+ x30)
1+2α ≤ 21+2αK+̺

1+2α.
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Now, assume that x30 < 0. If |x30| ≥ ̺, then, obviously, Φ̃(x0, ̺) = 0.

So, let us suppose that −x30 < ̺. Here,

Φ̃(x0, ̺) =

∫

B(x0,̺)∩B+(a)

|∇u|2dx ≤
∫

B+((x′
0,0),̺)

|∇u|2dx ≤

≤ K+̺
1+2α.

So, the statement of the lemma follows from Morrey’s condition on Hölder

continuity, see Lemma 3.5. �

Proposition 2.4. Let u ∈ W 1
2 (B(2a)) be a divergence free function and

satisfy the identity∫

B(2a)

(∇u : ∇v − u⊗ u : ∇v)dx =

∫

B(2a)

f · vdx

for any v ∈ C∞
0,0(B(2a)). If f is of class C∞ in B(2a), then u is of class

C∞ in B(a).

Proof It is not difficult to check that there exists a tensor-valued function

F of class C∞ such that f = −divF . Then, the identity from the statement

of the proposition can be re-written in the following way∫

B(2a)

∇u : ∇vdx =

∫

B(2a)

u⊗ u : ∇v +
∫

B(2a)

F : ∇vdx

for any v ∈ C∞
0,0(B(2a)). From Lemma 3.6, it follows that u belongs, at

least, to C(B(3a/2)). Using the same arguments as in Section 1, we can

recover a pressure p ∈ L2(B(2a)) (exercise) so that




−△u+∇p = −divG := −div (u⊗ u+ F )

div u = 0

in B(2a).

Since divG ∈ L2(B(3a/2)), we can apply results of Chapter II on properties

of solutions to the Stokes system and find

∇2u ∈ L2(B(a1)) ⇒ ∇u ∈ L6(B(a1)), ∇p ∈ L2(B(a1))

for any a < a1 <
3
2a.

Next, we know that, for k = 1, 2, 3, functions u,k ∈ W 1
2 (B(a1)) and

p,k ∈ L2(B(a1)) satisfy the system




−△u,k +∇p,k = −divG,k

div u,k = 0

in B(a1).
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Since ∇2G ∈ L2(B(a1)), we can use the linear theory one more time and

get:

∇3u ∈ L2(B(a2)) ⇒ ∇2u ∈ L6(B(a2)), ∇2p ∈ L2(B(a2))

for any a < a2 < a1.

Then, for k, s = 1, 2, 3, functions u,ks ∈ W 1
2 (B(a1)) and p,ks ∈

L2(B(a1)) satisfy the system





−△u,ks +∇p,ks = −divG,ks

div u,ks = 0

in B(a3),

with ∇3G ∈ L2(B(a2)). The similar arguments allow us to deduce that

∇4u ∈ L2(B(a3)) ⇒ ∇3u ∈ L6(B(a3)), ∇3p ∈ L2(B(a3))

for any a < a3 < a2. Proceeding, further, in the same way, we complete

the proof of the lemma. �

Proposition 2.5. Let u ∈ W 1
2 (B(2a)) be a divergence free function and

satisfy the conditions: u|x3=0 = 0 and
∫

B+(2a)

(∇u : ∇v − u⊗ u : ∇v)dx =

∫

B+(2a)

f · vdx

for any v ∈ C∞
0,0(B+(2a)). If f is of class C∞ in B(2a)∩ {x3 ≥ 0}, then u

is of class C∞ in B(a) ∩ {x3 ≥ 0}.

Proof We start with our proof in a way similar to the proof of the previous

proposition, i.e., we find F of class C∞ in B(2a) ∩ {x3 ≥ 0} so that f =

−divF . Then, we recover the pressure p ∈ L2(B+(2a)), which gives us:





−△u+∇p = −divG := −div (u⊗ u+ F )

div u = 0

in B+(2a),

u|x3=0 = 0.

By Lemma 3.7, u ∈ C(B+(3a/2)) and, by the linear theory,

∇2u ∈ L2(B+(a1)) ⇒ ∇u ∈ L6(B+(a1)), ∇p ∈ L2(B+(a1))

for any a < a1 <
3
2a.
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Next, for α = 1, 2 and for k = 1, 2, 3, we have functions u,k ∈
W 1

2 (B+(a1)) and p,k ∈ L2(B+(a1)) satisfying the system




−△u,k +∇p,k = −divG,k

div u,k = 0

in B+(a1)

and the boundary condition

u,α|x3=0 = 0,

where ∇2G ∈ L2(B+(a1)). Then, again, we apply the linear theory and

conclude that

∇2u,α ∈ L2(B+(a2)) ∇p,α ∈ L2(B+(a2))

for any a < a2 < a1. We need to establish the same properties for ∇2u,3
and ∇p,3. To achieve this goal, it is sufficient to evaluate uk,333 and p,33
for k = 1, 2, 3, which is, in fact, not so difficult. Indeed, denoting gik :=

−Gij,jk, we first use the incompressibility condition:

u3,333 = −uα,α33 ∈ L2(B+(a2)).

For other derivatives, we use the equations:

p,33 = g33 + u3,kk3 ∈ L2(B+(a2))

and

uα,333 = −gα3 + p,α3 − uα,ββ3 ∈ L2(B+(a2)).

So, we can state

∇3u ∈ L2(B+(a2)) ⇒ ∇2u ∈ L6(B+(a2)), ∇2p ∈ L2(B+(a2)).

Next, for α, β = 1, 2 and for k, j = 1, 2, 3, we have functions

u,kj ∈W 1
2 (B+(a2)) p,kj ∈ L2(B+(a2))

satisfying the conditions




−△u,kj +∇p,kj = −divG,kj

div u,kj = 0

in B+(a2),

u,αβ |x3=0 = 0,

where ∇3G ∈ L2(B+(a2)). Here, we are going to proceed as in the case of

the third derivatives. We let

hijk = −Gim,mjk.
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From the linear theory, one can deduce that

∇2u,αβ ∈ L2(B+(a3)), ∇p,αβ ∈ L2(B+(a3))

for a < a3 < a2. We start again with the incompressibility condition:

u3,333α = −uβ,β3α ∈ L2(B+(a3)).

So,

∇3u3,α ∈ L2(B+(a3)).

Then,

p,33α = h33α + u3,jj3 ∈ L2(B+(a3))

and thus

∇2p,α ∈ L2(B+(a3)).

Next,

uβ,333α = −uβ,γγ3α + p,β3α − hβα3 ∈ L2(B+(a3)).

So, we have

∇3u,α ∈ L2(B+(a3)).

Now, let us go back to the incompressibility condition:

u3,3333 = −uβ,β333 ⇒ ∇4u3 ∈ L2(B+(a3)).

For the pressure, we have

p,333 = h333 +△u3,33 ⇒ ∇3p ∈ L2(B+(a3)).

Finally,

uα,3333 = −uα,ββ33 + p,α33 − hα33 ⇒ ∇4uα ∈ L2(B+(a3)).

Proceeding in a similar further, we complete the proof of the proposition.

�

Theorem 2.6. Let Ω be R
n, or R

n
+, or a bounded with smooth boundary.

Let u ∈ V̂ (Ω) be a weak solution to the stationary Navier-Stokes equations,

see Definition 3.1. Assume that the right hand side in these equations is of

class C∞ in the closure of the domain Ω. Then u is also of class C∞ in

the closure of the domain Ω.

Proof For Ω = R
n or Rn

+, the statement follows from Propositions 2.4 and

2.5. �

3.3 Comments

Chapter 3 contains standard results on the existence and regularity of solu-

tions to the non-linear stationary boundary value problem. The main point

of the chapter is the local regularity technique, which differs a bit from the

technique developed for standard elliptic systems.
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Chapter 4

Linear Non-Stationary Problem

4.1 Derivative in Time

Let us recall some definitions from the theory of distributions. D(Ω) is

a vector space that consists of all elements, belonging to C∞
0 (Ω), where

the convergence of a sequence of functions ϕk ∈ C∞
0 (Ω) to a function

ϕ ∈ C∞
0 (Ω) is understood in the following sense. There exists a compact

K ⊂ Ω such that suppϕk, suppϕ ⊂ K and ∇mϕk → ∇mϕ uniformly on

K for any m ≥ 0. The space of all linear functionals on D(Ω), being

continuous with respect to the above convergence in D(Ω), is denoted by

D′(Ω). Elements of D′(Ω) are called distributions.

We may consider the space D′(a, b;D′(Ω)). Given T ∈ D′(a, b;D′(Ω)),
let us denote by ∂tT or even by d

dtT the following distribution

(∂tT (ϕ))(χ) = −T (ϕ)(∂tχ)

for any ϕ ∈ D(Ω) and for any χ ∈ D(a, b).

It is a too general definition for our purposes and we are going to use

somewhat more specific. Let V be a Banach space, V ∗ be its dual space

with duality relation < v∗, v >.

Definition 4.1. Let v∗ ∈ L1,loc(a, b;V
∗) (t 7→ v∗(·, t) ∈ V ∗ is measurable

and t 7→ ‖v∗(·, t)‖V ∗ is in L1,loc(a, b)). We call u∗ ∈ D′(a, b;V ∗) derivative
of v∗ in t if and only if

< u∗, v > (χ) = −
b∫

a

< v∗(·, t), v(·) > ∂tχ(t)dt

for any v ∈ V and for any χ ∈ C∞
0 (a, b). We let u∗ = ∂tv

∗.

61
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As usual, the left-hand side of the above identity is written in the same way

as the right-hand side, i.e.,

b∫

a

< ∂tv
∗(·, t), v(·) > χ(t)dt = −

b∫

a

< v∗(·, t), v(·) > ∂tχ(t)dt

for any v ∈ V and for any χ ∈ C∞
0 (a, b), although the left-hand side might

make no sense as Lebesgue’s integral.

Let us discuss the relationship between introduced notion of the deriva-

tive in time and the Sobolev derivatives. Assume that

V, V ∗ ∈ L1,loc(Ω), C∞
0 (Ω) ⊂ V, < v∗, v >=

∫

Ω

v∗vdx,

v∗ ∈ L1,loc(a, b;L1,loc(Ω)) = L1,loc(Ω×]a, b[), (4.1.1)

∂tv
∗ ∈ L1,loc(Ω×]a, b[).

Then ∂tv
∗ is a usual Sobolev derivative of v∗ in the domain Ω×]a, b[. To

understand why, we are going to use the following simple statement.

Lemma 4.1. Given ε > 0 and ϕ ∈ C∞
0 (Ω×]a, b[), there exist positive inte-

ger number N and functions ϕk ∈ C∞
0 (Ω), χk ∈ C∞

0 (a, b), k = 1, 2, ..., N

such that

‖ϕ−
N∑

k=1

ϕkχk‖C1(Ω×[a,b]) < ε.

Let us assume that Lemma 4.1 has been proved. Suppose that ∂tv
∗ is the

derivative in the sense of Definition 4.1 and satisfies assumptions (4.1.1).

Our aim is to show that it is Sobolev’s derivative as well. Take an arbitrary

ε > 0 and an arbitrary function ϕ ∈ C∞
0 (Ω×]a, b[) and fix them. Clearly,

ϕ ∈ C∞
0 (Ω′×]a′, b′[) for some Ω′ ⋐ Ω and for some a < a′ and b′ < b. Let a

natural number N(ε) and functions ϕk and χk be from Lemma 4.1 in the
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domain Ω′×]a′, b′[. Then we have

∣∣∣−
b′∫

a′

∫

Ω′

v∗(x, t)∂tϕ(x, t)dxdt −
b′∫

a′

∫

Ω′

∂tv
∗(x, t)ϕ(x, t)dxdt

∣∣∣ ≤

≤
∣∣∣

b′∫

a′

∫

Ω′

v∗(x, t)
(
∂tϕ(x, t)− ∂t

N(ε)∑

k=1

ϕk(x)χk(t)
)
dxdt

∣∣∣+

+
∣∣∣

b′∫

a′

∫

Ω′

∂tv
∗(x, t)

(
ϕ(x, t) −

N(ε)∑

k=1

ϕk(x)χk(t)
)
dxdt

∣∣∣ ≤

≤ c‖ϕ−
N(ε)∑

k=1

ϕkχk‖C1(Ω
′×[a′,b′])

(
‖v∗‖L1(Ω′×]a′,b′[) + ‖∂tv∗‖L1(Ω′×]a′,b′[)

)

≤ cε
(
‖v∗‖L1(Ω′×]a′,b′[) + ‖∂tv∗‖L1(Ω′×]a′,b′[)

)
.

Tending ε to zero, we get

b′∫

a′

∫

Ω′

∂tv
∗(x, t)ϕ(x, t)dxdt = −

b′∫

a′

∫

Ω′

v∗(x, t)∂tϕ(x, t)dxdt (4.1.2)

for any ϕ ∈ C∞
0 (Ω×]a, b[). So, ∂tv

∗ is Sobolev’s derivative as well.

Regarding the inverse statement, we argue as follows. Suppose that ∂tv
∗

is Sobolev’s derivative, i.e., it satisfies identity (4.1.2) with v∗ and ∂tv∗ from

L1,loc(Ω×]a, b[). If we assume in addition that C∞
0 (Ω) is dense in V , then

∂tv
∗ is a derivative of v∗ in the sense of Definition 4.1.

Proof of Lemma 4.1 We may extend ϕ by zero to the whole R
n ×R

(Ω ⊂ R
n). Take a cube Cl×] − l, l[ so that Cl×] − l, l[⊃ suppϕ. Here,

Cl = {x ∈ R
n : |xi| < l, i = 1, 2, ..., n}. Then we can expand ϕ as the

Fourier series in spatial variable x

ϕ(x, t) =

∞∑

k=0

∑

|m|=k

cm(t)eiπ
x·m
l ,

where

cm(t) =
1

(2l)n

∫

Cl

ϕ(x, t)e−iπ x·m
l dx.

The Fourier series converges very well. So, after taking real and imaginary

parts, given ε > 0, we find the number N(ε) such that

‖ϕ− ΦN(ε)‖C1(Cl×[−l,l]) < ε,
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where ΦN(ε)(x, t) =
∑N(ε)

k=1 ϕk(x)χk(t). Assume that there exist functions

ϕ0 ∈ C∞
0 (Ω), χ0 ∈ C∞

0 (]a, b[) with the following property

ϕ0(x)χ0(t) = 1 (4.1.3)

if (x, t) ∈ suppϕ. We may let then

Φ̃N(ε) = ΦN(ε)ϕ0χ0

and show

‖ϕ− Φ̃N(ε)‖C1(Ω×[a,b]) = ‖(ϕ− ΦN(ε))ϕ0χ0‖C1(Ω×[a,b]) ≤ c(Ω, a, b, l)ε.

To justify (4.1.3), let us introduce the following sets

(suppϕ)t = {x ∈ Ω : (x, t) ∈ suppϕ },

Λ = {t ∈ [a, b] : (suppϕ)t 6= ∅}.
Let t1 = inf

t∈Λ
t and t2 = sup

t∈Λ
t. We claim that a < t1 ≤ t2 < b. Assume that

t2 = b. Then, by the definition, there exists a sequence (xk, tk) ∈ suppϕ

with tk → b as k → ∞. Selecting if necessary a subsequence, we have a

contradiction for the limit point (x, b) ∈ suppϕ. Now, let us show that

K = ∪t1≤t≤t2(suppϕ)t

is a closed set of R3. Assume that xk ∈ K and xk → x as k → ∞. For each

k, one can find tk ∈ [t1, t2] such that (xk, tk) ∈ suppϕ. We may assume that

tk → t ∈ [t1, t2] and then, by the definition of the support, (x, t) ∈ suppϕ.

So, x ∈ K and thus K is closed. It remains to find an open set Ω1 ⋐ Ω

such that K ⊂ Ω1. So, suppϕ ⊂ Ω1 × [t1, t2]. The rest of the proof is easy.

�

4.2 Explicit Solution

Consider a bounded domain Ω ⊂ R
n with smooth boundary and the fol-

lowing initial-boundary value problem

∂tu−∆u = f −∇p and div u = 0 in QT = Ω×]0, T [,

u = 0 on ∂Ω× [0, T ], (4.2.1)

u(x, 0) = a(x) x ∈ Ω.

Assume that

a ∈
◦
J (Ω). (4.2.2)
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This problem can be written in the operator form

∂tu− ∆̃u = f ∈ L2(0, T ; (
◦
J
1
2(Ω))

′),

u|t=0 = a ∈
◦
J (Ω), (4.2.3)

see notation for the Stokes operator ∆̃ and for the dual space in the last

section of Chapter 2.

Our task is to construct an explicit solution provided eigenvalues and

eigenfunctions of the Stokes operator ∆̃ in the domain Ω are known. So,

we are given:

−∆̃ϕk = λkϕk in Ω,

ϕk = 0 on Ω, (4.2.4)

where k = 1, 2, ....

First, let us expand functions f and a as Fourier series, using eigenfunc-

tions of the Stokes operator,

f(x, t) =
∞∑

k=1

fk(t)ϕk(x),

where

fk(t) = (f(·, t), ϕk(·))
and

a(x) =
∞∑

k=1

akϕk(x), ak = (a, ϕk).

By our assumptions,

‖f‖2
L2(0,T ;(

◦
J1

2(Ω))′)
=

T∫

0

∞∑

k=1

1

λk
|fk(t)|2dt <∞,

‖a‖22,Ω =

∞∑

k=1

a2k <∞. (4.2.5)

We are looking for a solution to (4.2.3) of the form

u(x, t) =
∞∑

k=1

ck(t)ϕk(x). (4.2.6)

Assume that

ck(0) = ak, k = 1, 2, .... (4.2.7)
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Our further calculations are going to be formal. Later on, we will explain

in what sense the formal solution is a solution to problem (4.2.3). So, if we

insert (4.2.6) into (4.2.3), then the identity
∞∑

k=1

c′kϕk + λkckϕk =
∞∑

k=1

fkϕk

comes out, which holds if one lets

c′k(t) + λkck(t) = fk(t),

ck(0) = ak, (4.2.8)

where k = 1, 2, .... System (4.2.8) has a unique solution

ck(t) = e−λkt
(
ak +

t∫

0

eλkτfk(τ)dτ
)
. (4.2.9)

Let us analyze properties of the formal solution (4.2.6) and (4.2.9). We

have

c2k(t) ≤ 2e−2λkta2k + 2
∣∣∣

t∫

0

e−λk(t−τ)fk(τ)dτ
∣∣∣
2

≤ 2e−2λkta2k + 2

t∫

0

e−2λk(t−τ)dτ

t∫

0

f2
k (τ)dτ

≤ 2e−2λkta2k +
1

λk

t∫

0

f2
k (τ)dτ − 1

λk
e−2λkt

t∫

0

f2
k (τ)dτ.

So, finally,

c2k(t) ≤ 2e−2λkta2k +
1

λk

t∫

0

f2
k (τ)dτ. (4.2.10)

Summing up the above inequalities, we establish the estimate

‖u(·, t)‖22 =
∞∑

k=1

c2k(t) ≤ 2e−2λ1t
∞∑

k=1

a2k +

∞∑

k=1

1

λk

t∫

0

f2
k (τ)dτ

≤ 2e−2λ1t‖a‖22 + ‖f‖2
L2(0,T ;(

◦
J1

2(Ω))′)
, (4.2.11)

which implies

‖u‖2L∞(0,T ;L2(Ω)) ≤ 2‖a‖22 + ‖f‖2
L2(0,T ;(

◦
J1

2(Ω))′)
. (4.2.12)
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To get the second estimate, we multiply the first equation in (4.2.8) by

ck(t) and apply Young’s inequality

c′k(t)ck(t) + λkc
2
k(t) = fk(t)ck(t)

≤ 1

2

f2
k (t)

λk
+

1

2
λkc

2
k(t).

So,

(c2k(t))
′ + λkc

2
k(t) ≤

f2
k (t)

λk
.

Integration in t gives us:

c2k(T ) + λk

T∫

0

c2k(t)dt ≤ c2k(0) +

T∫

0

f2
k (t)

λk
dt

= a2k +

T∫

0

f2
k (t)

λk
dt.

Then, after summation, we arrive at the second estimate

‖∇u‖2L2(0,T ;L2(Ω)) =

T∫

0

∞∑

k=1

λkc
2
k(t)dt

≤ ‖a‖22 + ‖f‖2
L2(0,T ;(

◦
J1
2(Ω))′)

. (4.2.13)

Bounds (4.2.12) and (4.2.13) are called energy estimates.

The final estimate will be derived from (4.2.8) in the following way

‖∂tu‖2
L2(0,T ;(

◦
J1

2(Ω))′)
=

T∫

0

∞∑

k=1

|c′k(t)|2
λk

dt

≤ 2

T∫

0

∞∑

k=1

λkc
2
k(t)dt+ 2

T∫

0

∞∑

k=1

f2
k (t)

λk
dt

≤ 2‖∇u‖2L2(0,T ;L2(Ω)) + 2‖f‖2
L2(0,T ;(

◦
J1
2(Ω))′)

.

So, applying (4.2.13), we find the third estimate

‖∂tu‖2
L2(0,T ;(

◦
J1

2(Ω))′)
≤ 2‖a‖22 + 4‖f‖2

L2(0,T ;(
◦
J1

2(Ω))′)
. (4.2.14)

Now, we wish to figure out in which sense (4.2.3) holds. Let us take an

arbitrary function w ∈ L2(0, T ;
◦
J1
2(Ω)) and expand it as a Fourier series

w(x, t) =
∞∑

k=1

dk(t)ϕk(x).
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Obviously,

‖∇w‖2L2(0,T ;L2(Ω)) =

T∫

0

∞∑

k=1

λkd
2
k(t)dt <∞.

Hence,

T∫

0

∫

Ω

∂tu · wdxdt =
T∫

0

∞∑

k=1

c′k(t)dk(t)dt,

T∫

0

∫

Ω

∇u : ∇wdxdt =
T∫

0

∫

Ω

∞∑

k=1

ck(t)dk(t)|∇ϕk|2dxdt =

=

T∫

0

∞∑

k=1

λkck(t)dk(t)dt,

T∫

0

∫

Ω

f · wdxdt =
T∫

0

∞∑

k=1

fk(t)dk(t)dt,

and, by (4.2.8),

T∫

0

∫

Ω

(
∂tu · w +∇u : ∇w − f · w

)
dxdt =

=

T∫

0

∞∑

k=1

(
c′k(t) + λkck(t)− fk(t)

)
dk(t)dt = 0.

Taking w(x, t) = χ(t)v(x) with v ∈
◦
J1
2(Ω) and χ ∈ C1

0 (0, T ), we get that,

for a.a. t ∈]0, T [, the identity
∫

Ω

(
∂tu(x, t) · v(x) +∇u(x, t) : ∇v(x)

)
dx =

∫

Ω

f(x, t) · v(x)dx (4.2.15)

holds for all v ∈
◦
J1
2(Ω). To be more precise, (4.2.15) is fulfilled at all

Lebesgue’s points of the following functions t 7→ ∂tu(·, t), t 7→ ∇u(·, t), and
t 7→ f(·, t). Identity (4.2.15) is called the weak form of the first equation in

(4.2.3).

It remains to establish in what sense the initial data in (4.2.3) are sat-

isfied.
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Lemma 4.2. Function t 7→ u(·, t) ∈ (
◦
J1
2(Ω))

′ can be modified on a zero-

measure subset of [0, T ] so that, for each v ∈
◦
J1
2(Ω), the function

t 7→
∫

Ω

u(·, t) · v(·)dx

is continuous on [0, T ].

Proof Since u ∈ L2(0, T ; (
◦
J1
2(Ω))

′), a.a. points t0 ∈ [0, T ] are Lebesgue’s

points of t 7→ u(·, t) in the following sense

1

2ε

t0+ε∫

t0−ε

‖u(·, t)− u(·, t0)‖
(
◦
J1

2(Ω))′
dt→ 0

as ε→ 0.

Denote by S the set of al Lebesgue’s points of t 7→ u(·, t). We know

that |S| = T . Let t0 < t1 be two points from S. By the definition of the

derivative ∂tu,
T∫

0

∫

Ω

∂tu(x, t) · v(x)χ(t)dxdt = −
T∫

0

∫

Ω

u(x, t) · v(x)∂tχ(t)dxdt

for any v ∈
◦
J1
2(Ω) and for any χ ∈ C1

0 (0, T ). We can easily extend the latter

identity to functions χ ∈
◦
W 1

2(0, T ). Pick up a test function χ = χε so that

χε(t) = 0 if 0 < t ≤ t0− ε or t1+ ε ≤ t < T , χε(t) = 1 if t0+ ε ≤ t ≤ t1− ε,

χε(t) = (t− t0 + ε)/(2ε) if t0 − ε < t < t0 + ε, and χε(t) = (t1 + ε− t)/(2ε)

if t1 − ε < t < t1 + ε. Then, we have
T∫

0

∫

Ω

∂tu(x, t) · v(x)χε(t)dxdt =
1

2ε

t1+ε∫

t1−ε

∫

Ω

u(x, t) · v(x)dxdt

− 1

2ε

t0+ε∫

t0−ε

∫

Ω

u(x, t) · v(x)dxdt. (4.2.16)

Obviously,

∣∣∣ 1
2ε

t0+ε∫

t0−ε

∫

Ω

(
u(x, t)− u(x, t0)

)
· v(x)dxdt

∣∣∣

≤ 1

2ε

t0+ε∫

t0−ε

‖u(·, t)− u(·, t0)‖
(
◦
J1
2(Ω))′

dt‖v(·)‖ ◦
J1

2(Ω)
→ 0
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as ε→ 0. So, after taking the limit, we find

∫

Ω

u(x, t1) · v(x)dx =

∫

Ω

u(x, t0) · v(x)dx +

t1∫

t0

∫

Ω

∂tu(x, τ) · v(x)dxdτ

for a.a. t1 ∈ [0, T ]. Since the right-hand side of the above identity is a

continuous function with respect to t1, the left-hand side is continuous in

t1 as well. �

Now, coming back to our function u, we notice that u ∈
L∞(0, T ;L2(Ω)). Therefore, we can state that

t 7→
∫

Ω

u(x, t) · v(x)dx is continuous in t on [0, T ]

for each function v ∈
◦
J (Ω) and even for each function v ∈ L2(Ω). The

latter follows from the fact that, for any v ∈ L2(Ω), the Helmholtz-Weyl

decomposition holds in the Ladyzhenskaya form so that v = v1+∇p, where
v1 ∈

◦
J (Ω) and p ∈W 1

2 (Ω), and thus
∫

Ω

u(x, t) · v(x)dx =

∫

Ω

u(x, t) · v1(x)dx,

since u(·, t) ∈
◦
J (Ω).

Since u(·, 0) = a(·) by construction of u, our initial data are satisfied at

least in the following sense

lim
t→+0

∫

Ω

u(x, t) · v(x)dx =

∫

Ω

a(x) · v(x)dx

for any v ∈ L2(Ω).

However, in our particular case, we can gain even more.

Theorem 2.1. Assume that

u ∈ L2(0, T ;
◦
J
1
2(Ω)), ∂tu ∈ L2(0, T ; (

◦
J
1
2(Ω))

′).

Then u ∈ C([0, T ];L2(Ω)) and

t∫

t1

∫

Ω

∂tu · udxdt = 1

2
‖u(·, t)‖22,Ω − 1

2
‖u(·, t1)‖22,Ω (4.2.17)

for all t, t1 ∈ [0, T ].
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Proof Indeed, for

u(x, t) =

∞∑

k=1

dk(t)ϕk(x),

we have

‖u‖2
L2(0,T ;

◦
J1

2(Ω))
=

T∫

0

∞∑

k=1

λkd
2
k(t)dt

and

‖∂tu‖2
L2(0,T ;(

◦
J1

2(Ω))′)
=

T∫

0

∞∑

k=1

1

λk
(d′k(t))

2dt.

In a view of Lemma 4.2, it is sufficient to show that the function t 7→
‖u(·, t)‖2,Ω is continuous. We know that functions t 7→ dk(t) are continuous

on [0, T ]. Therefore, the function t 7→ gN (t) =
∑N

k=1 d
2
k(t) is continuous

on [0, T ] as well. We know also that gN (t) → ‖u(·, t)‖22,Ω as N → ∞. So,

we need to show that the sequence gN (t) is uniformly bounded and the

convergence is uniform.

First, we show uniform boundedness. Indeed,

gN (t)− gN(t1) = 2

t∫

t1

N∑

k=1

d′k(τ)dk(τ)dτ (4.2.18)

for any t, t1 ∈ [0, T ] and thus

gN (t) ≤ gN(t1) + 2
( T∫

0

∞∑

k=1

1

λk
(d′k(t))

2dt
) 1

2
( T∫

0

∞∑

k=1

λkd
2
k(t)dt

) 1
2

≤ gN(t1) + 2‖∇u‖L2(0,T ;L2(Ω))‖∂tu‖
L2(0,T ;(

◦
J1
2(Ω))′)

.

The above inequality can be integrated with respect to t1

gN(t) ≤ 1

T

T∫

0

gN (t1)dt1 + 2‖∇u‖L2(0,T ;L2(Ω))‖∂tu‖
L2(0,T ;(

◦
J1

2(Ω))′)

≤ 1

Tλ1
‖∇u‖2L2(0,T ;L2(Ω)) + 2‖∇u‖L2(0,T ;L2(Ω))‖∂tu‖

L2(0,T ;(
◦
J1
2(Ω))′)

.

So, the uniform boundedness follows.

From (4.2.18), one can deduce uniform continuity. Indeed,

|gN (t)− gN(t1)| ≤ 2
( t∫

t1

‖∇u(·, t)‖22,Ωdt
) 1

2 ‖∂tu‖
L2(0,T ;(

◦
J1

2(Ω))′)
.
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Hence, gN(t) converges to ‖u(·, t)‖22,Ω uniformly, which means that the func-

tion t 7→ ‖u(·, t)‖22,Ω is continuous on [0, T ].

Finally, (4.2.17) follows directly from (4.2.18) if N → +∞. �

Actually, an abstract analogue of Theorem 2.1 takes places:

Theorem 2.2. Let H be a Hilbert space, V be a reflexive Banach space,

and V is continuously imbedded into H. Let V contain a countable set S

which is dense in V and in H, i.e.,

V = [S]V , H = [S]H .

Let V ∗ be a dual space to V with respect to scalar product in H with the

norm

‖v∗‖V ∗ = sup{(v∗, v)H : v ∈ V, ‖v‖V = 1}.

Assume that v ∈ Lp(0, T ;V ) ∩ L2(0, T ;H) and ∂tv ∈ Lp′(0, T ;V ∗) with

p′ = p/(p− 1) and p > 1.

Then, v ∈ C([0, T ];H) and

‖v(·, t)‖2H − ‖v(·, t1)‖2H = 2

t∫

t1

(∂tv(·, τ), v(·, τ))Hdτ

for any t, t1 ∈ [0, T ].

Proof We start with some general facts. Let t 7→ v(·, t), where v ∈
Lp(0, T ;V ). It is supposed that v is extended by zero outside [0, T ]. The

first fact is the integral continuity: for any ε > 0, there is a number δ(ε) > 0

such that

T∫

0

‖v(·, t+ h)− v(·, t)‖pV dt < ε

whenever |h| < δ(ε). This property provides the following. Let

vε(·, t) =
T∫

0

ωε(t− τ)v(·, τ)dτ,
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where ωε is a standard mollifying kernel. We then have

T∫

0

‖vε(·, t)− v(·, t)‖pV dt ≤

≤
∞∫

−∞

‖vε(·, t)− v(·, t)‖pV dt =

=

∞∫

−∞

‖
∞∫

−∞

ωε(t− τ)(v(·, τ) − v(·, t))dτ‖pV dt ≤

≤
∞∫

−∞

∞∫

−∞

ωε(t− τ)‖v(·, τ) − v(·, t))‖pV dτdt =

=

∞∫

−∞

∞∫

−∞

ωε(t1)‖v(·, t1 + t)− v(·, t))‖pV dτdt ≤ γ

provided ε < 1
2δ(γ). This means that vε → v in Lp(0, T ;V ).

It can be shown (exercise) that

∂tvε(·, t) = (∂tv)ε(·, t)
provided 0 < ε ≤ t ≤ T − ε. So, we can claim

∂tvε → ∂tv in Lp′,loc(0, T ;V
∗).

Further, we can use the same trick as in the case of star-shaped domains.

Without loss of generality, we may replace the interval ]0, T [ with ]− 1, 1[.

We take λ > 1 and define

vλ(·, t) = v(·, t
λ
), |t| ≤ λ

and thus

∂tv
λ(·, t) = 1

λ
∂sv(·, s)|s= t

λ
.

Here, the crucial things are as follows:

‖vλ − v‖Lp(−1,1;V ) + ‖vλ − v‖L2(−1,1;H) → 0

and

‖∂tvλ − ∂tv‖Lp′(−1,1;V ∗) → 0

as λ→ 1. Moreover, for fixed λ > 1,

‖vλ − (vλ)ε‖Lp(−1,1;V ) + ‖vλ − (vλ)ε‖L2(−1,1;H) → 0



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 74

74 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

and

‖∂tvλ − ∂t(v
λ)ε‖Lp′(−1,1;V ∗) → 0

as ε→ 0. Summarizing these two properties, we may construct a sequence

v(k) that is differentiable in t and satisfies:

‖v(k) − v‖Lp(−1,1;V ) + ‖v(k) − v‖L2(−1,1;H) → 0

and

‖∂tv(k) − ∂tv‖Lp′(−1,1;V ∗) → 0

as k → ∞.

Now, let u = v(k) − v(m), we have the identity

‖u(·, t)‖2H = 2

∫ t

t1

(∂tu(·, τ), u(·, τ))Hdτ + ‖u(·, t1)‖2H , (4.2.19)

which implies the bound

sup
−1<t<1

‖u(·, t)‖2H ≤ 1

2

(
2‖∂tu‖Lp′(−1,1;V ∗)‖u‖Lp(−1,1;V ) + ‖u‖2L2(−1,1;H)

)
.

In turn, the above inequality yields that the v(k) is a Cauchy sequence in

C([0, T ];H) and thus v(k) converges to v in C([0, T ];H). The identity of

Theorem 2.2 can be derived from (4.2.19) with u = v(k) and k → ∞. �

Theorem 2.3. Assume that a ∈
◦
J (Ω) and f ∈ L2(0, T ; (

◦
J1
2(Ω))

′). There

exists a unique function u called a weak solution to (4.2.1) such that:

u ∈ L2(0, T ;
◦
J
1
2(Ω)), ∂tu ∈ L2(0, T ; (

◦
J
1
2(Ω))

′); (4.2.20)

for a.a. t ∈ [0, T ],
∫

Ω

[
∂tu(x, t) · v(x) +∇u(x, t) : ∇v(x)

]
dx =

∫

Ω

f(x, t) · v(x)dx (4.2.21)

for any v ∈
◦
J1
2(Ω);

u(·, 0) = a(·) (4.2.22)

and (4.2.22) is fulfilled in the L2-sense, i.e., ‖u(·, t) − a(·)‖2,Ω → 0 as

t→ +0. Moreover,

u ∈ C([0, T ];L2(Ω)).
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Proof Existence has been already proven. It remains to show uniqueness.

Assume that u1 is another solution satisfying (4.2.20)–(4.2.22). Then for

w = u− u1 we have∫

Ω

∂tw(x, t) · v(x)dx +

∫

Ω

∇w(x, t) : ∇v(x)dx = 0

for a.a. t ∈ [0, T ] and for any v ∈
◦
J1
2(Ω) and thus

∫

Ω

∂tw(x, t) · w(x, t)dx +

∫

Ω

|∇w(x, t)|2dx = 0.

Integrating the latter identity with respect to t in [0, t0], we get, by Theorem

2.1,

‖w(·, t0)‖22,Ω ≤ ‖w(·, 0)‖22,Ω = 0

for any t0 ∈ [0, T ]. �

4.3 Cauchy Problem

Here, we assume that Ω = R
n and consider the following initial value

problem

∂tu−∆u = f −∇p and div u = 0 in QT = R
n×]0, T [,

u(x, 0) = a(x) x ∈ R
n. (4.3.1)

Assume that

a ∈
◦
J≡

◦
J (Rn). (4.3.2)

It is supposed also that

f ∈ L2(0, T ;
◦
J). (4.3.3)

In this case, the Cauchy problem can be reduced to the Cauchy problem

for the heat equation

∂tu−∆u = f in QT ,

u(x, 0) = a(x) x ∈ R
n. (4.3.4)

Indeed, assume that u is a solution to the Cauchy problem (4.3.4). Take

the divergence of equations in (4.3.4). Then we have

∂tdivu−∆divu = 0 in QT ,

divu(x, 0) = 0 x ∈ R
n.
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By the unique solvability of the Cauchy problem for the heat equation, one

can state that divu = 0 in QT . The pressure field is an arbitrary function

of t.

Solution to (4.3.4) can be given in an explicit form with the help of the

fundamental solution to the heat equation:

u(x, t) =

∫

Rn

Γ(x− y, t)a(x)dx +

t∫

0

∫

Rn

Γ(x− y, t− τ)f(y, τ)dydτ,

where

Γ(a, t) =
1

(4πt)
n
2
e−

|x|2

4t

for x ∈ R
n and t > 0. This formula is a good source for understanding

properties of solutions to (4.3.1).

4.4 Pressure Field. Regularity

Let us go back to initial-boundary value problem (4.2.1) and its functional

formulation (4.2.2)

∂tu− ∆̃u = f ∈ L2(0, T ; (
◦
J
1
2(Ω))

′),

u|t=0 = a ∈
◦
J (Ω). (4.4.1)

Assuming that our domain Ω is bounded and has sufficiently smooth bound-

ary, we have constructed a weak solution to (4.4.1) with the help of eigen-

functions ϕk of the Stokes operator in Ω, namely, in the form:

u(x, t) =

∞∑

k=1

ck(t)ϕk(x).

For unknown coefficient ck(t), the following system of equations

c′k(t) + λkck(t) = fk(t),

ck(0) = ak (4.4.2)

holds, where k = 1, 2, ... and where

fk(t) =

∫

Ω

f(x, t) · ϕk(x)dx = (f(·, t), ϕk(·)), ak = (a, ϕk).

Now, we are going to assume additionally that

a ∈
◦
J
1
2(Ω), f ∈ L2(0, T ;

◦
J (Ω)). (4.4.3)
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Then,

‖f‖2
L2(0,T ;

◦
J(Ω))

= ‖f‖22,QT
=

T∫

0

∞∑

k=1

f2
k (t)dt <∞,

‖∇a‖22,Ω =

∞∑

k=1

λka
2
k <∞. (4.4.4)

Next, let us multiply the first equation in (4.4.2) by ck, sum up the

result from 1 to N , integrate the sum in time over the interval ]0, t[, and

find the identity

1

2

N∑

k=1

λkc
2
k(t) +

t∫

0

N∑

k=1

|c′k(τ)|2dτ

=
1

2

N∑

k=1

λka
2
k +

t∫

0

N∑

k=1

fk(τ)c
′
k(τ)dτ,

which yields the bound

N∑

k=1

λkc
2
k(t) +

t∫

0

N∑

k=1

|c′k(τ)|2dτ ≤
N∑

k=1

λka
2
k +

t∫

0

N∑

k=1

f2
k (τ)dτ

≤ ‖∇a‖22,Ω + ‖f‖22,QT
.

Passing to the limit as N → ∞, we derive the following important estimate

‖∇u(·, t)‖22,Ω +

t∫

0

‖∂tu(·, τ)‖22,Ωdτ ≤ ‖∇a‖22,Ω + ‖f‖22,QT
(4.4.5)

that is valid for any t ∈ [0, T ].

Now, our aim is to recover the pressure field. To this end, we proceed

as follows. Consider the linear functional

lt(v) =

∫

Ω

(∇u(x, t) : ∇v(x) + ∂tu(x, t) · v(x) − f(x, t) · v(x))dx

for any
◦
L1
2(Ω). It obeys the estimate

|lt(v)| ≤ ‖∇u(·, t)‖2,Ω‖∇v‖2,Ω + (‖∂tu(·, t)‖2,Ω + ‖f(·, t)‖2,Ω)‖v‖2,Ω.
According to Poincare’s inequality, ‖v‖2,Ω ≤ c(Ω)‖∇v‖2,Ω. So, the func-

tional v 7→ lt(v) is bounded for a.a. t ∈ [0, T ] and a bound of its norm

is:

‖lt‖ ≤ c(Ω)(‖∇u(·, t)‖2,Ω + ‖∂tu(·, t)‖2,Ω + ‖f(·, t)‖2,Ω). (4.4.6)
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Moreover, lt(v) = 0 for any v ∈
◦
J1
2(Ω). For bounded domains with Lipschitz

boundary, there exists a function t 7→ p(·, t) ∈ L2(Ω), see Chapter I, such

that

lt(v) =

∫

Ω

p(x, t)divvdx, ‖p(·, t)‖2,Ω ≤ ‖lt‖.

It follows from (4.4.6) that

‖p‖2,QT ≤ c
[
‖∇u‖2,QT + ‖∂tu‖2,QT + ‖f‖2,QT

]
. (4.4.7)

So, we have∫

Ω

∇u(x, t) : ∇v(x)dx −
∫

Ω

p(x, t)divv(x)dx

=

∫

Ω

f(x, t) · v(x)dx −
∫

Ω

∂tu(x, t) · v(x)dx (4.4.8)

for any v ∈
◦
L1
2(Ω) and for a.a. t ∈ [0, T ].

For those t, i.e., for which (4.4.8) holds, we may apply the regularity

theory developed in the case of the linear stationary Stokes system. More

precisely, one can estimate higher derivatives in spatial variables:

‖∇2u(·, t)‖2,Ω + ‖∇p(·, t)‖2,Ω ≤ c(‖f(·, t)‖2,Ω + ‖∂tu(·, t)‖2,Ω
and thus

‖∇2u‖2,QT + ‖∇p‖2,QT ≤ c(‖f‖2,QT + ‖∂tu‖2,QT ).

Combining the latter estimate with (4.4.5), we get the final bound:

‖∂tu‖2,QT + ‖∇2u‖2,QT + ‖∇p‖2,QT ≤ c(‖f‖2,QT + ‖∇a‖2,Ω). (4.4.9)

Now, let us show that ∇u ∈ C([0, T ];L2(Ω)). To this end, we are going

to use Theorem 2.2, introducing H =
◦
J1
2(Ω) with scalar product (u, v)H =

(∇u,∇v) and V =
◦
J1
2(Ω) ∩W 2

2 (Ω) with the norm ‖v‖V = ‖∆̃v‖2,Ω. Now,

we are going to verify that V ∗ =
◦
J(Ω) is dual to V with respect H .

Indeed, let l ∈ V ∗. So, we have |l(v)| ≤ c‖∆̃v‖2,Ω for any v ∈ V .

Since ∆̃(V ) =
◦
J(Ω), one can define G(p) = l(v), where p = −∆̃v, for

any p ∈
◦
J(Ω). Obviously, |G(p)| ≤ ‖p‖2,Ω‖l‖. Moreover, it is not difficult

to check that ‖G‖ = ‖l‖. By the Riesz theorem, there exists a unique

v∗ ∈
◦
J(Ω) such that

G(p) =

∫

Ω

v∗ · pdx,
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‖v∗‖2,Ω = ‖l‖ and

l(v) = −
∫

Ω

v∗ · ∆̃vdx =

∫

Ω

∇v∗ : ∇vdx.

Now, every element v∗ of
◦
J(Ω) defines a linear functional on V by

formula

−
∫

Ω

v∗ · ∆̃vdx =

∫

Ω

∇v∗ : ∇vdx ≤ ‖v∗‖2,Ω‖∆̃v‖2,Ω ≤ ‖v∗‖2,Ω‖v‖V .

So, V ∗ ≃
◦
J(Ω), i.e., spaces are isometrically isomorphic. By Theorem 2.2,

∇u ∈ C([0, T ];L2(Ω)).

Summarizing mentioned above, one can formulate the following result.

Theorem 4.4. Assume that the boundary of a bounded domain Ω is smooth

and conditions (4.4.3) holds. Then,

u ∈ W 2,1
2 (QT ), p ∈W 1,0

2 (QT ),

with estimate (4.4.9). In addition, ∇u ∈ C([0, T ];L2(Ω)) and equations

∂tu−∆u = f −∇p, divu = 0

are satisfied a.e. in QT .

In fact, a more general statement is known about solutions to initial

boundary value problems for the Stokes system.

Theorem 4.5. Let Ω be a bounded domain with smooth boundary. Con-

sider the following initial boundary value problem

∂tu−∆u = f −∇p and div u = 0 in QT = Ω×]0, T [,

1

|Ω|

∫

Ω

p(x, t)dx ≡ [p(·, t)]Ω = 0, t ∈ [0, T ], (4.4.10)

u|∂′QT = 0,

where ∂′QT is the parabolic boundary of QT .

Let f ∈ Ls,l(QT ) := Ll(0, T ;Ls(Ω)) for some finite numbers s > 1 and

l > 1. Then problem (4.4.10) has a unique solution such that u ∈ W 2,1
s,l (QT )

and p ∈ W 1,0
s,l (QT ), satisfying the following coercive estimate

‖u‖W 2,1
s,l (QT ) + ‖p‖W 1,0

s,l (QT ) ≤ c(Ω, s, l, n)‖f‖Ls,l(QT ).

Here, we have used the following notion:

W 2,1
s,l (QT ) = {v ∈ Ll(0, T ;W

2
s (QT )), ∂tv ∈ Ll(0, T ;Ls(Ω))},

W 1,0
s,l (QT ) = {v ∈ Ll(0, T ;W

1
s (QT ))},

and

W 2,1
s (QT ) =W 2,1

s,s (QT ), W 1,0
s (QT ) =W 1,0

s,s (QT ).
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4.5 Uniqueness Results

Lemma 4.3. Let v ∈ L1(0, T ;
◦
Jm(Ω)) with m > 1 and Ω be a bounded

domain in R
n with sufficiently smooth boundary. If 1 < m < 2, assume in

addition that n = 2 or 3. Suppose, further, that∫

QT

v · (∂tw +∆w)dxdt = 0

for w(x, t) = χ(t)W (x) with an arbitrary function χ ∈ C1([0, T ]) and an

arbitrary divergence free field W ∈ C2(Ω) subject to the end condition

χ(T ) = 0 and to the boundary condition W = 0 on ∂Ω, respectively.

Then v is identically zero in QT . Here, QT = Ω×]0, T [.

Proof Take as a test function w = χ(t)ϕk(x), where ϕk is the k-th eigen-

function of the Stokes operator. χ(t) is a smooth function, satisfying the

end condition χ(T ) = 0. Since Ω is a domain with smooth boundary, the

eigenfunction ϕk is a smooth function as well. Indeed, it follows from em-

bedding theorems, regularity theory for the Stokes system, and bootstrap

arguments. Then, we have∫

QT

v(x, t) · (χ′(t)ϕk(x)− χ(t)λkϕk(x))dxdt = 0

and thus
T∫

0

vk(t)(χ
′(t)− χ(t)λk) = 0 (4.5.1)

for any χ ∈ C2([0, T ]) with χ(T ) = 0, where

vk(t) =

∫

Ω

v(x, t) · ϕk(x)dx.

From (4.5.1), it follows that

v′k(t) + λkvk(t) = 0

vk(0) = 0.

The latter immediately implies that vk(t) = 0 for t ∈ [0, T ].

Now, we wish to show that v(x, t) = 0 for any x ∈ Ω and t ∈ [0, T ].

Let us start with the simplest case m ≥ 2. Obviously, for bounded

domains,
◦
Jm(Ω) ⊆

◦
J2(Ω). Hence, v(·, t) ∈

◦
J2(Ω) and

‖v(·, t)‖22,Ω =
∞∑

k=1

v2k(t) = 0.
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Let us consider now the case, in which

1 < m < 2. (4.5.2)

First, we shall show ∫

Ω

v(x, t) · u(x)dx = 0 (4.5.3)

for any u ∈ C∞
0,0(Ω) and for a.a. t ∈ [0, T ]. To this end, fix an arbitrary

test function u ∈ C∞
0,0(Ω) and let

SN =
N∑

k=1

ckϕk,

where

ck =

∫

Ω

u · ϕkdx.

We know that SN → u in L2(Ω) as N → ∞. But it is not sufficient to

justify (4.5.3) by taking the limit below

0 =

∫

Ω

v(x, t) · SN (x)dx →
∫

Ω

v(x, t) · u(x)dx, N → ∞,

for a.a. t ∈ [0, T ]. However, assuming additionally that n = 2 or n = 3, we

will be able to show that sequence SN is bounded in Lm′(Ω) and this will

imply (4.5.3) in the case 1 < m < 2.

Indeed, let us consider first n = 2. Then, by embedding theorems, we

have
(∫

Ω

|SN |m′

dx
) 1

m′ ≤ c(m,Ω)
(∫

Ω

|∇SN |2dx
) 1

2

≤ c(m,Ω)
( N∑

k=1

λkc
2
k

) 1
2 ≤ c(m,Ω)‖∇u‖2,Ω.

So, required boundedness follows.

In the case n = 3, we have
(∫

Ω

|SN |m′

dx
) 1

m′ ≤ c(m,Ω)
( ∫

Ω

(|∇SN |2 + |∇2SN |2)dx
) 1

2

.

If we let −∆̃SN = fN ∈ L2(Ω), then simply, by definition of the Stokes

operator, the partial sum SN solves the following boundary value problem

−∆SN +∇pN = fN , divSN = 0 in Ω

SN |∂Ω = 0.
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Now, we are again in a position to apply the regularity theory, developed

for the stationary Stokes system, that gives the estimate

‖∇2SN‖2,Ω + ‖∇pN‖2,Ω ≤ c(Ω)‖fN‖2,Ω.
So, we have

‖∇2SN‖2,Ω ≤ c(Ω)‖∆̃SN‖2,Ω ≤ c(Ω)

N∑

k=1

λ2kc
2
k

≤ c(Ω)‖∆̃u‖2,Ω ≤ c(Ω)‖∆u‖2,Ω ≤ c(Ω)‖∇2u‖2,Ω.
And thus boundedness of ‖SN‖m′,Ω has been proven in the case n = 3 as

well.

Now, the aim is to show that v is identically zero in QT . Fix t ∈ [0, T ]

and consider a linear functional

l(w) =

∫

Ω

v · wdx, w ∈
◦
L
1
m′(Ω).

By Poincaré’s inequality, it is bounded in
◦
L1
m′(Ω) and, by (4.5.3), vanishes

on
◦
J1
m′(Ω), i.e.,

l(w) = 0 ∀w ∈
◦
J
1
m′(Ω).

As we know, every functional, possessing the above properties, can be pre-

sented in the form

l(w) =

∫

Ω

p divwdx, ∀w ∈
◦
L
1
m′(Ω)

for some p ∈ Lm(Ω). The latter means that v = −∇p.
Our next step is to show that p is a solution to the Neumann problem:

∆p = 0 in Ω and ∂p/∂ν = 0 on ∂Ω, where ν is the unit outward normal to

the surface ∂Ω, in the following sense
∫

Ω

∇p · ∇qdx = 0, ∀q ∈ W 1
m′(Ω). (4.5.4)

Indeed, ∇p = −v ∈
◦
Jm(Ω). Therefore, there exists a sequence w(k) ∈

C∞
0,0(Ω) such that w(k) → ∇p in Lm(Ω). So,

∫

Ω

w(k) · ∇qdx = 0 →
∫

Ω

∇p · ∇qdx = 0

for any q ∈ W 1
m′(Ω).
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Now, our problem has been reduced to the following uniqueness ques-

tion: Let p ∈ W 1
m(Ω), 1 < m < 2, and∫

Ω

∇p · ∇qdx = 0 ∀q ∈W 1
m′(Ω).

Then p must be a constant in Ω.

Assume that f is a smooth function on ∂Ω and satisfies compatibility

condition ∫

∂Ω

f(s)ds = 0.

Consider the classical Neumann problem: ∆q = 0 in Ω and ∂q/∂ν = f

on ∂Ω. There exists a smooth solution to this problem. For it, we have

0 =

∫

Ω

∇p · ∇qdx =

∫

∂Ω

p
∂q

∂ν
ds =

∫

∂Ω

pfds.

Since f is a smooth function satisfying the compatibility condition only, we

can claim that

p = c1

on ∂Ω for some constant c1.

We let further p1 = p − c1 and p1 is a solution to the homogeneous

Dirichlet boundary problem: ∆p1 = 0 in Ω and p1 = 0 on ∂Ω. To show

that p1 is in fact identically zero, we find for any q ∈ W 2
m′(Ω) with q = 0

on ∂Ω ∫

Ω

∇p1 · ∇qdx = −
∫

Ω

p1∆qdx.

We may select a function q in a special way so that ∆q = |p1|m−1sign p1 =

f ∈ Lm′(Ω) with q = 0 on ∂Ω. It is well known that such a function exists

and belongs to W 2
m′(Ω). Hence,

0 =

∫

Ω

∇p1 · ∇qdx = −
∫

Ω

|p1|mdx

and thus p is a constant in Ω and v = 0 in QT . Lemma 4.3 is proved.

We have another uniqueness result.

Theorem 5.6. Let v ∈ L1(0, T ;
◦
J1
m(Ω)) with m > 1 and Ω be a bounded

domain with sufficiently smooth boundary. Assume∫

QT

(v · ∂tw −∇v : ∇w)dz = 0 (4.5.5)



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 84

84 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

for any w(x, t) = χ(t)W (x), where χ ∈ C1([0, T ]) such that χ(T ) = 0 and

W ∈ C∞
0,0(Ω).

Then v is identically zero in QT .

Proof By density arguments, (4.5.5), of course, holds for anyW ∈
◦
J1
m′(Ω).

Take any function W ∈ C2(Ω) with W = 0 on ∂Ω and divW = 0 in Ω.

We know that W ∈
◦
J1
m′(Ω), see Chapter I, Theorem 4.3. So, v satisfies all

assumptions of Lemma 4.3 and therefore v ≡ 0 in QT .

The above proof works well under additional assumption on n if 1 <

m < 2. However, we can give an alternative proof that does not need

extra assumptions on the spatial dimension. We assume that (4.5.3) has

been already proved. Then we can take test function in (4.5.3) in the

following wayW = ∇∧w with arbitrary function w ∈ C∞
0 (Ω). This implies

∇∧ v(·, t) = 0 in Ω. Taking into account the fact that v is divergence free,

we deduce that v(·, t) is a harmonic function in Ω belonging to
◦
J1
m(Ω). The

rest of the proof is more or less the same as the final part of the proof of

Lemma 4.3, see arguments providing p1 = 0 there. Theorem 5.6 is proved.

4.6 Local Interior Regularity

In this section, we shall restrict ourselves to the 3D case just in order to

reduce a number of parameters. Although it is clear that the extension to

other dimensions is straightforward.

The problem of local interior regularity can be formulated as follows.

Consider the Stokes system in a canonical domain, say, in Q = B×]− 1, 0[

∂tu−∆u = f −∇p, div u = 0. (4.6.1)

We always assume that functions u and p have some starting differentiabil-

ity properties. Keeping in mind the 3D non-stationary non-linear problem,

we supposed that

u ∈W 1,0
m,n(Q), p ∈ Lm,n(Q) (4.6.2)

for some finite m and n being greater than 1.

Assuming that some additional information about the right-hand side

f is given, we shall try to make some conclusions about smoothness of u

and p in smaller parabolic balls Q(r) = B(r)×]− r2, 0[.

It is known that, for stationary Stokes system as well as for the heat

equation, solutions are smooth locally as long as f is smooth. However, in
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the case of non-stationary Stokes system, we have smoothing in spatial vari-

ables but not in time. This can be seen easily from the following example,

in which f = 0 and

u(x, t) = c(t)∇h(x), p(x, t) = −c′(t)h(x).
Here, h is a harmonic function in B and c is a given function, defined on

[0, T ]. This solution is infinitely differentiable inside B but, under assump-

tions (4.6.2), it is just Hölder continuous in time. There is no smoothing in

time despite the smoothness of f .

In general, we have the following statement.

Proposition 6.7. Assume that u and p satisfy (4.6.1), conditions (4.6.2),

and let

f ∈ Ls,n(Q) (4.6.3)

with s ≥ m.

Then u ∈W 2,1
s,n (Q(1/2)) and p ∈ W 1,0

s,n (Q(1/2)) and the estimate

‖∂tu‖s,n,Q(1/2) + ‖∇2u‖s,n,Q(1/2) + ‖∇p‖s,n,Q(1/2)

≤ c(‖f‖s,n,Q + ‖u‖m,n,Q + ‖∇u‖m,n,Q + ‖p‖m,n,Q) (4.6.4)

holds.

Proof It is sufficient to prove this proposition for case s = m. General case

can be deduced from it by embedding theorems and bootstrap arguments.

Fix a non-negative cut-off function ϕ ∈ C∞
0 (B×]− 1, 1[) so that ϕ = 1

in B(1/2)×]− (1/2)2, (1/2)2[. For any t ∈]− 1, 0[, we determine a function

w(·, t) as a unique solution to the boundary value problem

∆w(·, t) −∇q(·, t) = 0, divw(·, t) = v(·, t) · ∇ϕ(·, t)
in B and ∫

B

q(x, t)dx = 0, w(·, t) = 0

on ∂B. It satisfies the estimate

‖∇2w(·, t)‖s,B + ‖q(·, t)‖s,B + ‖∇q(·, t)‖s,B ≤

≤ c‖∇(v(·, t) · ∇ϕ(·, t))‖s,B . (4.6.5)

Letting

V = ϕv − w, P = ϕp− q,
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F = ϕf + v∂tϕ− 2∇v∇ϕ− v∆ϕ+ p∇ϕ− ∂tw,

we observe that new functions V and P are a unique solution to the fol-

lowing initial boundary value problem

∂tV −∆V = F −∇P, div V = 0

in Q,

V = 0

on ∂′Q. The statement of Theorem 4.5 and the estimate there yield

‖∂tv‖s,n,Q(1/2) + ‖∇2v‖s,n,Q(1/2) + ‖∇p‖s,n,Q(1/2) ≤ cA+ c‖∂tw‖s,n,Q,
(4.6.6)

where

A = ‖f‖s,n,Q + ‖v‖s,n,Q + ‖∇v‖s,n,Q + ‖p‖s,n,Q.
So, our task is to evaluate the last term on the right-hand side of (4.6.6).

The main tool here is duality arguments developed by V. A. Solonnikov.

Introducing new notation u = ∂tw and r = ∂tq, we can derive from the

equations for w and q

∆u(·, t)−∇r(·, t) = 0,

div u(·, t) = ∂tv(·, t) · ∇ϕ(·, t) + v(·, t) · ∇ ∂tϕ(·, t) (4.6.7)

in B, ∫

B

r(x, t)dx = 0, u(·, t) = 0 (4.6.8)

on ∂B.

Given g ∈ Ls′(B) with s′ = s/(s − 1), let us define a function ũ as a

unique solution to the boundary value problem

∆ũ−∇r̃ = g, div ũ = 0 (4.6.9)

in B, ∫

B

r̃(x)dx = 0, ũ = 0 (4.6.10)

on ∂B. Moreover, function r̃ satisfies the estimate

‖r̃‖s′,B + ‖∇r̃‖s′,B ≤ c‖g‖s′,B. (4.6.11)

Now, from (4.6.7)–(4.6.11), it follows that
∫

B

u(x, t) · g(x)dx =

∫

B

u(x, t) · (∆ũ(x) −∇r̃(x))dx
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=

∫

B

r̃(x)div u(x, t)dx =

∫

B

r̃(x)(∂tv(x, t) ·∇ϕ(x, t)+v(x, t) ·∇ ∂tϕ(x, t))dx.

The derivative ∂tv can be expressed from the Navier-Stokes equations. So,

we derive from the previous identity the following:∫

B

u(x, t) · g(x)dx =

∫

B

r̃(x)(∆ v(x, t) −∇ p(x, t) + f(x, t)) · ∇ϕ(x, t)dx

+

∫

B

r̃(x)v(x, t) · ∇ ∂tϕ(x, t)dx.

Integration by parts and estimate (4.6.11) imply∫

B

u(x, t) · g(x)dx ≤ c‖g‖s′,B(‖v(·, t)‖s,B + ‖∇ v(·, t)‖s,B + ‖p(·, t)‖s,B)

and thus

‖∂tw‖s,n,Q ≤ cA.

Proposition 6.7 is proved.

Keeping in mind the 3D non-stationary non-linear problem, one cannot

expect that the number n is big. In such cases, the following embedding

result can be useful.

Proposition 6.8. Assume that v ∈W 2,1
s,n (Q) with

1 < n ≤ 2, µ = 2− 2

n
− 3

s
> 0.

Then

|v(z)− v(z′)| ≤ c(m,n, s)(|x− x′|+ |t− t′| 12 )µ(‖v‖s,n,Q
+‖∇v‖s,n,Q + ‖∇2v‖s,n,Q + ‖∂tv‖s,n,Q)

for all z = (x, t) ∈ Q(1/2) and for all z′ = (x′, t′) ∈ Q(1/2). In other

words, v is Hölder continuous with exponent µ relative to parabolic metric

in the closure of Q(1/2).

Finally, using bootstrap arguments, we can prove the following statement

which in a good accordance with the aforesaid example.

Proposition 6.9. Assume that conditions (4.6.2) hold with 1 < n < 2 and

f = 0. Let u and p be an arbitrary solution to system (4.6.1). Then for

any 0 < τ < 1 and for any k = 0, 1, ..., the function (x, t) 7→ ∇ku(x, t) is

Hölder continuous with any exponent less than 2− 2/n in the closure of the

set Q(τ) relative to the parabolic metric.
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4.7 Local Boundary Regularity

To describe the results of this section, we are going to exploit the following

notation:

x = (x′, x3), x′ = (x1, x2),

Q+(r) = C+(r)×] − r2, 0[⊂ R
3 × R, C+(r) = b(r)×]0, r[∈ R

3,

b(r) = {x′ ∈ R
2 : |x′| < r }.

The complete analogue of Proposition 6.7 is as follows, see [Seregin

(2002)], [Seregin (2002)], and [Seregin (2009)].

Proposition 7.10. Assume that we are given three functions

u ∈W 1,0
m,n(Q+(2)), p ∈ Lm,n(Q+(2)), f ∈ Lm1,n(Q+(2))

with m1 ≥ m satisfying the system

∂tu−∆u = f −∇ p, div v = 0 in Q+(2),

and the homogeneous Dirichlet boundary condition

u(x′, 0, t) = 0.

Then u ∈ W 2,1
m1,n(Q+(1)) and p ∈W 1,0

m1,n(Q+(1)) with the estimate

‖∂tu‖Lm1,n(Q+(1)) + ‖∇2u‖Lm1,n(Q+(1)) + ‖∇p‖Lm1,n(Q+(1)) ≤

≤ c(‖u‖Lm,n(Q+(2)) + ‖∇u‖Lm,n(Q+(2)) + ‖p‖Lm,n(Q+(2))+ ‖f‖Lm1,n(Q+(2))).

If we assume f = 0 and 1 < n < 2, then, by an embedding the-

orem similar to Proposition 4.6.2, u is Hölder continuous in the closure

of the space-time cylinder Q+(1). Hölder continuity is defined with re-

spect to the parabolic metrics and the corresponding exponent does not

exceed 2 − 2/n. However, in general, the analogue of Proposition 6.9 is

not true in the boundary regularity theory, i.e., in general there is no fur-

ther smoothing even in spatial variables. Let us describe the corresponding

counter-example.

We are looking for non-trivial solutions to the following homogeneous

initial boundary value problem

∂tv −∆ v = −∇ q, div v = 0 (4.7.1)
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in R
3
+×]− 4, 0[ under the homogeneous Dirichlet boundary condition

v(x′, 0, t) = 0 x′ ∈ R
2, −4 < t < 0, (4.7.2)

and under homogeneous initial data

v(x,−4) = 0 x ∈ R
3
+. (4.7.3)

Here R3
+ = {x = (x′, x3) : x3 > 0}.

Taking an arbitrary function f(t), we seek a non-trivial solution to

(4.7.1)–(4.7.3) in the form of shear flow, say, along x1-axis:

v(x, t) = (w(x3, t), 0, 0), q(x, t) = −f(t)x1.
Here, a scalar function u solves the following initial boundary value problem

∂tw(y, t)− wyy(y, t) = f(t), (4.7.4)

w(0, t) = 0, (4.7.5)

w(y,−4) = 0, (4.7.6)

where 0 < y < +∞ and −4 < t < 0 and wyy = ∂2w/∂y2.

It is not so difficult to solve (4.7.4)–(4.7.6) explicitly:

w(y, t) =
2√
π

t∫

−4

f(t− τ − 4)dτ

y√
4(τ+4)∫

0

e−ξ2dξ. (4.7.7)

Keeping in mind that our aim is to construct irregular but integrable solu-

tion, we choose the function f as follows

f(t) =
1

|t|1−α
, 0 < α < 1/2. (4.7.8)

Then, direct calculations show us:

(i) w is a bounded smooth function in the strip ]0,+∞[×]− 4, 0[ satisfying

boundary and initial conditions;

(ii) wy(y, t) ≥ c(α) 1
y1−2α for y and t subject to the inequalities y2 ≥ −4t,

0 < y ≤ 3, and −9/8 ≤ t < 0.

(iii) Let s, s1, l, and l1 be numbers greater than 1 and satisfy the condition

K = max
{1

2

(
1− 1

s

)
, 1− 1

l1

}
< α <

1

2
. (4.7.9)

Then

v ∈ W 1,0
s,l (C+(3)×]− 9/4, 0[), q ∈ Ls1,l1(C+(3)×]− 9/4, 0[).

Assume we are given numbers 1 < m < +∞ and 1 < n < 2. Letting

s = s1 = m and l = l1 = n and choosing α so that inequality (4.7.9)

holds. The functions v and q constructed above for the chosen α meet all

the conditions of Proposition 7.10 with f = 0. However, ∇v is unbounded

in any neighborhood of the space-time point z = (x, t) = 0. This is a

counter-example taken from [Seregin and Šverák (2009)], which is an essen-

tial simplification of the corresponding counter-example in [Kang (2005)].
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4.8 Comments

Chapter 4 contains standard material about existence, uniqueness, and reg-

ularity of solutions to the non-stationary Stokes system. A bit unusual facts

for an introductory course are in the last three sections. In particular, fine

uniqueness theorems and local regularity issues are discussed in Sections

5–7. They are needed for the local regularity analysis in Chapter 6.
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Chapter 5

Non-linear Non-Stationary Problem

5.1 Compactness Results for Non-Stationary Problems

Our standing assumptions are as follows. We are given a triple of Banach

spaces V0, V , and V1, having the following properties:

(i) V0 ⊂ V ⊂ V1, V0 is a reflexive space;

(ii) imbedding V0 ⊂ V is compact;

(iii) imbedding V ⊂ V1 is continuous;

(iv) v ∈ V0 and ‖v‖V1 = 0 imply ‖v‖V = 0.

Lemma 5.1. Given η > 0, there exists C(η) > 0 such that

‖v‖V ≤ η‖v‖V0 + C(η)‖v‖V1 (5.1.1)

for any v ∈ V0.

Proof Usual compactness arguments work. Assume that the statement is

wrong. Then for any n ∈ N there exists vn ∈ V0 such that

‖vn‖V > η‖vn‖V0 + n‖vn‖V1 .

Then after normalization, we have

‖v′n‖V = 1 > η‖v′n‖V0 + n‖v′n‖V1 ,

where v′n = vn/‖vn‖V . The sequence v′n is bounded in a reflexive space,

and thus without loss of generality we may assume that

v′n ⇀ v0

in V0 and thus

v′n → v0

91
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in V and V1. Since n‖v′n‖V1 is bounded and therefore ‖v′n‖V1 → 0 = ‖v0‖V1 .

Hence, by assumption (iv), ‖v0‖V = 0. However, 1 = ‖vn‖V → ‖v0‖V . This
leads to contradiction. Lemma 5.1 is proved.

Proposition 1.1. (Aubin-Lions lemma) Let 1 < p0, p1 < ∞, V1 is reflex-

ive, and define

W ≡
{
‖v‖W = ‖v‖Lp0(0,T ;V0) + ‖∂tv‖Lp1(0,T ;V1) <∞

}
.

Then W is compactly imbedded into Lp0(0, T ;V ).

Proof Suppose that sequence u(j) is bounded in W . Then, without loss

of generality, we may assume that

u(j) ⇀ u

in Lp0(0, T ;V0) and

∂tu
(j) ⇀ ∂tu

in Lp1(0, T ;V1). Setting v
(j) = u(j) − u, we need to show that

v(j) → 0

in Lp0(0, T ;V ). By Lemma 5.1, we have for arbitrary number η > 0

‖v(j)(·, t)‖V ≤ η‖v(j)(·, t)‖V0 + C(η)‖v(j)(·, t)‖V1

and thus

‖v(j)‖Lp0(0,T ;V ) ≤ η‖v(j)‖Lp0(0,T ;V0) + C(η)‖v(j)‖Lp0(0,T ;V1)

≤ cη + C(η)‖v(j)‖Lp0(0,T ;V1).

So, it is enough to show

v(j) → 0 (5.1.2)

in Lp0(0, T ;V1). To this end, we are going first to prove that

sup
j

sup
0<t<T

‖v(j)(·, t)‖V1 <∞. (5.1.3)

Indeed, if (5.1.3) would hold, then (5.1.2) would follow from

‖v(j)(·, t)‖V1 → 0 (5.1.4)

for a.a. t ∈ [0, T ] and Lebesgue’s theorem. So, our goal is to prove (5.1.3)

and (5.1.4).
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To prove (5.1.3), we exploit the following formula (it is a simple conse-

quence of the definition of the derivative in time)

v(j)(·, t) =
t∫

s

∂tv
(j)(·, τ)dτ + v(j)(·, s) (5.1.5)

for any 0 ≤ s, t ≤ T , which implies

‖v(j)(·, t)‖V1 ≤ ‖v(j)(·, s)‖V1 +

t∫

s

‖∂tv(j)(·, τ)‖V1dτ

≤ ‖v(j)(·, s)‖V1 + T
1
p′1 ‖∂tv(j)‖Lp1(0,T ;V1).

The latter inequality can be integrated in s. As a result, we get (5.1.3).

Now, we wish to explain validity of (5.1.4). To this end, let us integrate

(5.1.5) in s over the interval ]t, s1[

(s1 − t)v(j)(·, t) =
s1∫

t

ds

t∫

s

∂tv
(j)(·, τ)dτ +

s1∫

t

v(j)(·, s)ds.

After integration by parts in s in the first term of the right-hand side, we

find

v(j)(·, t) = a(j)(·, t) + b(j)(·, t),
where

a(j)(·, t) = 1

s1 − t

s1∫

t

v(j)(·, s)ds

and

b(j)(·, t) = 1

s1 − t

s1∫

t

(s− s1)∂tv
(j)(·, s)ds.

Now, take any ε > 0 and fix it. Then

‖b(j)(·, t)‖V1 ≤ 1

|s1 − t|
( s1∫

t

|s1 − s|p′
1ds

) 1
p′1

×
( T∫

0

‖∂tv(j)(·, s)‖p1

V1
ds
) 1

p1 ≤ c|s1 − t|
1
p′1 < ε
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for any j and for s1 sufficiently closed to t.

Next, we wish to show that for each fixed s1 (for given t)

‖a(j)(·, t)‖V1 → 0. (5.1.6)

To this end, we first notice that

a(j)(·, t)⇀ 0

in V1. Then, if we would show boundedness of a(j) in V0, (5.1.6) would

follows from compactness of imbedding V0 into V .

We have

‖a(j)(·, t)‖V0 ≤ 1

|s1 − t|

s1∫

t

‖v(j)(·, s)‖V0ds

≤ 1

|s1 − t| |s1 − t|
1
p′0 ‖v(j)‖Lp0(0,T ;V0) ≤ c|s1 − t|

1
p′0

−1
.

So, given s1, (5.1.6) holds and we may find N(s1, t) such that

‖a(j)(·, t)‖V1 ≤ ε

for any j ≥ N1(s1, t). This proves (5.1.4) and completes the proof of Propo-

sition 1.1.

5.2 Auxiliary Problem

Assume that Ω is a bounded domain with sufficiently smooth boundary and

that

a ∈
◦
J(Ω) (5.2.1)

and

f ∈ L2(0, T ; (
◦
J
1
2(Ω))

′). (5.2.2)

Proposition 2.2. Let QT = Ω×]0, T [ and

w ∈ L∞(QT ), divw = 0 in QT . (5.2.3)

There exists a unique solution v to the initial boundary value problem

∂tv −∆v + div v ⊗ w +∇q = f, div v = 0 in QT ,

v|∂Ω×[0,T ] = 0, (5.2.4)

v|t=0 = a
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in the following sense:

v ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;
◦
J
1
2(Ω)), ∂tv ∈ L2(0, T ; (

◦
J
1
2(Ω))

′);

for a.a. t ∈ [0, T ]
∫

Ω

(∂tv(x, t) · ṽ(x) +∇v(x, t) : ∇ṽ(x))dx

=

∫

Ω

(v(x, t) ⊗ w(x, t) : ∇ṽ(x) + f(x, t) · ṽ(x))dx (5.2.5)

for all ṽ ∈
◦
J1
2(Ω);

‖v(·, t)− a(·)‖2,Ω → 0 (5.2.6)

as t→ +0.

Proof We are going to apply the Leray-Schauder principle, see Theorem

1.2 of Chapter III. We let

X = L2(0, T ;
◦
J(Ω)).

Given u ∈ X , define v = A(u) as a solution to the following problem:

v ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;
◦
J
1
2(Ω)), ∂tv ∈ L2(0, T ; (

◦
J
1
2(Ω))

′); (5.2.7)

for a.a. t ∈ [0, T ]
∫

Ω

(∂tv(x, t) · ṽ(x) +∇v(x, t) : ∇ṽ(x))dx

=

∫

Ω

f̃(x, t) · ṽ(x)dx (5.2.8)

for all ṽ ∈
◦
J1
2(Ω);

‖v(·, t)− a(·)‖2,Ω → 0 (5.2.9)

as t→ +0. Here, f̃ = f − divu⊗ w.

Such a function v exists and is unique (for given u) according to Theorem

2.3 of Chapter 4 since

f̃ ∈ L2(0, T ; (
◦
J
1
2(Ω))

′).

So, operator A is well defined. Let us check that it satisfies all the assump-

tions of Theorem 1.2 of Chapter 3.



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 96

96 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

Continuity: Let v1 = A(u1) and v2 = A(u2). Then
∫

Ω

(∂t(v
1 − v2) · ṽ +∇(v1 − v2) : ∇ṽ)dx =

∫

Ω

(u1 − u2)⊗ w : ∇ṽdx

and letting ṽ = v1 − v2, we find

1

2
∂t‖v1 − v2‖22,Ω + ‖∇v1 −∇v2‖22,Ω ≤ c(w)‖u1 − u2‖2,Ω‖∇v1 −∇v2‖2,Ω

and thus

sup
0<t<T

‖v1 − v2‖2,Ω ≤ c(w)‖u1 − u2‖2,QT .

The latter implies continuity.

Compactness: As in the previous case, we use the energy estimate

sup
0<t<T

‖v‖22,Ω + ‖∇v‖22,Ω ≤ c(w)‖u‖22,QT
+ c(‖f‖2

L2(0,T ;(
◦
J1

2(Ω))′)
+ ‖a‖2Ω).

The second estimate comes from (5.2.8) and has the form

‖∂tv‖2
L2(0,T ;(

◦
J1
2(Ω))′)

≤ ‖∇v‖2QT
+ c(w)‖u‖22,QT

+ c‖f‖2
L2(0,T ;(

◦
J1

2(Ω))′)
.

Combining the above estimates, we observe that sets which are bounded in

X remain to be bounded in

W = {w ∈ L2(0, T ;
◦
J
1
2(Ω)), ∂tw ∈ L2(0, T ; (

◦
J
1
2(Ω))

′)}.

By Proposition 1.1 for V0 =
◦
J1
2(Ω), V =

◦
J(Ω), and V1 = (

◦
J1
2(Ω))

′, such a

set is precompact.

Now, we wish to verify the second condition in Theorem 1.2 of Chapter

3. For v = λA(v), after integration by parts, we find that, for a.a. t ∈ [0, T ],
∫

Ω

(∂tv · ṽ +∇v : ∇ṽ)dx = λ

∫

Ω

(f · ṽ − (w · ∇v) · ṽ)dx

for any ṽ ∈
◦
J1
2(Ω). If we insert ṽ(·) = v(·, t) into the latter relation, then

the identity
∫

Ω

(w · ∇v) · vdx = 0,

ensures the following estimate:

1

2
∂t

∫

Ω

|v|2dx+

∫

Ω

|∇v|2dx ≤ ‖f‖
(
◦
J1
2(Ω))′

‖∇v‖2,Ω



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 97

Non-linear Non-Stationary Problem 97

and thus

‖v‖2QT
≤ T sup

0<t<T

∫

Ω

|v(x, t)|2dx ≤ cT (‖f‖2
L2(0,T ;(

◦
J1

2(Ω))′)
+ ‖a‖22,Ω) = R2.

Now, all the statements of Proposition 2.2 follow from the Leray-Schauder

principle. Proposition 2.2 is proved. �

We need a slightly stronger statement.

Proposition 2.3. Assume that

w ∈ L∞,2(QT ), divw = 0 in QT . (5.2.10)

Then all statements of Proposition 2.2 remain to be true.

Proof Let

< h >ε (t) :=

T∫

0

νε(t− s)h(s)ds

be a standard mollification of a function h with respect t. By assumption

(5.2.10), the function < w >ε (x, t) belongs to L∞(QT ). Thanks to Propo-

sition 2.2, for each fixed ε > 0, there exists a unique function v = vε such

that

vε ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;
◦
J
1
2(Ω)), ∂tv

ε ∈ L2(0, T ; (
◦
J
1
2(Ω))

′);

for a.a. t ∈ [0, T ]
∫

Ω

(∂tv
ε(x, t) · ṽ(x) +∇vε(x, t) : ∇ṽ(x))dx

=

∫

Ω

(vε(x, t)⊗ < w >ε (x, t) : ∇ṽ(x) + f(x, t) · ṽ(x))dx (5.2.11)

for all ṽ ∈
◦
J1
2(Ω);

‖vε(·, t)− a(·)‖2,Ω → 0 (5.2.12)

as t→ +0.

Since div < w >ε= 0, we can get the energy estimate

sup
0<t<T

‖vε(·, t)‖22,Ω + ‖∇vε‖22,QT
≤ c(‖f‖2

L2(0,T ;(
◦
J1

2(Ω))′)
+ ‖a‖22,Ω).

Moreover, the derivative in time has the upper bound

‖∂tvε‖2
L2(0,T ;(

◦
J1

2(Ω))′)
≤ c‖∇vε‖2QT

+ c‖|vε|| < w >ε |‖22,QT
+
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+c‖f‖2
L2(0,T ;(

◦
J1

2(Ω))′)
.

On the other hand, the second term on the right-hand side of the latter

inequality can be estimated with the help of properties of mollifications.

As a result, we have

‖|vε|| < w >ε |‖2,QT ≤ ‖vε‖2,∞,QT ‖ < w >ε ‖∞,2,QT ≤

≤ ‖vε‖2,∞,QT ‖w‖∞,2,QT .

Hence, the derivative in time is uniformly bounded (with respect to ε) in

the above norm. Thus, without loss of generality, we may assume that, as

ε→ 0,

vε → v

in L2(QT ),

∇vε ⇀ ∇v
in L2(QT ),

∂tv
ε ⇀ ∂tv

in L2(0, T ; (
◦
J1
2(Ω))

′). So, since

< w >ε⇀ w

in L2(QT ) at least, we deduce that

vε⊗ < w >ε⇀ v ⊗ w

in L1(QT ). Taking a test function ṽ ∈
◦
J1
2(Ω)) in (5.2.11), multiplying the

corresponding idenity by a test function χ ∈ C∞
0 (0, T ), and integrating the

product in t, we can pass to the limit as ε→ 0 and easily demonstrate that

the function v satisfies (5.2.5). To show that initial condition (5.2.6) holds,

let us notice that, for any ϕ ∈
◦
J1
2(Ω),

∫

Ω

(vε(x, t) − a(x)) · ϕ(x)dx =

t∫

0

∫

Ω

∂tv
ε(x, s) · ϕ(x)dxds.

Since vε(·, t) → v(·, t) in L2(Ω) for a.a. t and since v ∈ C([0, T ], L2(Ω)),

we conclude that the latter identity holds for the limit function v as well.

Proposition 2.3 is proven.

Let ω̺ be a usual mollifier and let

(v)̺(x, t) =

∫

Ω

ω̺(x− x′)v(x′, t)dx′.
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It is easy to check that div(v)̺(·, t) = 0 if t 7→ v(·, t) ∈
◦
J(Ω) (Exercise).

Now, we wish to show that there exists at least one function v̺ such

that:

v̺ ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;
◦
J
1
2(Ω)), ∂tv

̺ ∈ L2(0, T ; (
◦
J
1
2(Ω))

′);
(5.2.13)

for a.a. t ∈ [0, T ]

∫

Ω

(∂tv
̺(x, t) · ṽ(x) +∇v̺(x, t) : ∇ṽ(x))dx

=

∫

Ω

(v̺(x, t)⊗ (v̺)̺(x, t) : ∇ṽ(x) + f(x, t) · ṽ(x))dx (5.2.14)

for all ṽ ∈
◦
J1
2(Ω);

‖v̺(·, t)− a(·)‖2,Ω → 0 (5.2.15)

as t→ +0.

We note that (5.2.13)-(5.2.15) can be regarded as a weak form of the

following initial boundary value problem

∂tv
̺ −∆v̺ + (v̺)̺ · ∇v̺ +∇q̺ = f, div vρ = 0 in QT ,

v̺|∂Ω×[0,T ] = 0, (5.2.16)

v̺|t=0 = a.

Proposition 2.4. There exists at least one function v̺ satisfying (5.2.13)-

(5.2.15). In addition, it satisfies the energy estimate

|v̺|22,QT
≡ sup

0<t<T
‖v̺(·, t)‖22,Ω + ‖∇v̺‖22,QT

≤ c(‖f‖2
L2(0,T ;(

◦
J1

2(Ω))′)
+ ‖a‖22,Ω) (5.2.17)

with a constant c independent of ̺.

Proof To simplify our notation, let us drop upper index ̺. The idea is the

same as in Proposition 2.2: to use the Leray-Schauder principle. The space

X is the same as in Proposition 2.2. But the operator A will be defined in

the different way: given u ∈ X , we are looking for v = A(u) so that

v ∈ C([0, T ];L2(Ω))∩L2(0, T ;
◦
J
1
2(Ω)), ∂tv ∈ L2(0, T ; (

◦
J
1
2(Ω))

′); (5.2.18)
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for a.a. t ∈ [0, T ] ∫

Ω

(∂tv(x, t) · ṽ(x) +∇v(x, t) : ∇ṽ(x))dx

=

∫

Ω

(v(x, t) ⊗ (u)̺(x, t) : ∇ṽ(x) + f(x, t) · ṽ(x))dx (5.2.19)

for all ṽ ∈
◦
J1
2(Ω);

‖v(·, t)− a(·)‖2,Ω → 0 (5.2.20)

as t → +0. By Proposition 2.3, such a function exists and is unique. We

need to check that all the assumptions of Theorem 1.2 of Chapter 3 hold

for our operator A.

Continuity: Do the same as in Proposition 2.2:

1

2
∂t‖v2 − v1‖22,Ω + ‖∇(v2 − v1)‖22,Ω

=

∫

Ω

(
v2 ⊗ (u2)̺ − v1 ⊗ (u1)̺

)
: ∇(v2 − v1)dx

=

∫

Ω

(v2 − v1)⊗ (u2)̺ : ∇(v2 − v1)dx

+

∫

Ω

v1 ⊗ (u2 − u1)̺ : ∇(v2 − v1)dx.

The first integral in the right-hand side of the above identity is zero whereas

the second one I can be bounded as follows

I ≤ sup
x∈Ω

|(u2 − u1)̺(x, t)|‖v1‖2,Ω‖∇(v2 − v1)‖2,Ω.

So, by Hölder inequality, we have

∂t‖v2 − v1‖22,Ω + ‖∇(v2 − v1)‖22,Ω ≤ c(̺)‖v1‖22,Ω‖u2 − u1‖22,Ω
and thus

|v2 − v1|22,QT
≤ c(̺) sup

0<t<T
‖v1(·, t)‖22,Ω‖u2 − u1‖22,QT

.

The latter gives us continuity.

Compactness: Now, we wish to write down the energy estimate for v

1

2
∂t‖v‖22,Ω + ‖∇v‖22,Ω =

∫

Ω

f · vdx −
∫

Ω

v ⊗ (u)̺ : ∇vdx

=

∫

Ω

f · vdx. (5.2.21)
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As in the proof of the previous proposition, (5.2.21) implies the required

energy estimate

|v|22,QT
≤ c(‖f‖2

L2(0,T ;(
◦
J1

2(Ω))′)
+ ‖a‖22,Ω) = cS, (5.2.22)

where a constant c is independent of ̺.

Now, we need to evaluate the derivative in time. We have

‖∂tv‖2
(
◦
J1

2(Ω))′
≤ c‖∇v‖22,Ω + c‖f‖2

(
◦
J1
2(Ω))′

+ c

∫

Ω

|v|2|(u)̺|2dx

≤ c‖∇v‖22,Ω + c‖f‖2
(
◦
J1
2(Ω))′

+ c(̺)
( ∫

Ω

|u|dx
)2

‖v‖22,Ω.

After integration in time, the following estimate comes out:

‖∂tv‖2
L2(0,T ;(

◦
J1

2(Ω))′)
≤ c(̺)

(
S + S

∫

QT

|u|2dz
)
. (5.2.23)

Making use of similar arguments as in the proof of Proposition 2.2, we

conclude that for each fixed ̺ > 0 the operator A is compact.

Let us check the second condition of Theorem 1.2 of Chapter 3. The

same idea used to prove (5.2.21) and (5.2.22) gives us:

|v|22,QT
≤ c(λ2‖f‖2

L2(0,T ;(
◦
J1

2(Ω))′)
+ ‖a‖22,Ω) < 2cS = R2.

So, the existence is established.

The energy estimate can be proved along the lines of the proof of

(5.2.22). Proposition 2.4 is proved.

5.3 Weak Leray-Hopf Solutions

Now, we consider the full non-stationary Navier-Stokes system in a bounded

domain Ω ⊂ R
n (n=2,3):

∂tv −∆v + div v ⊗ v +∇q = f, div v = 0 in QT ,

v|∂Ω×[0,T ] = 0, (5.3.1)

v|t=0 = a.

We always assume that

f ∈ L2(0, T ;V
′) (5.3.2)

and

a ∈ H, (5.3.3)
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where V =
◦
J1
2(Ω) and H =

◦
J(Ω).

Definition 5.1. A function v is called a weak Leray-Hopf solution to initial

boundary value problem (5.3.1)-(5.3.3) if it has the following properties:

(i) v ∈ L∞(0, T ;H) ∩ L2(0, T ;V );

(ii) function t 7→
∫
Ω

v(x, t) · w(x)dx is continuous on [0, T ] for each w ∈
L2(Ω);

(iii)
∫
Ω

(−v · ∂tw − v ⊗ v : ∇w + ∇v : ∇w − f · w)dz = 0 for any test

function w belonging to C∞
0,0(QT ) = {w ∈ C∞

0 (QT ) : divw = 0 in QT};
(iv)

∫
Ω

|v(x, t) − a(x)|2dx→ 0 as t→ +0;

(v) 1
2

∫
Ω

|v(x, t)|2dx +
t∫
0

∫
Ω

|∇v|2dxdt′ ≤ 1
2

∫
Ω

|a(x)|2dx+
t∫
0

∫
Ω

f · vdxdt′

for all t ∈ [0, T ].

Theorem 3.5. Under assumptions (5.3.2) and (5.3.3), there exists at least

one weak Leray-Hopf solution to (5.3.1).

Proof By Proposition 2.4, for any positive ̺, there exists a function v̺

such that

v̺ ∈ C([0, T ];H) ∩ L2(0, T ;V ), ∂tv
̺ ∈ L2(0, T ;V

′); (5.3.4)

for a.a. t ∈ [0, T ]
∫

Ω

(∂tv
̺(x, t) · ṽ(x) +∇v̺(x, t) : ∇ṽ(x))dx

=

∫

Ω

(v̺(x, t)⊗ (v̺)̺(x, t) : ∇ṽ(x) + f(x, t) · ṽ(x))dx (5.3.5)

for all ṽ ∈ V ;

‖v̺(·, t)− a(·)‖2,Ω → 0 (5.3.6)

as t→ +0. Moreover, v̺ has uniformly bounded energy

|v̺|22,QT
≡ sup

0<t<T
‖v̺(·, t)‖22,Ω + ‖∇v̺‖22,QT

≤ A, (5.3.7)

where a constant A depends only on T , ‖f‖L2(0,T ;V ′), and ‖a‖2,Ω.
Now, let us see what happens if ̺→ 0. To apply Proposition 1.1 of this

section on compactness, we need to estimate the derivative of v in t. To

this end, we are going to use the following imbedding theorem
◦
J
3
2(Ω) ⊂ C1(Ω),
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which is true provided n = 2, 3. Then from (5.3.5) it follows∫

Ω

∂tv
̺ · ṽdx ≤ ‖∇ṽ‖∞,Ω

∫

Ω

|v̺||(v̺)̺|dx+ ‖∇ṽ‖2,Ω‖∇v̺‖2,Ω

+‖f‖V ′‖∇ṽ‖2,Ω
for any v ∈

◦
J3
2(Ω) and thus

‖∂tv̺‖
(
◦
J3
2(Ω))′

≤ c(Ω)
(
‖v̺‖2,Ω‖(v̺)̺‖2,Ω + ‖∇v̺‖2,Ω + ‖f‖V ′

)

≤ c(Ω)
(
|v̺|2,QT ‖v̺‖2,Ω + ‖∇v̺‖2,Ω + ‖f‖V ′

)
.

Therefore

‖∂tv̺‖
L2(0,T ;(

◦
J3

2(Ω))′)
≤ c(Ω)

(
|v̺|2,QT ‖v̺‖2,QT + |v̺|2,QT + ‖f‖L2(0,T ;V ′)

)
.

Since ‖v̺‖2,QT ≤ T
1
2 |v̺|2,QT , we get

‖∂tv̺‖
L2(0,T ;(

◦
J3

2(Ω))′)
≤ A1, (5.3.8)

where a positive constant A1 depends only on T , ‖f‖L2(0,T ;V ′), and ‖a‖2,Ω.
Now, we can apply Proposition 1.1 with the following choice of spaces

V ⊂ H ⊂ (
◦
J
3
2(Ω))

′,

where the space (
◦
J3
2(Ω))

′ is the space dual to
◦
J3
2(Ω) relative to H , and state

that after selecting a subsequence

v̺
∗
⇀v in L∞(0, T ;H), (5.3.9)

v̺ ⇀ v in L2(0, T ;V ), (5.3.10)

v̺ → v in L2(0, T ;H). (5.3.11)

To see that

D̺ =

∫

QT

|v̺ ⊗ (v̺)̺ − v ⊗ v|dz → 0

as ̺→ 0, let us argue as follows:

D̺ ≤
∫

QT

|(v̺ − v)⊗ (v̺)̺|dz +
∫

QT

|v ⊗ ((v̺)̺ − v)|dz

≤ ‖v̺ − v‖2,QT ‖(v̺)̺‖2,QT +

∫

QT

|v ⊗ (v̺ − v)̺|dz

+

∫

QT

|v ⊗ ((v)̺ − v)|dz ≤ ‖v̺ − v‖2,QT T
1
2 |v̺|2,QT

+T
1
2 |v|2,QT ‖v̺ − v‖2,QT + T

1
2 |v|2,QT ‖(v)̺ − v‖2,QT ,
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where the right-hand side tends to zero as ̺→ 0 by (5.3.11) and (5.3.7).

Setting w̃(x) = w(x, t) in (5.3.5), with w ∈ C∞
0,0(QT ), integrating in t

by parts in (5.3.5), and passing to the limit, we deduce that v satisfies (iii)

of Definition 5.1. So, (i) and (iii) of Definition 5.1 have been verified.

Now, let us take and fix an arbitrary function ṽ ∈
◦
J3
2(Ω) and consider

functions

t 7→ f̺
ṽ (t) =

∫

Ω

v̺(x, t) · ṽ(x)dx.

Now, our goal is to show that for every fixed ṽ, the set of functions f̺
ṽ is

precompact in C([0, T ]). Indeed, it is uniformly bounded since

sup
0<t<T

|f̺
ṽ (t)| ≤ |v̺|2,QT ‖ṽ‖2,Ω ≤ c|v̺|2,QT ‖ṽ‖ ◦

J3
2(Ω)

≤ cA‖ṽ‖ ◦
J3
2(Ω)

.

Its equicontinuity follows from (5.3.8):

|f̺
ṽ (t+∆t)− f̺

ṽ (t)| =
∣∣∣

t+∆t∫

t

∫

Ω

∂tv
̺(x, τ) · ṽ(x)dxdτ

∣∣∣

≤
t+∆t∫

t

‖∂tv̺(·, τ)‖
(
◦
J3

2(Ω))′
‖ṽ(·)‖ ◦

J3
2(Ω)

dτ

≤
√
|∆t|‖∂tv̺‖

L2(0,T ;(
◦
J3

2(Ω))′)
‖ṽ‖ ◦

J3
2(Ω)

≤ c
√

|∆t|A1‖ṽ‖ ◦
J3

2(Ω)
.

Now, let ṽ(k) be a countable set that is dense in
◦
J3
2(Ω). Applying the

diagonal Cantor procedure, we can select a subsequence such that
∫

Ω

v̺(x, t) · ṽ(k)(x)dx →
∫

Ω

v(x, t) · ṽ(k)(x)dx

in C([0, T ]). By boundedness of

sup
̺>0

sup
0<t<T

‖v̺(·, t)‖2,Ω,

one can show (by density arguments)
∫

Ω

v̺(x, t) · ṽ(x)dx →
∫

Ω

v(x, t) · ṽ(x)dx

in C([0, T ]) for any v ∈
◦
J3
2(Ω) and then for any v ∈

◦
J(Ω).
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Now, a given w from the space L2(Ω) can be decomposed as w = u+∇p,
where u ∈

◦
J(Ω) and thus

∫

Ω

v̺(x, t) · w(x)dx =

∫

Ω

v̺(x, t) · u(x)dx

→
∫

Ω

v(x, t) · u(x)dx =

∫

Ω

v(x, t) · w(x)dx (5.3.12)

in C([0, T ]) as ̺→ 0. So, (ii) of Definition 5.1 has been proved as well.

Next, we would like to justify (v) of Definition 5.1. To achieve this goal,

let us pick up ṽ(x) as v̺(x, t) in (5.3.5) and integrate the corresponding

equality in t. Since
∫

Ω

v̺ ⊗ (v̺)̺ : ∇v̺dx =

∫

Ω

v̺i (v
̺
j )̺v

̺
i,jdx =

1

2

∫

Ω

(v̺j )̺|v̺|2,j = 0,

we have

1

2

∫

Ω

|v̺(x, t)|2dx +

t∫

0

∫

Ω

|∇v̺|2dxdt′ = 1

2

∫

Ω

|a(x)|2dx

+

t∫

0

∫

Ω

f · v̺dxdt′ (5.3.13)

for all t ∈ [0, T ] and for all ̺ > 0.

By (5.3.12),

lim inf
̺→0

∫

Ω

|v̺(x, t)|2dx ≥
∫

Ω

|v(x, t)|2dx (5.3.14)

for any t ∈ [0, T ] and by (5.3.10)

lim inf
̺→0

t∫

0

∫

Ω

|∇v̺|2dxdt′ ≥
t∫

0

∫

Ω

|∇v|2dxdt′ (5.3.15)

and

lim inf
̺→0

t∫

0

∫

Ω

f · v̺dxdt′ =
t∫

0

∫

Ω

f · vdxdt′ (5.3.16)

for all t ∈ [0, T ]. So, (v) of Definition 5.1 follows from (5.3.13)-(5.3.16).
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It remains to prove validity of (iv) of Definition 5.1. To this end, notice

that by (5.3.12)

a(·) = v̺(·, 0)⇀ v(·, 0)
in L2(Ω). So, v(·, 0) = a(·). Moreover, according to (ii) of Definition 5.1

v(·, t)⇀ v(·, 0) = a(·)
in L2(Ω) as t→ +0. So,

lim inf
t→+0

‖v(·, t)‖2,Ω ≥ ‖a‖2,Ω.

However, from the energy inequality it follows that

lim sup
t→+0

‖v(·, t)‖2,Ω ≤ ‖a‖2,Ω.

The latter implies

lim
t→+0

‖v(·, t)‖2,Ω = ‖a‖2,Ω
which together with week convergence gives (iv) of Definition 5.1. Theorem

3.5 is proved.

5.4 Multiplicative Inequalities and Related

Questions

Case 1: n=2

Lemma 5.2. (Ladyzhenskaya’s inequality)

‖u‖44,Ω ≤ 2‖u‖22,Ω‖∇u‖22,Ω
for any u ∈ C∞

0 (Ω).

Proof. Obviously, it is enough to prove this inequality for Ω = R
2. We

have

|u(x1, x2)|2 = 2

x1∫

−∞

u(t, x2)u,1(t, x2)dt

≤ 2
( ∞∫

−∞

|u(t, x2)|2dt
) 1

2
( ∞∫

−∞

|u,1(t, x2)|2dt
) 1

2

.

And then
∞∫

−∞

∞∫

−∞

|u(x1, x2)|4dx1dx2 =

∞∫

−∞

∞∫

−∞

|u(x1, x2)|2|u(x1, x2)|2dx1dx2
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≤ 4

∞∫

−∞

dx1dx2

{( ∞∫

−∞

|u(t, x2)|2dt
) 1

2
( ∞∫

−∞

|u,1(t, x2)|2dt
) 1

2

×
( ∞∫

−∞

|u(x1, s)|2ds
) 1

2
( ∞∫

−∞

|u,2(x1, s)|2ds
) 1

2
}

=

∞∫

−∞

( ∞∫

−∞

|u(t, x2)|2dt
) 1

2
( ∞∫

−∞

|u,1(t, x2)|2dt
) 1

2

dx2

×
∞∫

−∞

( ∞∫

−∞

|u(x1, s)|2ds
) 1

2
( ∞∫

−∞

|u,2(x1, s)|2ds
) 1

2

dx1

≤ 4‖u‖2‖u,1‖2‖u‖2‖u,2‖2 ≤ 2‖u‖22(‖u,1‖22 + ‖u,2‖22)
= 2‖u‖22‖∇u‖22. �

Corollary 4.6. Let u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). Then

‖u‖4,QT ≤ 2
1
4 |u|2,QT .

Proof We have

‖u(·, t)‖44,Ω ≤ 2‖u(·, t)‖22,Ω‖∇u(·, t)‖22,Ω ≤ 2|u|22,QT
‖∇u(·, t)‖22,Ω.

After integration in t, we get the required inequality. �

Case 2: n=3

Lemma 5.3. Let 2 ≤ s ≤ 6 and α = 3(s−2)
2s . Then, for any u ∈ C∞

0 (Ω),

‖u‖s,Ω ≤ c(s)‖u‖1−α
2,Ω ‖∇u‖α2,Ω.

Proof The Gagliardo-Nirenberg inequality in dimension three reads

‖u‖6,Ω ≤ c‖∇u‖2,Ω, u ∈ C∞
0 (Ω),

with a constant c independent of Ω. It remains to use interpolation in Ls

‖u‖s,Ω ≤ ‖u‖1−α
2,Ω ‖u‖α6,Ω

with α = 3(s−2)
2s . �

Corollary 4.7. Let u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). Then

‖u‖s,l,QT ≤ c(s)|u|2,QT

for 2 ≤ s ≤ 6 and l satisfying
3

s
+

2

l
=

3

2
.

Here, ‖u‖s,l,QT = ‖u‖Ls(0,T ;Ll(Ω)).
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Proof By Lemma 5.3,

‖u(·, t)‖s,Ω ≤ c(s)|u|1−α
2,QT

‖∇u(·, t)‖α2,Ω
and

( T∫

0

‖u(·, t)‖ls,Ωdt
) 1

l ≤ c(s)|u|1−α
2,QT

( T∫

0

‖∇u(·, t)‖αl2,Ωdt
) 1

l

.

If αl = 2, then the required inequality follows and

3

s
+

2

l
=

3

s
+ α =

3

s
+

3(2− s)

2s
=

3

2
. �

Corollary 4.8. Let u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). Then

‖u · ∇u‖s,l,QT ≤ c(s)|u|22,QT

with s and l greater than one and subject to the identity

3

s
+

2

l
= 4.

Proof By Hölder inequality,
∫

Ω

|u · ∇u|sdx ≤
(∫

Ω

|∇u|2dx
) s

2
(∫

Ω

|u|s1dx
) s

s1

with s1 = 2s
2−s and, hence, after integration in t and application of Hölder

inequality, one can derive a bound:

‖u · ∇u‖s,l,QT ≤ ‖∇u‖2,QT

( T∫

0

( ∫

Ω

|u|s1dx
) 2l

s1(2−l)

dt
) 2−l

2l

.

It is easy to verify that

3

s1
+

2

l1
=

3

2
, l1 =

2l

l − 2
. (5.4.1)

The required inequality follows now from Corollary 4.7.

Let us discuss some consequences of (5.4.1):

3

s1
+

2

l1
=

3
2s
2−s

+
2− l

l
=

3(2− s)

2s
+

2

l
− 1 =

3

2
,

which implies

3

s
+

2

l
= 4. �
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5.5 Uniqueness of Weak Leray-Hopf Solutions. 2D Case

Theorem 5.9. (O. Ladyzhenskaya) Let n = 2. Then, under assumptions

(5.3.2), (5.3.3), a weak Leray-Hopf solution to initial boundary value prob-

lem (5.3.1) is unique.

Proof We let f̃ = −div v ⊗ v + f , where v is a weak Leray-Hopf solution

to initial boundary value problem (5.3.1). By Corollary 4.6, f̃ belongs to

L2(0, T ;V
′) (since v ∈ L4(QT )). By Theorem 2.3 of Chapter 4, we know

that there exists a unique function u having the following properties:

u ∈ C([0, T ];H) ∩ L2(0, T ;V ), ∂tu ∈ L2(0, T ;V
′); (5.5.1)

for a.a. t ∈ [0, T ],
∫

Ω

[
∂tu(x, t) · w(x) +∇u(x, t) : ∇w(x) − f̃(x, t) · w(x)

]
dx = 0 (5.5.2)

for all w ∈ V ;

u(x, 0) = a(x), x ∈ Ω. (5.5.3)

Recalling Definition 5.1, part (iii), we get from (5.5.2) that v = v − u

satisfies the identity∫

QT

[
− v(x, t) ·W (x)∂tχ(t) +∇v(x, t) : ∇W (x)χ(t)

]
dz = 0 (5.5.4)

for all W ∈ C∞
0,0(Ω) and for any χ ∈ C1

0 (0, T ). It is not difficult to show

that (5.5.4) can be extended to all functions χ that are Lipschitz continuous

in [0, T ] and satisfy the end conditions χ(0) = χ(T ) = 0.

Now, our aim is to get rid of the assumption that χ vanishes at t = 0.

To this end, we are going to use the following fact:

‖v(·, t)‖2,Ω → 0 (5.5.5)

as t → +0. Take any function χ ∈ C1([0, T ]) so that χ(T ) = 0 and

a function ϕε having the properties: ϕε(t) = 1 if t ≥ ε, ϕε(t) = 0 if

0 < t ≤ ε/2, and ϕε(t) = (2t− ε)/ε if ε/2 < t < ε. Then, by (5.5.4), with

ϕεχ as χ,∫

QT

ϕε(t)
[
− v(x, t) ·W (x)∂tχ(t) +∇v(x, t) : ∇W (x)χ(t)

]
dz

=
2

ε

ε∫

ε
2

∫

Ω

v(x, t) ·W (x)χ(t)dz = Iε.
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For the right-hand side, we have

|Iε| ≤ sup
x∈Ω

|W (x)| sup
τ∈[0,T ]

χ(τ)
√

|Ω| sup
0<t≤ε

‖v(·, t)‖2,Ω → 0

as ε→ 0.

So,
∫

QT

[
− v(x, t) ·W (x)∂tχ(t) +∇v(x, t) : ∇W (x)χ(t)

]
dz = 0

for allW ∈ C∞
0,0(Ω) and any χ ∈ C1([0, T ]) with χ(T ) = 0. This means that

v ≡ 0 in QT , see Theorem 5.6 of Chapter 4, and thus any weak Leray-Hopf

solution v has the following properties:

v ∈ C([0, T ];H) ∩ L2(0, T ;V ), ∂tv ∈ L2(0, T ;V
′); (5.5.6)

for a.a. t ∈ [0, T ],
∫

Ω

[
∂tv(x, t) · w(x) +∇v(x, t) : ∇w(x)

]
dx

=

∫

Ω

[
v(x, t)⊗ v(x, t) : ∇w(x) + f̃(x, t) · w(x)

]
dx (5.5.7)

for all w ∈ V ;

v(x, 0) = a(x), x ∈ Ω. (5.5.8)

Now, assume that we have two different solutions v1 and v2. Letting

u = v2 − v1, one deduce from (5.5.7) that:
∫

Ω

[
∂tu(x, t) · w(x) +∇u(x, t) : ∇w(x)

]
dx =

=

∫

Ω

(v2(x, t)⊗ v2(x, t)− v1(x, t)⊗ v1(x, t)) : ∇w(x)dx

for any w ∈ V . Taking w(x) = u(x, t) in the above identity,

1

2
∂t‖u(·, t)‖22,Ω + ‖∇u(·, t)‖22,Ω =

=

∫

Ω

(u(x, t)⊗ v2(x, t) : ∇u(x, t) + v1(x, t)⊗ u(x, t) : ∇u(x, t))dx ≤

≤ ‖∇u(·, t)‖2,Ω‖u(·, t)‖4,Ω‖v1(·, t)‖4,Ω.
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By using Ladyzhenskaya’s inequality twice,

‖v1(·, t)‖44,Ω ≤ 2‖v1(·, t)‖22,Ω‖∇v1(·, t)‖22,Ω ≤ 2|v1|22,QT
‖∇v1(·, t)‖22,Ω ≤

≤ c(a, f)‖∇v1(·, t)‖22,Ω
and

‖u(·, t)‖44,Ω ≤ 2‖u(·, t)‖22,Ω‖∇u(·, t)‖22,Ω.

And thus

1

2
∂t‖u(·, t)‖22,Ω + ‖∇u(·, t)‖22,Ω ≤

≤ c(a, f)‖∇u(·, t)‖
3
2

2,Ω‖u(·, t)‖
1
2

2,Ω‖∇v1(·, t)‖
1
2

2,Ω.

Applying Young’s inequality, we find

∂t‖u(·, t)‖22,Ω + ‖∇u(·, t)‖22,Ω ≤ c0‖u(·, t)‖22,Ω‖∇v1(·, t)‖22,Ω
and thus

∂t‖u(·, t)‖22,Ω ≤ c0y(t)‖u(·, t)‖22,Ω,

where y(t) := ‖∇v1(·, t)‖22,Ω. From this differential inequality, it is not

difficult to derive

∂t

(
e
−c0

t∫
0

y(τ)dτ
‖u(·, t)‖22,Ω

)
≤ 0

and

e
−c0

t∫
0

y(τ)dτ
‖u(·, t)‖22,Ω ≤ ‖u(·, 0)‖22,Ω = 0.

Therefore, ‖u(·, t)‖22,Ω ≡ 0. �

Let us discuss further regularity of 2D weak Leray-Hopf solutions.

Theorem 5.10. Assume that a ∈ V , and f ∈ L2(QT ). Let v be a unique

solution to initial boundary value problem (5.3.1). Then

v ∈ W 2,1
2 (QT ), ∇v ∈ C([0, T ];L2(Ω)).

Moreover, there exists q ∈ W 1,0
2 (QT ) such that

∂tv + v · ∇v −∆v = f −∇q, div v = 0

a.e. in QT . It is supposed that Ω is a bounded domain with smooth bound-

ary.
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Proof Let us go back to problem (5.3.4)-(5.3.6), where a function v̺ de-

fined by the following relations:

v̺ ∈ C([0, T ];H) ∩ L2(0, T ;V ), ∂tv
̺ ∈ L2(0, T ;V

′); (5.5.9)

for a.a. t ∈ [0, T ]
∫

Ω

(∂tv
̺(x, t) · ṽ(x) +∇v̺(x, t) : ∇ṽ(x))dx

=

∫

Ω

f̃(x, t) · ṽ(x)dx (5.5.10)

for all ṽ ∈ V , where

f̃ = f − (v̺)̺ · ∇v̺ ∈ L2(QT );

‖v̺(·, t)− a(·)‖2,Ω → 0 (5.5.11)

as t→ +0.

According to Theorem 4.4 of Chapter 4, there exists a functions u̺ ∈
W 2,1

2 (QT ) with ∇u̺ ∈ C([0, T ];L2(Ω)) and p
̺ ∈W 1,0

2 (QT ) such that

∂tu
̺ −∆u̺ = f̃ −∇p̺, div u̺ = 0

a.e. in QT and u̺(·, 0) = a(·). Using the same arguments as in the proof of

the previous statement, we can claim that v̺ = u̺. Multiplying then the

equation

∂tv
̺ + (v̺k)̺v

̺
,k −∆v̺ = f −∇ p̺

by ∆̃v̺ and integrating each term in the product with respect to x, we find∫

Ω

∆v̺ · ∆̃v̺dx =

∫

Ω

|∆̃v̺|2dx,

∫

Ω

∇ p̺ · ∆̃v̺dx = 0,

∫

Ω

∂tv
̺ · ∆̃v̺dx =

∫

Ω

∂tv
̺ ·∆v̺dx = −1

2
∂t‖∇ v̺‖22,Ω

since ∆̃v̺ ∈ H and ∂tv
̺ ∈ H for each fixed t. So, we derive the inequality

1

2
∂t‖∇v̺‖22,Ω + ‖∆̃v̺‖22,Ω ≤ ‖f‖2,Ω‖∆̃v̺‖2,Ω+

+‖(v̺)̺‖4,Ω‖∇v̺‖4,Ω‖∆̃v̺‖2,Ω ≤
≤ ‖f‖2,Ω‖∆̃v̺‖2,Ω + ‖v̺‖4,Ω‖∇v̺‖4,Ω‖∆̃v̺‖2,Ω.
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To estimate the first and the second factors in the last term of the right-

hand side of the above inequality, we are going to exploit Ladyzhenskaya’s

inequality one more time

‖v̺‖44,Ω ≤ 2‖v̺‖22,Ω‖∇v̺‖22,Ω ≤ c(a, f)‖∇v̺‖22,Ω
and

‖∇v̺‖44,Ω ≤ c(Ω)‖∇v̺‖22,Ω(‖∇2v̺‖22,Ω + ‖∇v̺‖22,Ω).
We also need the Cattabriga-Solonnikov inequality

‖∇2v̺‖2,Ω ≤ c(Ω)‖∆̃v̺‖2,Ω.
So, combining the latter results, we find the basic estimate

1

2
∂t‖∇v̺‖22,Ω + ‖∆̃v̺‖22,Ω ≤ ‖f‖2,Ω‖∆̃v̺‖2,Ω

+c(a, f,Ω)‖∇v̺‖
1
2

2,Ω‖∇v̺‖
1
2

2,Ω(‖∆̃v̺‖
1
2

2,Ω + ‖∇v̺‖
1
2

2,Ω)‖∆̃v̺‖2,Ω
Now, if we apply Young’s inequalities in an appropriate way, we can derive

the following differential inequality

∂ty + ‖∆̃v̺‖22,Ω ≤ c(a, f,Ω)(‖f‖22,Ω + y + ‖∇v̺‖22,Ωy),
where function y(t) = ‖∇v̺(·, t)‖22,Ω obeys the initial condition y(0) =

‖∇a‖22,Ω.
The latter, together with energy estimate (5.3.7), gives two estimates

sup
0<t<T

‖∇v̺(·, t)‖22,Ω + ‖∇2v̺‖22,QT
≤ c(a, f,Ω) <∞. (5.5.12)

To get all remaining estimates, we make use of Theorem 4.4 of Section

4, which reads

‖∂tv̺‖2,QT + ‖∇2v̺‖2,QT + ‖∇p̺‖2,QT ≤ c
[
‖f̃‖2,QT + ‖∇a‖2,Ω

]
.

But

‖f̃‖2,QT ≤ ‖f‖2,QT + ‖(v̺)̺ · ∇v̺‖2,QT ≤

≤ ‖f‖2,QT + ‖(v̺)̺‖4,QT ‖∇v̺‖4,QT ≤

≤ c(a, f)
[
1 + ‖v̺‖4,QT ‖∇v̺‖4,QT

]
.

The right-hand side of the above inequality can be evaluated with the help

of Ladyzhenskaya’s inequality and (5.5.12).

Finally, we can pass to the limit as ̺→ 0 and get all the statements of

Theorem 5.10. Theorem 5.10 is proved.
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5.6 Further Properties of Weak Leray-Hopf

Solutions

Theorem 6.11. Let Ω be a bounded domain with smooth boundary. As-

sume

f ∈ L2(QT ), a ∈ H. (5.6.1)

I. Let v be an arbitrary weak Leray-Hopf solution in QT for the right-

hand side f and initial data a satisfying (5.6.1). Then, for each δ > 0 and

for any numbers s, l > 1 subject to the condition

3

s
+

2

l
= 4,

we have

v ∈ W 2,1
s,l (Qδ,T ),

where Qδ,T = Ω×]δ, T [. Moreover, there exists a function q (pressure) which

belongs to the following spaces

q ∈W 1,0
s,l (Qδ,T ) ∩ Ls′,l′(Qδ,T ) (5.6.2)

with the same δ, s and l as above and

s′ =
3s

3− s
, l′ = l

so that
3

s′
+

2

l′
= 3.

The Navier-Stokes equations

∂tv + div v ⊗ v −∆ v = f −∇q, div v = 0

hold in the sense of distributions and a.e. in QT .

II. Given right-hand side f and initial data a satisfying (5.6.1), there

exists at least one weak Leray-Hopf solution v and a pressure q with the

properties mentioned in Part I such that, for any t0 ∈]0, T ], the local energy

inequality

∫

Ω

|v(x, t0)|2ϕ(x, t0)dx+

t0∫

0

∫

Ω

ϕ|∇v|2dxdt ≤
t0∫

0

∫

Ω

(
|v|2(∂tϕ+∆ϕ)+

+v · ∇ϕ(|v|2 + 2q) + 2ϕf · v
)
dxdt (5.6.3)

holds for any non-negative function ϕ ∈ C∞
0 (R3×]0,∞[).
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Proof I. Take χ ∈ C∞
0 (0,∞) (0 ≤ χ ≤ 1) and let u = χv. Obviously,

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ).

Next, insert χw with w ∈ C∞
0,0(QT ) into identity (iii) of Definition 5.1 and

get for u:
∫

QT

(−u · ∂tw +∇u : ∇w)dz =

∫

QT

f̃ · wdz,

where

f̃ = χf − χdiv v ⊗ v − ∂tχv = χf − χv · ∇v − ∂tχv.

By Corollary 4.8,

f̃ ∈ Ls,l(QT )

for any s, l > 1 satisfying 3/s + 2/l = 4. Moreover, u = 0 for sufficiently

small t. On the other hand, the linear theory ensures that, for such f̃ , there

exist functions ṽ and q̃ such that

ṽ ∈W 2,1
s,l (QT ), q̃ ∈ W 1,0

s,l (QT )

with finite numbers s, l > 1 satisfying 3/s+ 2/l = 4 and

∂tṽ −∆ṽ +∇q̃ = f̃ , div ṽ = 0

in QT ,

ṽ(x, t) = 0 x ∈ ∂Ω,

∫

Ω

q̃(x, t)dx = 0

for t ∈ [0, T ],

ṽ(·, 0) = 0

in Ω.

Using essentially the same arguments as in 2D-case, we can show that

for v̂ = u− ṽ
∫

QT

(v̂ · ∂tw −∇v̂ : ∇w)dz = 0

for w = χ̃W with W ∈ C∞
0,0(Ω) and with χ̃ ∈ C2([0, T ]) and χ̃(T ) = 0.

Now, the uniqueness results for the linear theory imply that û = 0.

Hence, χv ∈ W 2,1
s,l (QT ) and

χ(∂tv + v · ∇v −∆v − f) = −∇q̃.



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 116

116 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

Next, take any δ > 0 and assume that χ(t) = χδ(t) = 1 if t > δ. A

pressure q̃ corresponding to chosen δ is denoted by qδ. Obviously, qδ ∈
W 1,0

s,l (Qδ,T ) with required s and l. Assuming that δ1 > δ2 then qδ1 = qδ2 in

Qδ1,T . This allows us to introduce the function q so that

q(·, t) = qδ(·, t)
if t > δ > 0. It is well defined and satisfies the required properties. So, the

first part of the theorem is proved.

Part II. Now, let us go back to the proof of Theorem 3.5 on the existence

of weak Leray-Hopf solutions and try to apply the procedure, described in

the proof of Part I, to regularized problem. Letting u̺ = χv̺, where χ is a

function of t from C2
0 (0,∞), we state that u̺ is a solution to the problem:

u̺ ∈ C([0, T ];H) ∩ L2(0, T ;V ), ∂tu
̺ ∈ L2(0, T ;V

′); (5.6.4)

for a.a. t ∈ [0, T ]
∫

Ω

(∂tu
̺(x, t) · ṽ(x) +∇u̺(x, t) : ∇ṽ(x))dx

=

∫

Ω

f̺̃(x, t) · ṽ(x)dx (5.6.5)

for all ṽ ∈ V ;

‖u̺(·, t)‖2,Ω → 0 (5.6.6)

as t→ +0.

Here,

f̺̃ = f̺̃
1 + f̺̃

2

with

f̺̃
1 (x, t) = χ(t)f(x, t) + ∂tχ(t)v

̺(x, t),

f̺̃
2 (x, t) = −χ(t)(v̺)̺(x, t) · ∇v̺(x, t).

Simply repeating the proof of Corollary 4.7 and Corollary 4.8, we estimate

the second part

‖f̺̃
2 ‖s′,l′,QT ≤ c(s′)|v̺|22,QT

≤ c(s′, a, f)

with s′, l′ > 1 and 3/s′ + 2/l′ = 4. Moreover, we can claim that the whole

right-hand side f̺̃ is estimated similarly:

‖f̺̃‖s′,l′,QT ≤ c(s′, a, f, χ,Ω).
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Now, according to Theorem 4.5 of Chapter 4, there exists functions ũ̺

and q̺χ satisfy the relations:

ũ̺ ∈ W 2,1
s′,l′(QT ), q̺χ ∈W 1,0

s′,l′(QT );

∂tũ
̺ −∆ ũ̺ = f̺̃ −∇ q̺χ, div ũ̺ = 0

in QT ;

ũ̺|∂′QT = 0, [q̺χ(·, t)]Ω = 0.

By the same theorem, these functions have the bound

‖∇2ũ̺‖s′,l′,QT + ‖∂tũ̺‖s′,l′,QT + ‖∇q̺χ‖s′,l′,QT

≤ c(s′,Ω)‖f̺̃‖s′,l′,QT ≤ c(s′,Ω, a, f, χ)

Applying Theorem 5.6 of Chapter 4 on uniqueness and similar arguments

to those that are used in 2D case, we can state

u̺ = ũ̺.

Next, we consider the sequence of functions χδ with δ = T/k, k ∈ N.

And thus

‖∇2v̺‖s′,l′,Qδ,T
+ ‖∂tv̺‖s′,l′,Qδ,T

+ ‖∇q̺δ‖s′,l′,Qδ,T

≤ c(s′,Ω, a, f, δ). (5.6.7)

Let v̺ be a sequence constructed in the proof of Theorem 3.5, i.e.,

v̺
∗
⇀v

in L∞(0, T ;H),

∇v̺ ⇀ ∇v
in L2(0, T ;V ),

v̺ → v

in L2(QT ),
∫

Ω

v̺(x, t) · w(x)dx →
∫

Ω

v(x, t) · w(x)dx

in C([0, T ]) for each w ∈ L2(Ω).

In addition, we know that

‖v̺‖s′′,l′′,QT ≤ c|v̺|2,QT ≤ c(a, f)
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with 3/s′′ + 2/l′′ = 3/2, see Corollary 4.7. In particular, we may assume

that (take s′′ = l′′ = 10/3)

v̺ ⇀ v

in L 10
3
(QT ) and therefore

v̺ → v (5.6.8)

in L3(QT ) and

(v̺)̺ · ∇v̺ ⇀ v · ∇v
in L1(QT ).

Given s, l > 1 with 3/s+2/l=3, we find l′ = l and s′ = 3s/(s+ 3). It is

easy to check, 3/s′ + 2/l′ = 4. Using the diagonal Cantor procedure and

bounds (5.6.7), one can ensure that

∂tv
̺ ⇀ ∂tv, ∇2v̺ ⇀ ∇2v

in Ls′,l′(Qδ,T ) for each δ > 0. As to the pressure, the diagonal Cantor

procedure can be used one more time to show that

∇q̺δ ⇀ ∇qδ
in Ls′,l′(Qδ,T ) and

q̺δ ⇀ qδ

in Ls,l(Qδ,T ) for each δ. Here [qδ(·, t)]Ω = 0.

It is worthy to note that qδ1 = qδ2 in Q̺2,T if δ1 < δ2. Indeed, it follows

from two identities for δ = δ1 and δ = δ2

∇qδ = f − ∂tv − v · ∇v +∆v

in Qδ,T and [qδ(·, t)]Ω = 0.

So, the function, defined as

q(z) = qδ(z), z ∈ Qδ,T ,

belongs W 1,0
s′,l′(QT ) and Ls,l(QT ) for each δ > 0.

The last thing is to check validity of the local energy inequality. It

is known that the regularised solution is smooth enough and, there-

fore, obeys the local energy identity. So, a given non-negative function

ϕ ∈ C∞
0 (R3×]0,∞[), we choose δ so small that sptϕ ∈ R

3×]δ,∞[. After

multiplication of the equation

∂tv
̺ + (v̺)̺ · ∇v̺ −∆v̺ = f −∇q̺δ
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by ϕv̺ and integration of the product by parts (which is legal for the

regularized solution)

∫

Ω

|v̺(x, t0)|2ϕ(x, t0)dx+

t0∫

0

∫

Ω

ϕ|∇v̺|2dxdt =
t0∫

0

∫

Ω

(
|v̺|2(∂tϕ+∆ϕ)+

+(v̺)̺ · ∇ϕ(|v̺|2 + 2q̺δ ) + 2f · v
)
dxdt (5.6.9)

for any t ∈ [δ, T ].

We also know that

q̺δ ⇀ q

in L 3
2
(Qδ,T ). (Indeed, q̺δ ⇀ q in L 5

3
(Qδ,T ) since 3/(5/3) + 2/(5/3) = 3).

Taking into account (5.6.8) and using the same arguments as in the proof of

Theorem 3.5, one can pass to the limit in (5.6.9) as ̺→ 0 and get required

local energy inequality (5.6.3). �

5.7 Strong Solutions

Definition 5.2. A weak Leray-Hopf solution is called a strong solution, if

∇v ∈ L∞(0, T ;L2(Ω)). (5.7.1)

Theorem 7.12. (Global existence of strong solutions for “small” data).

There exists a constant c0(Ω) such that if

arctan(‖∇a‖22,Ω) + c0(Ω)(‖a‖22,Ω + ‖f‖22,QT
) <

π

2
, (5.7.2)

then there exists a strong solution to initial boundary value problem (5.3.1).

Proof Let us go back to problem (5.3.4)-(5.3.6), see the proof of Theorem

3.5,

v̺ ∈ C([0, T ];H) ∩ L2(0, T ;V ), ∂tv
̺ ∈ L2(0, T ;V

′); (5.7.3)

for a.a. t ∈ [0, T ]
∫

Ω

(∂tv
̺(x, t) · ṽ(x) +∇v̺(x, t) : ∇ṽ(x))dx =

=

∫

Ω

f̺(x, t) · ṽ(x)dx (5.7.4)
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for all ṽ ∈ V ;

‖v̺(·, t)− a(·)‖2,Ω → 0 (5.7.5)

as t→ +0. Here,

f̺ = f − (v̺)̺ · ∇v̺ ∈ L2(QT ).

Using the similar arguments as in the proof of Theorem 5.9 of this

section and Theorems 5.6, 4.5 of Section 4 on uniqueness and regularity for

non-stationary Stokes problem, we can conclude that

v̺ ∈ W 2,1
2 (QT ), ∇v̺ ∈ C([0, T ];L2(Ω)).

Moreover, there exists a pressure field p̺ ∈ W 1,0
2 (QT ) such that the regu-

larized Navier-Stokes equations

∂tv
̺ −∆v̺ = f̺ −∇p̺, div v̺ = 0

hold a.e. in QT . This is the starting point for the proof of our theorem.

We know that sequence v̺ converges to a weak Leray-Hopf solution to

corresponding initial boundary value problem (5.3.1). So, what we need is

to get uniform estimates of ∇v̺. Let

y(t) :=

∫

Ω

|∇v̺(x, t)|2dx.

We proceed as in the proof of Theorem 5.10, multiplying the equation by

∆̃v̺ and arguing exactly as it has been done there. As a result, after

obvious applications of Cauchy and Hölder inequalities, we find

y′ + 3/2

∫

Ω

|∆̃v̺|2dx ≤ c

∫

Ω

|(v̺)̺|2|∇v̺|2dx + c‖f‖22,Ω ≤

≤ c‖v̺‖26,Ω‖∇v̺‖23,Ω + c‖f‖22,Ω. (5.7.6)

The first term on the right-hand side of the above inequality can be eval-

uated with the help of the Gagliardo-Nirenberg inequality in dimension

three

‖v̺‖26,Ω ≤ cy,

and the multiplicative inequality

‖∇v̺‖23,Ω ≤ c(Ω)y
1
2

(∫

Ω

|∇2v̺|2dx+ y
) 1

2

.
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In addition, the Cattabriga-Solonnikov inequality of the form∫

Ω

|∇2v̺|2dx ≤ c(Ω)

∫

Ω

|∆̃v̺|2dx (5.7.7)

is needed. So, from (5.7.6) and (5.7.7), it follows that:

y′ + 5/4

∫

Ω

|∆̃v̺|2dx ≤ c(Ω)(y3 + y2) + c‖f‖22,Ω. (5.7.8)

Recalling the properties of eigenvalues λk and eigenfunctions ϕk of the

Stokes operator, we observe that:
∫

Ω

|∆̃v̺|2 =
∞∑

k=1

d2kλ
2
k ≥ λ1

∞∑

k=1

d2kλk = λ1y,

where

dk(t) =

∫

Ω

v̺(x, t) · ϕk(x)dx.

So, (5.7.8) yields the final differential inequality

y′(t) + λ1y(t) ≤ c1(Ω)(y
3(t) + g(t)), (5.7.9)

with

y(0) = ‖∇a‖22,Ω, g(t) = ‖f(·, t)‖22,Ω.
A weaker versions of (5.7.9) is

y′(t)

1 + y2(t)
≤ c1(Ω)

[
y(t) + g(t)

]

so that after integration of it and application of the energy inequality, we

derive the bound

arctan(y(t)) ≤ arctan(‖∇a‖22,Ω) + c1(Ω)
[ T∫

0

y(t)dt+

T∫

0

g(t)dt
]

≤ arctan(‖∇a‖22,Ω) + c0(Ω)
[
‖a‖22,Ω + ‖f‖22,QT

]
<
π

2
for any t ∈ [0, T ], which implies

y(t) ≤ C, t ∈ [0, T ],

with a constant c independent of ̺ and t. �

Theorem 7.13. Assume that

a ∈ V, f ∈ L2(QT ).

Then there exists T ′ ∈]0, T ] such that initial boundary value problem (5.3.1)

has a strong solution in QT ′ .
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Proof Arguing as in the proof of Theorem 7.12, let us go back to inequality

(5.7.9). We need to show that there exists T ′ ≤ T , where y(t) has an upper

bound independent of ̺ and t ∈ [0, T ′]. To achieve this goal, let us make a

substitution z(t) = y(t)− y(0) and, after application of Young’s inequality,

get the following modification of estimate (5.7.9)

z′(t) + λ1z(t) ≤ c1(Ω)(z
3(t) + y3(0) + g(t)).

An equivalent form of it is:

z′ + λ1(1−
c1
λ1
z2)z ≤ c1(y

3(0) + g(t))

with z(0) = 0. By continuity,

c1
λ1
z2(t) < 1 (5.7.10)

for small positive t. Without loss of generality, we may assume that there

exists ̺0 > 0 such that, for all 0 < ̺ < ̺0, there is 0 < t̺ ≤ T with the

following properties: inequality (5.7.10) holds for 0 < t < t̺ and

c1
λ1
z2(t̺) = 1.

Next, we take the largest value T ′ ∈]0, T ] so that

T ′∫

0

[
c1(y

3(0) + g(t)) + λ1y(0)
]
dt ≤ 1

2

√
λ1
c1
.

From inequality (5.7.10) and the definition of t̺, it follows that:

z′(t)− λ1(1−
c1
λ1
z2)y(0) ≤ c1(y

3(0) + g(t))

for all 0 ≤ t ≤ t̺. Therefore,

z(t) ≤
t∫

0

(c1(y
3(0) + g(s)) + λ1y(0))ds

for all 0 ≤ t ≤ t̺. And thus for t = t̺, we have

z(t̺) =

√
λ1
c1

≤
t̺∫

0

(c1(y
3(0) + g(s)) + λ1y(0))ds

and, in a view of the definition of T ′,

T ′∫

0

[
c1(y

3(0) + g(t)) + λ1y(0)
]
dt <

t̺∫

0

[
c1(y

3(0) + g(s)) + λ1y(0)
]
ds.
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The latter implies t̺ ≥ T ′ for all ̺ > 0 and the required estimate

y(t) ≤ ‖∇a‖22,Ω +

T ′∫

0

[
c1(y

3(0) + g(t)) + λ1y(0)
]
dt ≤ ‖∇a‖22,Ω +

1

2

√
λ1
c1

for all 0 < t ≤ T ′ and for all ̺ > 0. �

Remark 5.1. If f = 0, the lower bound for T ′ can be improved

T ′ ≥ c4(Ω)

‖∇a‖42,Ω
and this is the celebrated Leray estimate.

Proof In this case, one can deduce from inequality (5.7.9) the following:

y′

y3
≤ c1

for 0 ≤ t ≤ T . The integration gives us:

1

y2(0)
− 1

y2(t)
≤ 2c1t

and thus

y2(t)(1− 2c1ty
2(0)) ≤ y2(0).

We let T ′
0 = 1

4c1y2(0) . Then 1 − 2c1ty
2(0) ≥ 1/2 and y(t) ≤

√
2y(0) for

0 < t ≤ T ′
0 which implies T ′ ≥ T ′

0 and we get the required estimate with an

appropriated constant.

Remark 5.2. Solutions, constructed in Theorems 7.12 and 7.13, have the

following regularity properties: v ∈ W 2,1
2 (QT ) and there exists a function

q such that ∇q ∈ L2(QT ) and

∂tv + v · ∇v −∆v = f −∇q, div v = 0

a.e. in QT . (One should replace QT with QT ′ in the case of Theorem 7.13).

Proof In fact, from (5.7.8) and from the Cattabriga-Solonnikov inequality

(5.7.7), it follows that:

‖∇2v̺‖22,QT
≤ c(‖∇a‖2,Ω, ‖f‖2,QT )

and, in a view of derivation (5.7.8), we get
∫

QT

|(v̺)̺|2|∇v̺|2dz ≤ c(‖∇a‖2,Ω, ‖f‖2,QT ).
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The linear theory, applied to the initial boundary value problem

∂tv
̺ −∆v̺ +∇q̺ = f − (v̺)̺ · ∇v̺, div v̺ = 0 in QT

v̺|∂Ω×[0,T ] = 0, v̺|t=0 = a,

leads to all other statements of Remark 5.7.5.

The main result of this section is:

Theorem 7.14. (Uniqueness of strong solutions in the class of weak Leray-

Hopf solutions) Assume that u1 and u2 are weak Leray-Hopf solutions to

the initial boundary value problem

∂tv + v · ∇v −∆v = f −∇q, div v = 0 in QT

v|∂Ω×[0,T ] = 0, v|t=0 = a

with a ∈ V and f ∈ L2(QT ). Let u2 be a strong solution then u1 = u2,

We start with several auxiliary propositions.

Proposition 7.15. (Uniqueness of strong solutions in the class of strong

solutions) Assume that u1 and u2 are strong solutions to the initial boundary

value problem

∂tv + v · ∇v −∆v = f −∇q, div v = 0 in QT

v|∂Ω×[0,T ] = 0, v|t=0 = a,

with a ∈ V and f ∈ L2(QT ). Then u1 = u2.

Proof First we notice that if u is a strong solution to the above initial

boundary value problem then

∂tu ∈ L2(0, T ;V
′).

Indeed,
∣∣∣
∫

Ω

(u · ∇u) · wdx
∣∣∣ =

∣∣∣
∫

Ω

u⊗ u : ∇wdx
∣∣∣ ≤ ‖u‖24,Ω‖∇w‖2,Ω

≤ c(Ω)‖∇u‖22,Ω‖∇w‖2,Ω ≤ C(Ω, u)‖∇w‖2,Ω
for any w ∈ V . So, f̃ = f−u·∇u ∈ L2(0, T ;V

′) and thus ∂tu ∈ L2(0, T ;V
′).

Then, by the definition of weak solution, we have∫

QT

χ(t)
[
∂tu(x, t) · w(x) − (u⊗ u)(x, t) : ∇w(x)

+∇u(x, t) : ∇w(x)
]
dz =

∫

QT

χ(t)f(x, t) · w(x)dz
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for any w ∈ C∞
0,0(Ω) and for any χ ∈ C∞

0 (0, T ). It is easy to see
∫

Ω

[
∂tu(x, t) · w(x) − (u⊗ u)(x, t) : ∇w(x)

+∇u(x, t) : ∇w(x)
]
dx =

∫

Ω

f(x, t) · w(x)dx

for any w ∈ V and for a.a. t ∈ [0, T ].

So, assume that u1 and u2 are two different strong solutions and let

v = u1 − u2. Then, we have

1

2
∂t‖v‖22,Ω + ‖∇v‖22,Ω =

∫

Ω

(u1 ⊗ u1 − u2 ⊗ u2) : ∇vdx

=

∫

Ω

(v ⊗ u1 + u2 ⊗ v) : ∇vdx =

∫

Ω

u2 ⊗ v : ∇vdx

= −
∫

Ω

v ⊗ v : ∇u2dx ≤ ‖∇u2‖2,Ω‖v‖24,Ω. (5.7.11)

Let us recall the following 3D multiplicative inequality

‖v‖4,Ω ≤ c‖v‖
1
4

2,Ω‖∇v‖
3
4

2,Ω.

So, after application of Young’s inequality

∂t‖v‖22,Ω + ‖∇v‖22,Ω ≤ c‖∇u2‖42,Ω‖v‖22,Ω.
Since ‖∇u2‖2,∞,QT ≤ C1,

∂t‖v‖22,Ω ≤ C4
1‖v‖22,Ω,

which implies

e−C1t

∫

Ω

|v(x, t)|2dx ≤
∫

Ω

|v(x, 0)|2dx = 0.

Proposition 7.15 is proved.

Proposition 7.16. (Smoothness of strong solutions) Let a vector field u

be a strong solution to the following initial boundary value problem:

∂tu+ u · ∇u −∆u = f −∇p, div u = 0 in QT

u|∂Ω×[0,T ] = 0, u|t=0 = a,

with a ∈ V and f ∈ L2(QT ). Then u ∈W 2,1
2 (QT ) and p ∈ W 1,0

2 (QT ).
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Proof Let us denote ‖∇u‖2,∞,QT by A. Coming back to our proof of

Theorem 7.13, define a positive number TA so that

c1

[
TAA

3 +

∫

]0,T [∩]t,t+TA[

g(s)ds
]
≤ 1

2

√
λ1
c1

(5.7.12)

for any t ∈ [0, T ].

By (5.7.12) and by Theorem 7.13, there exists a strong solution u1 in

QTA with initial data u1|t=0 = a. This solution belongs to W 2,1
2 (QTA) and

the corresponding pressure q1 belongs to W 1,0
2 (QTA), see Remark 5.2. By

Proposition 7.15, u1 = u in QTA . We know also ∇u ∈ C(0, T ;L2(Ω)). So,

we can apply Theorem 7.13 one more time in QTA/2,3TA/2 and find a strong

solution u2 there with initial data u(·, TA/2). By Proposition 7.15, u2 = u

in QTA/2,3TA/2 and ∇q1 = ∇q2 in QTA/2,TA
. After a finite number of steps,

we find that u ∈W 2,1
2 (QT ) and can easily recover a function p ∈ W 1,0

2 (QT )

such that ∇p = ∇qk on QT ∩QTAk/2,TA(k+1)/2, where k = 1, 2, .... �

Proof of Theorem 7.14 Since u2 is a strong solution, it satisfies the

identity
∫

Ω

[
∂tu

2(x, t) · w(x) + (u2(x, t) · ∇u2(x, t)) · w(x)

+∇u2(x, t) : ∇w(x)
]
dx =

∫

Ω

f(x, t) · w(x)dx (5.7.13)

for any w ∈ V and for a.a. t ∈ [0, T ]. Regarding to u1, we have a weaker

identity
∫

QT

(−u1 · ∂tw − u1 ⊗ u1 : ∇w +∇u1 : ∇w − f · w)dz = 0 (5.7.14)

for any w ∈ C∞
0,0(QT ).

We would like to test (5.7.14) with u2 but it should be justified. Indeed,

we know that

u1 ∈ L 10
3
(QT )

and, by density arguments, (5.7.14) must be true for w(x, t) = χ(t)v(x) with

v ∈
◦
J1

5
2

(Ω) and χ ∈
◦
W 1

1(0, T ) = {χ ∈W 1
1 (0, T ) : χ(0) = 0, χ(T ) = 0}.

Since u2 ∈ W 2,1
2 (QT ), the series

∑∞
k=1 ck(t)ϕk(x) converges to u2 in

W 2,1
2 (QT ). Here, ϕk is the kth eigenfunction of the Stokes operator. This,

in turn, implies that the series
∑∞

k=1 ck(t)∇ϕk(x) converges to ∇u2 in
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L 5
2
(QT ). To justify that, we need two inequalities. The first of them is

multiplicative one:

‖∇v‖ 5
2 ,QT

≤ c(Ω, T ) sup
0<t<T

‖∇v‖
7
10

2,Ω(‖∇2v‖2,QT + ‖∇v‖2,QT )
3
10 .

The second inequality is

‖∇v‖22,∞,QT
≤ 1

T
‖∇v‖22,QT

+ 2‖∂tv‖2,QT ‖△v‖2,QT .

This inequality can be easily derived from the identity

∂t

∫

Ω

|∇vN (x, t)|2dx = −2

∫

Ω

∂tv
N (x, t) · △vN (x, t)dx,

where vN (x, t) =
∑N

k=1 ck(t)ϕk(x).

So, if χ is a Lipschitz function on [0, T ] with χ(0) = χ(T ) = 0, then

identity (5.7.14) holds for χ(t)ck(t)ϕk(x) with any number k. Taking into

account what is mentioned above, it is not so difficult to show that (5.7.14)

can be tested with χα,βu
2, where χα,β(t) = t/α if 0 ≤ t ≤ α, χα,β(t) = 1 if

α < t < t0, χα,β(t) = (t0 + β − t)/β if t0 ≤ t ≤ t0 + β, and χα,β(t) = 0 if

t0 + β < t ≤ T . Inserting w = χα,βu
2 into (5.7.14), we find

∫

QT

χα,β(−u1 · ∂tu2 − u1 ⊗ u1 : ∇u2 +∇u1 : ∇u2 − f · u2)dz

=

∫

QT

u1 · u2χ′
α,βdz = Iα + Iβ ,

where

Iα =
1

α

α∫

0

∫

Ω

u1 · u2dxdt = 1

α

α∫

0

∫

Ω

(u1 − a) · (u2 − a)dxdt

+
1

α

α∫

0

∫

Ω

a · (u2 − a)dxdt +
1

α

α∫

0

∫

Ω

a · (u1 − a)dxdt

+
1

α

α∫

0

∫

Ω

|a|2dxdt.

Since ‖u1(·, t)− a(·)‖2,Ω and ‖u2(·, t)− a(·)‖2,Ω go to zero as t→ 0, we can

observe that

Iα →
∫

Ω

|a|2dx
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as α → 0.

The analogous result takes place at the right end point:

−Iβ =
1

β

t0+β∫

t0

∫

Ω

u1 · u2dxdt

=
1

β

t0+β∫

t0

∫

Ω

u1(x, t) · (u2(x, t) − u2(x, t0))dxdt

+
1

β

t0+β∫

t0

∫

Ω

(u1(x, t)− u1(x, t0)) · u2(x, t0)dxdt

+

∫

Ω

u1(x, t0) · u2(x, t0)dx

By strong continuity in L2(Ω) of the strong solution u2, the first term on

the right-hand side goes to zero and by weak continuity of weak solution

u1 the second term there goes to zero as well. So,

Iβ → −
∫

Ω

u1(x, t0) · u2(x, t0)dx

as β → 0. Finally, we have

t0∫

0

∫

Ω

(−u1 · ∂tu2 − u1 ⊗ u1 : ∇u2 +∇u1 : ∇u2 − f · u2)dz

+

∫

Ω

u1(x, t0) · u2(x, t0)dx−
∫

Ω

|a|2dx = 0 (5.7.15)

for any t0 ∈ [0, T ].

Now, we are going to test (5.7.13) with w(x) = u1(x, t)−u2(x, t), which,
after integration over ]0, t0[, gives us:

t0∫

0

∫

Ω

∂tu
2(x, t) · u1(x, t)dxdt − 1

2

∫

Ω

|u2(x, t0)|2dx+
1

2

∫

Ω

|a|2dx

+

t0∫

0

∫

Ω

(
− u2 ⊗ u2 : ∇(u1 − u2) +∇u2 : ∇(u1 − u2)

−f · (u1 − u2)
)
dxdt = 0.
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So, adding the latter to (5.7.15), we find∫

Ω

[
− 1

2
|a(x)|2 + u1(x, t0) · u2(x, t0)−

1

2
|u2(x, t0)|2

]
dx

t0∫

0

∫

Ω

[
− u1 ⊗ u1 : ∇u2 − u2 ⊗ u2 : ∇(u1 − u2)− |∇u2|2

+2∇u1 · ∇u2 − f · u1
]
dxdt = 0. (5.7.16)

We also know that weak solution satisfies the energy inequality

1

2

∫

Ω

|u1(x, t0)|2dx +

t0∫

0

∫

Ω

|∇u1|2dxdt ≤ 1

2

∫

Ω

|a|2dx+

t0∫

0

∫

Ω

f · u1dxdt.

Subtracting (5.7.16) from the energy inequality, we show

1

2

∫

Ω

|u1(x, t0)− u2(x, t0)|2dx +

t0∫

0

∫

Ω

|∇(u1 − u2)|2dxdt

≤ −
t0∫

0

∫

Ω

(u1 ⊗ u1 : ∇u2 + u2 ⊗ u2 : ∇(u1 − u2))dxdt = I. (5.7.17)

The rest of the proof is similar to the proof of Theorem 7.12. Indeed,

I = −
t0∫

0

∫

Ω

(u1 − u2)⊗ (u1 − u2) : ∇u2dxdt

≤
t0∫

0

‖∇u2‖2,Ω‖u2 − u1‖24,Ωdt

≤ sup
0<t<T

‖∇u2‖2,Ω
t0∫

0

‖u2 − u1‖24,Ωdt.

Since u2 is a strong solution, the quantity sup0<t<T ‖∇u2(·, t)‖2,Ω =

‖∇u2‖2,∞,QT is finite. Applying multiplicative inequality, we have

I ≤ c‖∇u2‖2,∞,QT

t0∫

0

‖u2 − u1‖
1
2

2,Ω‖∇(u2 − u1)‖
3
2

2,Ωdt

≤ c‖∇u2‖2,∞,QT

( t0∫

0

∫

Ω

|u2 − u1|2dxdt
) 1

4
( t0∫

0

∫

Ω

|∇(u2 − u1)|2dxdt
) 3

4

.



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 130

130 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

From here and from (5.7.17), it follows that:

y′(t0) ≤ c‖∇u2‖42,∞,QT
y(t0), y(t0) :=

t0∫

0

∫

Ω

|u1(x, t)− u2(x, t)|2dxdt

for all t0 ∈ [0, T ] with y(0) = 0. This immediately implies u1 = u2. �

Theorem 7.17. (Ladyzhenskaya-Prodi-Serrin condition) Let a ∈ V and

f ∈ L2(QT ). Assume that we have two weak Leray-Hopf solutions u1 and

u2. Assume that u2 obeys the Ladyzhenskaya-Prodi-Serrin condition, i.e.,

u2 ∈ Ls,l(QT )

with s, l ≥ 1, satisfying

3

s
+

2

l
= 1.

Then u1 = u2.

Proof Just for simplicity let us assume f = 0. We also suppose that s > 3.

The case s = 3 and l = ∞ is much more complicated and will be discussed

later. Our aim is to show that a weak Leray-Hopf solution, satisfying the

Ladyzhenskaya-Prodi-Serrin condition, is in fact a strong one. Then, the

statement of the theorem follows from Theorem 7.14.

We know that, by Theorem 7.13, there exists a strong solution to our

initial-boundary value problem on a small time interval [0, T ], which, by

Theorem 7.14, coincides with any weak solution and, in particular, with

u ≡ u2. Let us denote by T0(≤ T ) the first instance of time, for which u

is not a strong solution on [0, T0]. By Proposition 7.16, we have for any

T ′ < T0,

u ∈W 2,1
2 (QT ′), ∇u ∈ C([0, T ′];L2(QT ′))

and there exists a pressure field p ∈W 1,0
2 (QT ′) so that

∂tu+ u · ∇u−∆u = −∇p, div u = 0

a.e. in QT ′ .

By Remark 5.1,

T0 − t ≥ c4
‖∇u(t)‖42,Ω

for all t < T0. So, we have

lim
t→T0−0

‖∇u(t)‖2,Ω = ∞. (5.7.18)
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We proceed as in the proof of (5.7.6) simply replacing v̺ with u. As a

result,

y′ +

∫

Ω

|∆̃u|2dx ≤ c

∫

Ω

|u|2|∇u|2dx, (5.7.19)

where y(s) = ‖∇u‖22,Ω.
Applying consequently Hölder inequality, an appropriatedmultiplicative

inequality, and the Cattabriga-Solonnikov inequality to the right-hand side

of (5.7.19), we have
∫

Ω

|u|2|∇u|2dx ≤ ‖u‖2s,Ω‖∇u‖22s
s−2 ,Ω

≤ c(Ω, s)‖u‖2s‖∇u‖
2(1− 3

s )
2 (‖∇2u‖2 + ‖∇u‖2)

6
s

≤ c(Ω, s)‖u‖2s,Ω‖∇u‖
4
l

2,Ω‖∆̃u‖
6
s

2,Ω

Using Young’s inequality, we arrive at the final inequality

y′(t) ≤ c(Ω, s)‖u(·, t)‖ls,Ωy(t)

for all t < T0. Integrating it, we find

y(t) ≤ y(0)ec(Ω,s)‖u‖l
s,l,QT

for all t < T0. This contradicts (5.7.18). �

Remark 5.3. Unfortunately, we do not know whether any weak Leray-

Hopf solution u satisfies the Ladyzhenskaya-Prodi-Serrin condition. What

we know is that

u ∈ Ls′,l′(QT )

with s′, l′ ≤ 1 and

3

s′
+

2

l′
=

3

2
.

So, there is a finite gap.

The problem of uniqueness of weak solution is still open.

If we show that any weak (Leray-Hopf) solution is smooth (for example,

it is strong), then we have uniqueness in the class of weak solutions.

The problem of smoothness of weak solutions is one of seven Millennium

problems.
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5.8 Comments

Chapter 5 contains an introduction to the theory of energy solutions de-

veloped in [Leray (1934)] and later on in [Hopf (1950-1951)]. Our proof

of the global well-posedness of the 2D dimensional problem is due to [La-

dyzhenskaya (1958)]. As to local in time well-posedness of the 3D problem,

we follow [Leray (1934)] and [Kiselev and Ladyzhenskaya (1957)]. We also

prove classical results related to the Ladyzhenskaya-Prodi-Serrin condition

and the uniqueness of strong solutions in the class of weak solutions, see

for example [Ladyzhenskaya (1967)], [Prodi (1959)], [Serrin (1962)].
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Chapter 6

Local Regularity Theory for

Non-Stationary Navier-Stokes

Equations

6.1 ε-Regularity Theory

The aim of this section is so-called suitable weak solutions to the Navier-

Stokes equations and their smoothness. Those solutions were introduced

in [Caffarelli et al. (1982)], see also [Scheffer (1976)]-[Scheffer (1982)], [Lin

(1998)], and [Ladyzhenskaya and Seregin (1999)]. Our version is due to

[Lin (1998)].

Definition 6.1. Let ω be a domain in R
3. We say that a pair u and p is a

suitable weak solution to the Navier-Stokes equations in ω×]T1, T [ if u and

p obey the conditions:

u ∈ L2,∞(ω×]T1, T [) ∩ L2(T1, T ;W
1
2 (ω)); (6.1.1)

p ∈ L 3
2
(ω×]T1, T [); (6.1.2)

∂tu+ u · ∇u−∆u = −∇p, div u = 0 (6.1.3)

in the sense of distributions;

the local energy inequality
∫
ω

ϕ(x, t)|u(x, t)|2 dx+ 2
∫

ω×]T1,t[

ϕ|∇u|2 dxdt′

≤
∫

ω×]T1,t[

(|u|2(∆ϕ + ∂tϕ) + u · ∇ϕ(|u|2 + 2q)) dxdt′





(6.1.4)

holds for a.a. t ∈]T1, T [ and all nonnegative functions ϕ ∈ C∞
0 (ω×]T1,∞[).

One of the main results of the theory of suitable weak solutions reads:

133
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Lemma 6.1. There exist absolute positive constants ε0 and c0k, k = 1, 2, ...,

with the following property. Assume that a pair U and P is a suitable weak

solution to the Navier-Stokes equations in Q and satisfies the condition
∫

Q

(
|U |3 + |P | 32

)
dz < ε0. (6.1.5)

Then, for any natural number k, ∇k−1U is Hölder continuous in Q(1
2 ) and

the following bound is valid:

max
z∈Q( 1

2 )
|∇k−1U(z)| < c0k. (6.1.6)

To formulate Lemma 6.1, we exploit the following notation and abbrevia-

tions:

z = (x, t), z0 = (x0, t0); B(x0, R) = {|x− x0| < R};

Q(z0, R) = B(x0, R)×]t0 −R2, t0[;

B(r) = B(0, r), Q(r) = Q(0, r), B = B(1), Q = Q(1).

Remark 6.1. For k = 1, Lemma 6.1 has been proven essentially in [Caf-

farelli et al. (1982)], see Corollary 1. For alternative approach, we refer the

reader to [Ladyzhenskaya and Seregin (1999)], see Lemma 3.1. The case

k > 1 was treated in [Necas et al. (1996)], see Proposition 2.1, with the

help of the case k = 1 and regularity results for linear Stokes type systems.

In turn, if k = 1, Lemma 6.1 is a consequence of Proposition 1.1 below.

To state it, we need to introduce certain integral quantities that play an

important role in the regularity theory:

Y (z0, R; v, q) = Y 1(z0, R; v) + Y 2(z0, R; q),

Y 1(z0, R; v) =
( 1

|Q(R)|

∫

Q(z0,R)

|v − (v)z0,R|3 dz
) 1

3

,

Y 2(z0, R; q) = R
( 1

|Q(R)|

∫

Q(z0,R)

|q − [q]z0,R|
3
2 dz

) 2
3

,

(v)z0,R =
1

|Q(R)|

∫

Q(z0,R)

v dz, [q]x0,R =
1

|B(R)|

∫

B(x0,R)

q dx,
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Y 1
ϑ (v) = Y 1(0, ϑ; v), Y 2

ϑ (q) = Y 2(0, ϑ; q),

Yϑ(v, q) = Y (0, ϑ; v, q), (v),ϑ = (v)0,ϑ, [q],ϑ = [q]0,ϑ.

Proposition 1.1. Given numbers ϑ ∈]0, 1/2[ and M > 3, there are two

constants ε1(ϑ,M) > 0 and c1(M) > 0 such that, for any suitable weak so-

lution v and q to the Navier-Stokes equations in Q, satisfying the additional

conditions

|(v),1| < M, Y1(v, q) < ε1, (6.1.7)

the following estimate is valid:

Yϑ(v, q) ≤ c1ϑ
2
3Y1(v, q). (6.1.8)

Proof of Proposition 1.1 Assume that the statement is false. This

means that a number ϑ ∈]0, 1/2[ and a sequence of suitable weak solutions

vk and qk (in Q) exist such that:

Y1(v
k, qk) = ε1k → 0 (6.1.9)

as k → +∞,

Yϑ(v
k, qk) > c1ε1kϑ

3
2 (6.1.10)

for all k ∈ N. A constant c1 will be specified later.

Let us introduce functions

uk = (vk − (vk),1)/ε1k, pk = (qk − [qk],1)/ε1k.

They obey the following relations

Y1(u
k, pk) = 1, (6.1.11)

Yϑ(u
k, pk) > c1ϑ

2
3 , (6.1.12)

and the system

∂tu
k + 1

ε1k
div ((vk),1 + ε1ku

k)⊗ ((vk),1 + ε1ku
k)

−∆uk = −∇ pk, div uk = 0

}
in Q (6.1.13)

in the sense of distributions.

Without loss of generality, one may assume that:




uk ⇀ u in L3(Q)

pk ⇀ p in L 3
2
(Q)

(vk),1 → b in R
3

(6.1.14)
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and

∂tu+ div u⊗ b−∆u = −∇ p

div u = 0

}
in Q (6.1.15)

in the sense of distributions. By (6.1.11) and (6.1.14), we have

|b| < M, Y1(u, p) ≤ 1, [p(·, t)],1 = 0 for all t ∈]− 1, 0[. (6.1.16)

Choosing a cut-off function ϕ in an appropriate way in the local energy

inequality, we find the energy estimate for uk

‖uk‖2,∞,Q(3/4) + ‖∇uk‖2,Q(3/4) ≤ c2(M) (6.1.17)

that remains to be true for the limit function u

‖u‖2,∞,Q(3/4) + ‖∇u‖2,Q(3/4) ≤ c2(M).

It is easy to check that p is a harmonic function depending on t as a

parameter. After application of bootstrap arguments, we find

sup
z∈Q(2/3)

(
|∇u(z)|+ |∇2u(z)|

)

+
(

sup
x∈B(2/3)

0∫

−(2/3)2

|∂tu(x, t)|
3
2 dt

) 2
3 ≤ c3(M).

From the above estimate, a parabolic embedding theorem and scaling, it

follows that
( 1

|Q(τ)|

∫

Q(τ)

|u− (∇u),τx− (u),τ |3dz
) 1

3

≤ cτ2
( 1

|Q(τ)|

∫

Q(τ)

(|∇2u| 32 + |∂tu|
3
2 )dz

) 2
3

≤ cτ2
(
C(M) +

1

τ2
C(M)

) 2
3 ≤ C(M)τ

2
3

for all 0 < τ < 2/3. The latter estimates gives us:

Y 1
ϑ (u) ≤ c̃1(M)ϑ

2
3 . (6.1.18)

Using the known multiplicative inequality, see the previous chapter, we

derive from (6.1.17) another estimate

‖uk‖ 10
3 ,Q(3/4) ≤ c4(M). (6.1.19)
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Let us find a bound of the first derivative in time with the help of duality

arguments. Indeed, we have from (6.1.13) and (6.1.16)

‖∂tuk‖
L 3

2
(−(3/4)2,0;(

◦
W 2

2(B(3/4)))′)
≤ c5(M). (6.1.20)

Here,
◦
W 2

2(B(3/4)) is the completion of C∞
0 (B(2/3)) in W 2

2 (B(2/3)). By

the compactness arguments used in the previous section, a subsequence can

be selected so that

uk → u in L3(Q(3/4)). (6.1.21)

Now, taking into account (6.1.21) and (6.1.18), we pass to the limit in

(6.1.12) and find

c1ϑ
2
3 ≤ c̃1ϑ

2
3 + lim sup

k→∞
Y 2
ϑ (p

k). (6.1.22)

In order to pass to the limit in the last term of the right-hand side in

(6.1.22), let us decompose the pressure pk as follows (see [Seregin (1999,

2001, 2002)]):

pk = pk1 + pk2 . (6.1.23)

Here, the first function pk1 is defined as a unique solution to the following

boundary value problem: find pk1(·, t) ∈ L 3
2
(B) such that

∫

B

pk1(x, t)∆ψ(x) dx = −ε1k
∫

B

uk(x, t)⊗ uk(x, t) : ∇2ψ(x) dx

for all smooth test functions ψ subjected to the boundary condition ψ|∂B =

0. It is easy to see that

∆pk2(·, t) = 0 in B (6.1.24)

and, by the coercive estimates for Laplace’s operator with the homogeneous

Dirichlet boundary condition, we get the bound for pk1 :∫

B

|pk1(x, t)|
3
2 dx ≤ cε

3
2

1k

∫

B

|uk(x, t)|3 dx. (6.1.25)

Passing to the limit in (6.1.22), we show with the help of (6.1.25) that:

c1ϑ
2
3 ≤ c̃1ϑ

2
3 + lim sup

k→∞
Y 2
ϑ (p

k
2). (6.1.26)

By Poincare’s inequality, (6.1.26) can be reduced to the form

c1ϑ
2
3 ≤ c̃1ϑ

2
3 + cϑ2 lim sup

k→∞

( 1

|Q(ϑ)|

∫

Q(ϑ)

|∇ pk2 |
3
2 dz

) 2
3

. (6.1.27)
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We know that the function pk2(·, t) is harmonic in B and, by the mean value

theorem, estimate

sup
x∈B(3/4)

|∇ pk2(x, t)|
3
2 ≤ c

∫

B

|pk2(x, t)|
3
2 dx

holds, which in turns implies

1

|Q(ϑ)|

∫

Q(ϑ)

|∇ pk2 |
3
2 dz ≤ c

ϑ2

∫

Q

|pk2 |
3
2 dz

≤ c
( 1

ϑ2
+

1

ϑ2

∫

Q

|pk1 |
3
2 dz

)
.

The latter inequality, together with (6.1.25), allows us to take the limit in

(6.1.27). As a result, we show that

c1ϑ
2
3 ≤ c̃1ϑ

2
3 + cϑ

2
3 . (6.1.28)

If, from the very beginning, c1 is chosen so that

c1 = 2(c̃1 + c),

we arrive at the contradiction. Proposition 1.1 is proved.

Proposition 1.1 admits the following iterations.

Proposition 1.2. Given numbers M > 3 and β ∈ [0, 2/3[, we choose

ϑ ∈]0, 1/2[ so that

c1(M)ϑ
2−3β

6 < 1. (6.1.29)

Let ε1(ϑ,M) = min{ε1(ϑ,M), ϑ5M/2}. If
|(v),1| < M, Y1(v, q) < ε1, (6.1.30)

then, for any k = 1, 2, ...,

ϑk−1|(v),ϑk−1 | < M, Yϑk−1(v, q) < ε1 ≤ ε1,

Yϑk(v, q) ≤ ϑ
2+3β

6 Yϑk−1(v, q).
(6.1.31)

Proof We use induction on k. For k = 1, this is nothing but Proposition

1.1.

Assume now that statements (6.1.31) are valid for s = 1, 2, ..., k ≥ 2.

Our goal is to prove that they are valid for s = k + 1 as well. Obviously,

by induction,

Yϑk(v, q) < ε1 ≤ ε1,
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and

|(vk),1| = ϑk|(v),ϑk | ≤ ϑk|(v),ϑk − (v),ϑk−1 |+ ϑk|(v),ϑk−1 |

≤ 1

ϑ5
Yϑk−1(v, q) +

1

2
ϑk−1|(v),ϑk−1 | < 1

ϑ5
ε1 +M/2 ≤M.

Introducing scaled functions

vk(y, s) = ϑkv(ϑky, ϑ2ks), qk(y, s) = ϑ2kq(ϑky, ϑ2ks)

for (y, s) ∈ Q, we observe that vk and qk are a suitable weak solution in Q.

Since

Y1(v
k, qk) = ϑkYϑk(v, q) < ε1 ≤ ε1

and

|(vk),1| = ϑk|(v),ϑk | < M,

we conclude

Yϑ(v
k, qk) ≤ c1ϑ

2
3Y1(v

k, qk) < ϑ
2+3β

6 Y1(v
k, qk),

which is equivalent to the third relation in (6.1.31). Proposition 1.2 is

proved.

A direct consequence of Proposition 1.2 and the Navier-Stokes scaling

vR(y, s) = Rv(x0 +Ry, t0 +R2s), qR(y, s) = R2q(x0 +Ry, t0 +R2s)

is the following statement.

Proposition 1.3. Let M , β, ϑ, and ε1 be as in Proposition 1.2. Let a pair

v and q be an arbitrary suitable weak solution to the Navier-Stokes equations

in the parabolic cylinder Q(z0, R), satisfying the additional conditions

R|(v)z0,R| < M, RY (z0, R; v, q) < ε1. (6.1.32)

Then, for any k = 1, 2, ..., the estimates

Y (z0, ϑ
kR; v, q) ≤ ϑ

2+3β
6 kY (z0, R; v, q) (6.1.33)

hold.

Proof of Lemma 6.1 We start with the case k = 1. Define

A =

∫

Q

(
|U |3 + |P | 32

)
dz.

Then, let M = 2002, β = 1/3, and let ϑ be chosen according to (6.1.29)

and fix.
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First, we observe that

Q(z0, 1/4) ⊂ Q if z0 ∈ Q(3/4)

and
1

4
Y (z0, 1/4;U, P ) ≤ c(A

1
3 +A

2
3 ),

1

4
|(U)z0, 14 | ≤ cA

1
3 .

Selecting ε0 so that

c(ε
1
3
0 + ε

2
3
0 ) < ε1, cε

1
3
0 < 2002.

Then, by (6.1.5), we have

1

4
Y (z0, 1/4;U, P ) < ε1,

1

4
|(U)z0, 14 | < M,

and thus, by Proposition 1.3,

Y (z0, ϑ
k/4;U, P ) ≤ ϑ

k
2 Y (z0, 1/4;U, P ) ≤ ϑ

k
2 ε1

for all z0 ∈ Q(3/4) and for all k = 1, 2, .... Hölder continuity of v on the set

Q(2/3) follows from Campanato’s type condition. Moreover, the quantity

sup
z∈Q(2/3)

|v(z)|

is bounded by an absolute constant.

The case k > 1 is treated with the help of the regularity theory for

the Stokes equations and bootstrap arguments, for details, see [Necas et al.

(1996)], Proposition 2.1. Lemma 6.1 is proved.

In what follows, the scaled energy quantities, i.e., the energy quantities

that are invariant with respect to the Navier-Stokes scaling,

A(v; z0, r) ≡ sup
t0−r2≤t≤t0

1

r

∫

B(x0,r)

|v(x, t)|2 dx, E(v; z0, r) ≡
1

r

∫

Q(z0,r)

|∇ v|2 dz,

C(v; z0, r) ≡
1

r2

∫

Q(z0,r)

|v|3 dz, D0(q; z0, r) ≡
1

r2

∫

Q(z0,r)

|q − [q]x0,r|
3
2 dz

will be exploited. We are also going to use abbreviations for them such as

A(r) = A(v; 0, r), etc.

Our aim is to prove a version of the Caffarelli-Kohn-Nireberg theorem

(Here, we follow F.-H. Lin’s arguments, see [Lin (1998)]).

Theorem 1.4. Let v and q be a suitable weak solution to the Navier-Stokes

equations in Q. There exists a positive universal constant ε such that if

sup
0<r<1

E(r) < ε,

then z = 0 is regular point of v, i.e., v is Hölder continuous in the closure

of the parabolic cylinder Q(̺) with some positive ̺ < r.
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Let us start with the proof of auxiliary lemmata. In fact, the first statement

is a scaled version of a particular multiplicative inequality.

Lemma 6.2. For all 0 < r ≤ ̺ ≤ 1,

C(r) ≤ c
[( r
ρ

)3

A
3
2 (ρ) +

(̺
r

)3

A
3
4 (̺)E

3
4 (̺)

]
. (6.1.34)

Proof We have∫

B(r)

|v|2 dx =

∫

B(r)

(
|v|2 − [|v|2],̺

)
dx+

∫

B(r)

[|v|2],̺ dx ≤

≤
∫

B(̺)

∣∣∣|v|2 − [|v|2],̺
∣∣∣ dx+

( r
̺

)3
∫

B(̺)

|v|2 dx.

By the Poincaré-Sobolev inequality,∫

B(̺)

∣∣∣|v|2 − [|v|2],̺
∣∣∣ dx ≤ c̺

∫

B(̺)

|∇ v| |v| dx,

where c is an absolute positive constant. So, we get

∫
B(r)

|v|2 dx ≤ c̺
( ∫
B(̺)

|∇ v|2 dx
) 1

2
( ∫
B(̺)

|v|2 dx
) 1

2

+

+
(

r
̺

)3 ∫
B(̺)

|v|2 dx ≤

≤ c̺
3
2A

1
2 (̺)

( ∫
B(̺)

|∇ v|2 dx
) 1

2

+
(

r
̺

)3

̺A(̺).





(6.1.35)

Using the known multiplicative inequality, one can find
∫

B(r)

|v|3 dx ≤ c
[( ∫

B(r)

|∇ v|2 dx
) 3

4
( ∫

B(r)

|v|2 dx
) 3

4

+

+
1

r
3
2

( ∫

B(r)

|v|2 dx
) 3

2
]
≤

(
see (6.1.35)

)
≤

≤ c
{
̺

3
4A

3
4 (̺)

( ∫

B(r)

|∇ v|2 dx
) 3

4

+

+
1

r
3
2

[
c̺

3
2A

1
2 (̺)

( ∫

B(̺)

|∇ v|2 dx
) 1

2

+
( r
̺

)3

̺A(̺)
] 3

2
}
≤

≤ c
{( r

̺

)3

A
3
2 (̺) +

( ∫

B(̺)

|∇ v|2 dx
) 3

4
[
̺

3
4 +

̺
9
4

r
3
2

]
A

3
4 (̺)

}
.



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 142

142 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

Integrating the latter inequality in t on ]t0 − r2, t0[, we establish
∫

Q(r)

|v|3 dz ≤ c
{
r2
( r
̺

)3

A
3
2 (̺) +

+
[
̺

3
4 +

̺
9
4

r
3
2

]
A

3
4 (̺)

t0∫

t0−r2

dt
( ∫

B(x0,̺)

|∇ v|2 dx
) 3

4
}
≤

≤ c
{
r2
( r
̺

)3

A
3
2 (̺) +

[
̺

3
4 +

̺
9
4

r
3
2

]
A

3
4 (̺)r

1
2

( ∫

Q(̺)

|∇ v|2 dz
) 3

4
}
≤

≤ c
{
r2
( r
̺

)3

A
3
2 (̺) +

[
̺

3
4 +

̺
9
4

r
3
2

]
A

3
4 (̺)r

1
2E

3
4 (̺) ̺

3
4

}
.

It remains to notice that

[
̺

3
4 +

̺
9
4

r
3
2

]
r

1
2 ̺

3
4 =

[(̺
r

) 3
2

+
(̺
r

)3]
r2 ≤ 2

(̺
r

)3

r2

and then complete the proof of Lemma 6.2.

Lemma 6.3. For any 0 < R ≤ 1,

A(R/2) + E(R/2) ≤ c
[
C

2
3 (R) + C

1
3 (R)D

2
3
0 (R)

+A
1
2 (R)C

1
3 (R)E

1
2 (R)

]
. (6.1.36)

Proof Picking up a suitable cut-off function in energy inequality (6.1.4),

we get the following estimates

A(R/2) + E(R/2) ≤ c
{ 1

R3

∫

Q(R)

|v|2 dz +

+
1

R2

∫

Q(R)

∣∣∣|v|2 − [|v|2],R
∣∣∣ |v| dz +

+
1

R2

( ∫

Q(R)

|q − [q],R|
3
2 dz

) 2
3
( ∫

Q(R)

|v|3 dz
) 1

3
}
.

Since

1

R3

∫

Q(z0,R)

|v|2 dz ≤ cC
2
3 (R),
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we find

A(R/2) + E(R/2) ≤ c
{
C

2
3 (R) + C

1
3 (R)D

2
3
0 (R)+

+ 1
R2

∫
Q(z0,R)

∣∣∣|v|2 − [|v|2],R
∣∣∣ |v| dz

}
.





(6.1.37)

Application of Hölder inequality to the last term on the right-hand side of

(6.1.37) gives:

S ≡
∫

Q(R)

∣∣∣|v|2 − [|v|2],R
∣∣∣ |v| dz ≤

≤
0∫

−R2

dt
( ∫

B(R)

∣∣∣|v|2 − [|v|2],R
∣∣∣
3
2

dx
) 2

3
( ∫

B(R)

|v|3 dx
) 1

3

.

By the Gagliardo-Nirenberg inequality
( ∫

B(R)

∣∣∣|v|2 − [|v|2],R
∣∣∣
3
2

dx
) 2

3 ≤ c

∫

B(R)

|∇ v| |v| dx,

we have

S ≤ c

0∫

−R2

dt
( ∫

B(R)

|∇ v|2 dx
) 1

2
( ∫

B(R)

|v|2 dx
) 1

2
( ∫

B(R)

|v|3 dx
) 1

3 ≤

≤ cR
1
2A

1
2 (R)

0∫

−R2

dt
( ∫

B(R)

|∇ v|2 dx
) 1

2
( ∫

B(R)

|v|3 dx
) 1

3 ≤

≤ cR
1
2A

1
2 (R)

( ∫

Q(R)

|v|3 dz
) 1

3
( 0∫

−R2

dt
( ∫

B(R)

|∇ v|2 dx
) 3

4
) 2

3 ≤

≤ R
1
2+

2
3A

1
2 (R)C

1
3 (R)R

1
3

( ∫

Q(R)

|∇ v|2 dz
) 1

2 ≤

≤ cR2A
1
2 (R)C

1
3 (R)E

1
2 (R).

Now, (6.1.36) follows from the latter relation and from (6.1.37). Lemma

6.3 is proved.

Now, our goal is to work out an estimate for the pressure.

Lemma 6.4. Let 0 < ̺ ≤ 1. Then

D0(r) ≤ c
[( r
̺

) 5
2

D0(̺) +
(̺
r

)2

A
1
2 (̺)E(̺)

]
(6.1.38)

for all r ∈]0, ̺].
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Proof We split the pressure in two parts

q = p1 + p2 (6.1.39)

in B(̺) so that p1 is a unique solution to the variational identity
∫

B(̺)

p1∆ϕdx = −
∫

B(̺)

(τ − τ̺) : ∇2ϕdx, (6.1.40)

in which ϕ is an arbitrary test function ofW 2
3 (B(̺)) satisfying the boundary

condition ϕ|∂B(̺) = 0 and

τ := (v − c̺)⊗ (v − c̺), τ̺ := [(v − c̺)⊗ (v − c̺)],̺, c̺ := [v],̺.

Here, time t is considered as a parameter. Clearly,

∆p2 = 0 (6.1.41)

in B(̺).

We can easily find the bound for p1 (by a suitable choice of the test

function in (6.1.40))
∫

B(̺)

|p1|
3
2 dx ≤ c

∫

B(̺)

|τ − τ̺|
3
2 dx.

The Gagliardo-Nirenberg inequality
∫

B(̺)

|p1|
3
2 dx ≤ c

( ∫

B(̺)

|v − c̺||∇v|dx
) 3

2

and Hölder inequality imply
∫

B(̺)

|p1|
3
2 dx ≤ c

( ∫

B(̺)

|v − c̺|2dx
) 3

4
( ∫

B(̺)

|∇v|2dx
) 3

4

.

On the other hand, Poincaré’s inequality∫

B(̺)

|v − c̺|2dx ≤ c̺2
∫

B(̺)

|∇v|2dx

and the minimality property of c̺∫

B(̺)

|v − c̺|2dx ≤
∫

B(̺)

|v|2dx

lead to the estimate

1

̺2

0∫

−̺2

∫

B(̺)

|p1|
3
2 dz ≤ cE(̺)A

1
2 (̺). (6.1.42)
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By the mean value theorem for harmonic function p2, we have for 0 <

r ≤ ̺/2

sup
x∈B(r)

|p2(x, t)− [p2],r(t)|
3
2 ≤ cr

3
2 sup
x∈B(̺/2)

|∇p2(x, t)|
3
2

≤ c
( r

̺4

∫

B(̺)

|p2(x, t) − [p2],̺(t)|dx
) 3

2

(6.1.43)

≤ c

̺3

( r
̺

) 3
2

∫

B(̺)

|p2(x, t)− [p2],̺(t)|
3
2 dx.

Next, by (6.1.39) and (6.1.43),

D0(r) ≤
c

r2

∫

Q(r)

|p1 − [p1],r|
3
2 dz +

c

r2

∫

Q(r)

|p2 − [p2],r|
3
2 dz

≤ c

r2

∫

Q(r)

|p1|
3
2 dz +

c

r2
1

̺3

( r
̺

) 3
2

0∫

−r2

r3
∫

B(̺)

|p2(x, t)− [p2],̺(t)|
3
2 dx

≤ c
(̺
r

)2

E(̺)A
1
2 (̺) + c

( r
̺

) 5
2 1

̺2

∫

Q(̺)

|p2 − [p2],̺|
3
2 dz

≤ c
(̺
r

)2

E(̺)A
1
2 (̺) + c

( r
̺

) 5
2
[ 1

̺2

∫

Q(̺)

|q − [q],̺|
3
2 dz

+
1

̺2

∫

Q(̺)

|p1 − [p1],̺|
3
2 dz

]

≤ c
[( r
̺

) 5
2

D0(̺) +
(̺
r

)2

E(̺)A
1
2 (̺)

]
.

So, inequality (6.1.38) is shown. Lemma 6.4 is proved.

Proof of Theorem 1.4 It follows from (6.1.34), (6.1.38), and the

assumptions of Theorem 1.4 that:

C(r) ≤ c
[(̺
r

)3

A
3
4 (̺)ε

3
4 +

( r
̺

)3

A
3
2 (̺)

]
(6.1.44)
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and

D0(r) ≤ c
[( r
̺

) 5
2

D0(̺) +
(̺
r

)2

A
1
2 (̺)ε

]
. (6.1.45)

Introducing the new quantity

E(r) = A
3
2 (r) +D2

0(r),

we derive from local energy inequality (6.1.36) the following estimate

E(r) ≤ c
[
C(2r) + C

1
2 (2r)D0(2r) +A

3
4 (2r)C

1
2 (2r)ε

3
4

]
+D2

0(r)

≤ c
[
C(2r) +D2

0(2r) +A
3
4 (2r)C

1
2 (2r)ε

3
4

]
. (6.1.46)

Now, let us assume that 0 < r ≤ ̺/2 < ̺ ≤ 1. Replacing r with 2r in

(6.1.44) and (6.1.45), we can reduce (6.1.46) to the form

E(r) ≤ c
[(̺
r

)3

A
3
4 (̺)ε

3
4 +

( r
̺

)3

A
3
2 (̺)

+
( r
̺

)5

D2
0(̺) +

(̺
r

)4

A(̺)ε2

+A
3
4 (2r)

((̺
r

)3

A
3
4 (̺)ε

3
4 +

( r
̺

)3

A
3
2 (̺)

) 1
2

E
3
4
0

]

≤ c
[( r
̺

)3

A
3
2 (̺) +

( r
̺

)5

D2
0(̺) +

( r
̺

) 3
2

A
3
4 (̺)ε

3
4A

3
4 (̺)

(̺
r

) 3
4

+
(̺
r

) 3
2+

3
4

A
3
4+

3
8 (̺)ε

3
4+

3
8 +

(̺
r

)4

A(̺)ε2 +
(̺
r

)3

A
3
4 (̺)ε

3
4

]
.

Here, the obvious inequality A(2r) ≤ c̺A(̺)/r has been used. Applying

Young inequality with an arbitrary positive constant δ, we show that

E(r) ≤ c
( r
̺

) 3
4

(ε
3
4 + 1)E(̺) + cδE(̺)

+c(δ)
((̺

r

)6

ε
3
2 +

(̺
r

)12

ε6 +
(̺
r

)9

ε
9
2

)]
.

Therefore,

E(r) ≤ c
[( r
̺

) 3
4

(ε
3
4 + 1) + δ

]
E(̺) + c(δ)

(̺
r

)12

(ε6 + ε
9
2 + ε

3
2 ). (6.1.47)
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Inequality (6.1.47) holds for r ≤ ̺/2 and can be rewritten as follows:

E(ϑ̺) ≤ c
[
ϑ

3
4 (ε

3
4 + 1) + δ

]
E(̺) + c(δ)ϑ−12(ε6 + ε

9
2 + ε

3
2 ) (6.1.48)

for any 0 < ϑ ≤ 1/2 and for any 0 < ̺ ≤ 1.

Now, assuming that ε ≤ 1, let us fix ϑ and δ to provide the conditions:

2cϑ
1
4 < 1/2, 0 < ϑ ≤ 1/2, cδ < ϑ

1
2 /2. (6.1.49)

Obviously, ϑ and δ are independent of ε. So,

E(ϑ̺) ≤ ϑ
1
2 E(̺) +G (6.1.50)

for any 0 < ̺ ≤ 1, where G = G(ε) → 0 as ε→ 0.

Iterations of (6.1.50) give us

E(ϑk̺) ≤ ϑ
k
2 E(̺) + cG

for any natural numbers k and for any 0 < ̺ ≤ 1. Letting ̺ = 1, we find

E(ϑk) ≤ ϑ
k
2 E(1) + cG (6.1.51)

for the same values of k. It can be easily deduced from (6.1.51) that

E(r) ≤ c(r
1
2 E(1) +G(ε)) (6.1.52)

for all 0 < r ≤ 1/2. Now, (6.1.44) and (6.1.45) imply

C(r) +D0(r) ≤ c
[
A

3
4 (2r)ε

3
4 +A

3
2 (2r)

]
+ c(r

1
4 E 1

2 (1) +G
1
2 (ε))

≤ c
[
A

3
2 (2r) + ε

3
2

]
+ c(r

1
4 E 1

2 (1) +G
1
2 (ε))

≤ c
[
c((2r)

1
2 E(1) +G(ε)) + ε

3
2

]
+ c(r

1
4 E 1

2 (1) +G
1
2 (ε)).

Now we see that, for sufficiently small ε and sufficiently small r0,

C(r0) +D0(r0) < ε0,

where ε0 is a number of Lemma 6.1. Since v and q − [q],r0 are a suitable

weak solution in Q(r0), Lemma 6.1 and the Navier-Stokes scaling yields

required statement. Theorem 1.4 is proved.

Now, we are in a position to speculate about ε-regularity theory. Quan-

tities that are invariant with respect to the Navier-Stokes scaling

vλ(y, s) = λv(x0 + λy, t0 + λ2s),

qλ(y, s) = λ2q(x0 + λy, t0 + λ2s) (6.1.53)
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play the crucial role in this theory. By the definition, such quantities are

defined on parabolic balls Q(r) and have the property

F (v, q; r) = F (vλ, qλ; r/λ).

There are two types of statements in the ε-regularity theory for suitable

weak solutions to the Navier-Stokes equations and the first one reads:

Suppose that v and q are a suitable weak solution to the Navier-Stokes

equations in Q. There exist universal positive constants ε and {ck}∞k=1

such that if F (v, q; 1) < ε then |∇kv(0)| < ck, k = 0, 1, 2, .... Moreover, the

function z 7→ ∇kv(z) is Hölder continuous (relative to the parabolic metric)

with any exponent less 1/3 in the closure of Q(1/2).

An important example of such kind of quantities appears in Lemma 6.1

and is as follows:

F (v, q; r) =
1

r2

∫

Q(r)

(
|v|3 + |q| 32

)
dz.

In the other type of statements, it is supposed that our quantity F is

independent of the pressure q:

Let v and q be a suitable weak solution in Q. There exists a universal

positive constant ε with the property: if sup0<r<1 F (v; r) < ε then z = 0 is

a regular point. Moreover, for any k = 0, 1, 2, ..., the function z 7→ ∇kv(z)

is Hölder continuous with any exponent less 1/3 in the closure of Q(r) for

some positive r.

Dependence on the pressure in the above statement is hidden. In fact,

the radius r is determined by the L 3
2
-norm of the pressure over the whole

parabolic cylinder Q.

To illustrate the second statement, let us consider several examples. In

the first one, we deal with the Ladyzhenskaya-Prodi-Serrin type quantities

F (v; r) =Ms,l(v; r) = ‖v‖ls,l,Q(r) =

0∫

−r2

( ∫

B(r)

|v|sdx
) l

s

dt

provided

3

s
+

2

l
= 1

and s ≥ 3. Local regularity results connected with those quantities have

been proved partially by J. Serrin in [Serrin (1962)] and then by M. Struwe

in [Sruwe (1988)] for the velocity field v having finite energy even with no
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assumption on the pressure. However, in such a case, we might loose Hölder

continuity.

Energy scale-invariant quantities present an important example of the

second kind of quantities. Some of them have been listed above. For more

examples of scaled energy quantities, we refer to the paper [Gustafson et al.

(2007)]. It is worthy to note that the second statement applied to the scaled

dissipation E is the famous Caffarelli-Kohn-Nirenberg theorem, which is

Theorem 1.4. It gives the best estimate for Hausdorff’s dimension of the

singular set for a class of weak Leray-Hopf solutions to the Cauchy problem.

A certain generalization of the Caffarelli-Kohn-Nirenberg theorem itself has

been proved in [Seregin (2007)] and is formulated as follows.

Proposition 1.5. Let v and q be a suitable weak solution to the Navier-

Stokes equations in Q. Given M > 0, there exists a positive number ε(M)

having the property: if two inequalities lim supr→0E(r) < M and

lim inf
r→0

E(r) < ε(M)

hold, then z = 0 is a regular point of v.

Typical examples of the third group of quantities invariant to the Navier-

Stokes scaling are:

G1(v; r) = sup
z=(x,t)∈Q(r)

|x||v(z)|,

G2(v; r) = sup
z=(x,t)∈Q(r)

√
−t|v(z)|.

A proof of the corresponding statements has been presented in [Seregin

and Zajaczkowski (2006)], see also [Takahashi (1990)], [Kim and Kozono

(2004)], and [Chen and Price (2001)] for similar results.

6.2 Bounded Ancient Solutions

Definition 6.2. A bounded divergence free field u ∈ L∞(Q−;Rn) is called

a weak bounded ancient solution (or simply bounded ancient solution) to

the Navier-Stokes equations if
∫

Q−

(u · ∂tw + u⊗ u : ∇w + u ·∆w)dz = 0

for any w ∈ C∞
0,0(Q−).
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Without loss of generality, we may assume that |u(z)| ≤ 1 a.e. in Q−.
If not, the function uλ(x, t) = λu(λx, λ2t) with λ = 1/‖u‖∞,Q− will be a

bounded ancient solution satisfying the condition |uλ(z)| ≤ 1 a.e. in Q−.
Our aim is to analyze differentiability properties of an arbitrary bounded

ancient solution. Before stating and proving the main result, let us formu-

late several auxiliary lemmata.

Lemma 6.5. For any F = L∞(Rn;Mn×n), there exists a unique function

qF ∈ BMO(Rn) that [qF ]B(1) = 0 and

∆qF = −div divF = −Fij,ij in R
3

in the sense of distributions. Moreover, the following estimate is valid

‖qF‖BMO(Rn) ≤ c(n)‖F‖∞,Rn .

Here, the space BMO(Rn) consists of all functions f ∈ L1,loc(R
n) with

bounded mean oscillation, i.e.,

sup
{ 1

|B(R)|

∫

B(x0,R)

|f − [f ]B(x0,R)|dx : ∀x0 ∈ R
n, ∀R > 0

}
<∞.

[f ]Ω is the mean value of a function f over a spatial domain Ω ∈ R
n. The

mean value of a function g over a space-time domain Q is denoted by (g)Q.

Lemma 6.6. Assume that functions f ∈ Lm(B(2)) and q ∈ Lm(B(2))

satisfy the equation

∆q = −divf in B(2).

Then
∫

B(1)

|∇q|mdx ≤ c(m,n)
( ∫

B(2)

|f |mdx+

∫

B(2)

|q − [q]B(2)|mdx
)
.

Lemma 6.7. Assume that functions f ∈ Lm(Q(2)) and u ∈ W 1,0
m (Q(2))

satisfy the equation

∂tu−∆u = f in Q(2).

Then u ∈ W 2,1
m (Q(1)) and the following estimate is valid:

‖∂tu‖m,Q(1) + ‖∇2u‖m,Q(1) ≤ c(m,n)
[
‖f‖m,Q(2) + ‖u‖W 1,0

m (Q(2))

]
.
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Lemma 6.5 is proved with the help of the singular integral theory, see

[Stein (1970)]. Proof of Lemmata 6.6 and 6.7 can be found, for example, in

[Ladyzhenskaya and Uraltseva (1973)] and [Ladyzhenskaya et al. (1967)].

If we let

F (·, t) = u(·, t)⊗ u(·, t),
then, by Lemma 6.5, there exists a unique function

pu⊗u ∈ L∞(−∞, 0;BMO(Rn))

which satisfies the condition [pu⊗u]B(1)(t) = 0 and the equation

∆pu⊗u(·, t) = −div divF (·, t) in R
n

for all t ≤ 0.

To state the main result of this section, we introduce the space

Lm(Q−) := { sup
z0∈Q−

‖f‖m,Q(z0,1) <∞}.

Theorem 2.6. Let u be an arbitrary bounded ancient solution. For any

number m > 1,

|∇u|+ |∇2u|+ |∇pu⊗u| ∈ Lm(Q−).

Moreover, for each t0 ≤ 0, there exists a function bt0 ∈ L∞(t0 − 1, t0) with

the following property

sup
t0≤0

‖bt0‖L∞(t0−1,t0) ≤ c(n) < +∞.

If we let ut0(x, t) = u(x, t) + bt0(t) in Qt0 = R
n×]t0 − 1, t0[, then, for any

number m > 1 and for any point x0 ∈ R
n, the uniform estimate

‖ut0‖W 2,1
m (Q(z0,1))

≤ c(m,n) < +∞, z0 = (x0, t0),

is valid and, for a.a. z = (z, t) ∈ Qt0 , functions u and ut0 obey the system

of equations

∂tu
t0 + divu⊗ u−∆u = −∇pu⊗u, divu = 0.

Remark 6.2. The first equation of the above system can be rewritten in

the following way

∂tu+ divu⊗ u−∆u = −∇pu⊗u − b′t0 , b′t0(t) = dbt0(t)/dt,

in Qt0 in the sense of distributions. So, the real pressure field in Qt0 is the

following distribution pu⊗u + b′t0 · x.
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Remark 6.3. We can find a measurable vector-valued function b defined

on ]−∞, 0[ and having the following property. For any t0 ≤ 0, there exists

a constant vector ct0 such that

sup
t0≤0

‖b− ct0‖L∞(t0−1,t0) < +∞.

Moreover, the Navier-Stokes system takes the form

∂tu+ divu⊗ u−∆u = −∇(pu⊗u + b′ · x), divu = 0

in Q− in the sense of distributions.

Remark 6.4. In most of our applications, we shall have some additional

global information about the pressure field, which will make it possible to

conclude that b′ = 0. For example, it is true if the pressure field belongs to

L∞(−∞, 0;BMO(Rn)), i.e., u is a mild bounded ancient solution, see the

next section for details and definitions.

We can exclude the pressure field completely by considering the equation

for vorticity ω = ∇ ∧ u. Differentiability properties of ω are described by

the following theorem.

Theorem 2.7. Let u be an arbitrary bounded ancient solution. For any

m > 1, we have the following statements. If n = 2, then

ω = ∇⊥u = u2,1 − u1,2 ∈ W2,1
m (Q−) := {ω,∇ω,∇2ω, ∂tω ∈ Lm(Q−)}

and

∂tω + u · ∇ω −∆ω = 0 a.e. in Q−.

If n = 3, then

ω = ∇ ∧ u ∈ W2,1
m (Q−;R

3)

and

∂tω + u · ∇ω −∆ω = ω · ∇u a.e. in Q−.

Remark 6.5. We could analyze smoothness of solutions to the vorticity

equations further and it would be a good exercise. However, regularity

results stated in Theorem 2.7 are sufficient for our purposes.

Remark 6.6. By the embedding theorems, see [Ladyzhenskaya et al.

(1967)], functions ω and ∇ω are Hölder continuous in Q− and uniformly

bounded there.
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Proof of Theorem 2.6: Step 1. Energy estimate. Fix an arbi-

trary number t0 < 0. Let kε(z) be a standard smoothing kernel (mollifier).

We use the following notation for mollified functions:

F ε(z) =

∫

Q−

kε(z − z′)F (z′)dz′, F = u⊗ u,

uε(z) =

∫

Q−

kε(z − z′)u(z′)dz′.

Assume that w ∈
◦
C∞

0 (Qt0
− ), where Qt0

− = R
n×]−∞, t0[. For sufficiently

small ε (0 < ε < ε(t0)), w
ε belongs to

◦
C∞

0 (Q−) as well. Then using known

properties of smoothing kernel and Definition 6.2, we find
∫

Q−

w · (∂tuε + divF ε −∆uε)dz = 0, ∀w ∈
◦
C

∞
0 (Qt0

− ).

It is easy to see that in our case there exists a smooth function pε with the

following property

∂tu
ε + divF ε −∆uε = −∇pε, divuε = 0 (6.2.1)

in Qt0
− . Let us decompose pε so that

pε = pF ε + p̃ε. (6.2.2)

It is not difficult to show that the function ∇pF ε is bounded in Qt0
− (exer-

cise). So, it follows from (6.2.1) and (6.2.2) that

∆p̃ε = 0 in Qt0
− , ∇p̃ε ∈ L∞(Qt0

− ;Rn).

By the Liouville theorem for harmonic functions, there exists a function

aε : [−∞, t0[→ R
n such that

∇p̃ε(x, t) = aε(t), x ∈ R
n, −∞ < t ≤ t0.

So, we have

∂tu
ε + divF ε −∆uε = −∇pF ε − aε, divuε = 0 (6.2.3)

in Qt0
− .

Now, let us introduce new functions

bεt0(t) =

t∫

t0−1

aε(τ)dτ, t0 − 1 ≤ t ≤ t0,
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vε(x, t) = uε(x, t) + bεt0(t), z = (x, t) ∈ Qt0 .

Using them, we may rewrite system (6.2.3) so that

∂tvε −∆vε = −divF ε −∇pF ε , divvε = 0 (6.2.4)

in Qt0
− .

Fix an arbitrary cut-off function ϕ so that

0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B(1), suppϕ ⊂ B(2).

And then let ϕx0(x) = ϕ(x− x0).

Now, we can derive the energy identity from (6.2.4), multiplying the

latter by ϕ2
x0
vϕ and integrating the product by parts. As a result, we have

I(t) =

∫

Rn

ϕ2
x0
(x)|vε(x, t)|2dx+ 2

t∫

t0−1

∫

Rn

ϕ2
x0
|∇vε|2dxdt′ =

=

∫

Rn

ϕ2
x0
(x)|vε(x, t0 − 1)|2dx+

t∫

t0−1

∫

Rn

∆ϕ2
x0
|vε|2dxdt′+

+

t∫

t0−1

∫

Rn

(pF ε − [pF ε ]B(x0,2))vε · ∇ϕ2
x0
dxdt′+

+

t∫

t0−1

∫

Rn

(F ε − [F ε]B(x0,2)) : ·∇(ϕ2
x0
vε)dxdt

′.

Introducing the quantity

αε(t) = sup
x0∈Rn

∫

B(x0,1)

|vε(x, t)|2dx

and taking into account that vε(·, t0−1) = uε(·, t0−1) and |uε(·, t0−1)| ≤ 1,

we can estimate the right-hand side of the energy identity in the following

way

I(t) ≤ c(n) + c(n)

t∫

t0−1

αε(t
′)dt′+

+c(n)
( t0∫

t0−1

∫

B(x0,2)

|pF ε − [pF ε ]B(x0,2)|2dxdt
) 1

2
( t∫

t0−1

αε(t
′)dt′

) 1
2

+
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+c(n)
( t0∫

t0−1

∫

B(x0,2)

|F ε − [F ε]B(x0,2)|2dxdt
) 1

2
( t∫

t0−1

∫

Rn

ϕ2
x0
|∇vε|2dxdt′+

(6.2.5)

+

t∫

t0−1

αε(t
′)dt′

) 1
2

, t0 − 1 ≤ t ≤ t0.

Next, since |F ε| ≤ c(n), we find two estimates

t0∫

t0−1

∫

B(x0,2)

|F ε − [F ε]B(x0,2)|2dxdt ≤ c(n)

and

t0∫

t0−1

∫

B(x0,2)

|pF ε − [pF ε ]B(x0,2)|2dxdt ≤ c(n)‖pF ε‖2L∞(−∞,t0;BMO(Rn))

≤ c(n)‖F ε‖2
L∞(Q

t0
− )

≤ c(n).

The latter estimates, together with (6.2.5), implies two inequalities:

αε(t) ≤ c(n)
(
1 +

t∫

t0−1

αε(t
′)dt′

)
, t0 − 1 ≤ t ≤ t0

and

sup
x0∈Rn

t0∫

t0−1

∫

B(x0,1)

|∇vε|2dxdt ≤ c(n)
(
1 +

t0∫

t0−1

αε(t)dt
)
.

Usual arguments allows us to conclude that:

sup
t0−1≤t≤t0

αε(t) + sup
x0∈Rn

t0∫

t0−1

∫

B(x0,1)

|∇uε|2dxdt ≤ c(n). (6.2.6)

It should be emphasized that the right-hand size in (6.2.6) is independent

of t0. In particular, estimate (6.2.6) gives:

sup
t0−1≤t≤t0

bεt0(t) ≤ c(n).
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Now, let us see what happens if ε → 0. Selecting a subsequence if

necessary and taking the limit as ε→ 0, we get the following facts:

bεt0
⋆
⇀bt0 in L∞(t0 − 1, t0;R

n);

the estimate

‖bt0‖L∞(t0−1,t0) + sup
x0∈Rn

t0∫

t0−1

∫

B(x0,1)

|∇u|2dxdt ≤ c(n) < +∞ (6.2.7)

is valid for all t0 < 0;

the system

∂tu
t0 + divu⊗ u−∆u = −∇p− u⊗ u, divu = 0

holds in Qt0 in the sense of distributions.

The case t0 = 0 can be treated by passing to the limit as t0 → 0.

Step 2. Bootstrap Arguments. By (6.2.7),

f = divF = u · ∇u ∈ L2(Q−;R
n).

Then Lemma 6.6 in combination with shifts shows that

∇pu⊗u ∈ L2(Q−;R
n).

Next, obviously, the function ut0 satisfies the system of equations

∂tu
t0 −∆ut0 = −u · ∇u−∇pu⊗u ∈ L2(Q−;R

n).

Using the invariance with respect to shifts and Lemma 6.7, one can conclude

that

ut0 ∈W 2,1
2 (Q(z0, τ2);R

n), 1/2 < τ2 < τ1 = 1,

and, moreover, the estimate

‖ut0‖W 2,1
2 (Q(z0,τ2))

≤ c(n, τ2)

holds for any z0 = (x0, t0), where x0 ∈ R
n and t0 ≤ 0. A parabolic

embedding theorem, see [Ladyzhenskaya et al. (1967)], ensures that:

∇ut0 = ∇u ∈W 1,0
m2

(Q(z0, τ2);R
n)

for
1

m2
=

1

m1
− 1

n+ 2
, m1 = 2.

By Lemma 6.6, by shifts, and by scaling, for 1/2 < τ ′3 < τ2, we have the

following estimate∫

B(x0,τ ′
3)

|∇pu⊗u(·, t)|m2dx ≤ c(n, τ2, τ
′
3)
[ ∫

B(x0,τ ′
3)

|∇u(·, t)|m2dx+ 1
]
.
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In turn, Lemma 6.7 implies two statements:

ut0 ∈W 2,1
m2

(Q(z0, τ3);R
n), 1/2 < τ3 < τ ′3

and

‖ut0‖W 2,1
m2

(Q(z0,τ3))
≤ c(n, τ3, τ

′
3).

Then, again, by the embedding theorem, we find

∇ut0 = ∇u ∈W 1,0
m3

(Q(z0, τ3);R
n)

provided

1

m3
=

1

m2
− 1

n+ 2
.

Now, let us take an arbitrary large number m > 2 and fix it. Find α as

an unique solution to the equation

1

m
=

1

2
− α

n+ 2
.

Next, we let k0 = [α]+1, where [α] is the entire part of the number α. And

then we determine the number mk0+1 satisfying the identity

1

mk0+1
=

1

2
− k0
n+ 2

.

Obviously, mk0+1 > m. Setting

τk+1 = τk −
1

4

1

2k
, τ1 = 1, k = 1, 2, , ,

and repeating our previous arguments k0 times, we conclude that:

ut0 ∈ W 2,1
mk0+1

(Q(z0, τk0+1);R
n)

and

‖ut0‖W 2,1
mk0+1

(Q(z0,τk0+1))
≤ c(n,m).

Thanks to the inequality τk > 1/2 for any natural numbers k, we complete

the proof of Theorem 2.6. �

Proof of Theorem 2.7 Let us consider the case n = 3. The case

n = 2 is in fact easier. So, we have

∂tω −∆ω = ω · ∇u − u · ∇ω ≡ f.

Take an arbitrary numberm > 2 and fix it. By Theorem 2.6, the right-hand

side has the following property

|f | ≤ c(n)(|∇2u|+ |∇u|2) ∈ Lm(Q(z0, 2))

and the norm of f in Lm(Q(z0, 2)) is dominated by a constant depending

only on m and being independent of z0. It remains to apply Lemma 6.7

and complete the proof of Theorem 2.7. �
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6.3 Mild Bounded Ancient Solutions

In this section, we assume that z = 0 is a singular point. Making use of the

space-time shift and the Navier-Stokes scaling, we can reduce the general

problem of local regularity to a particular one that in a sense mimics the

first time singularity.

Proposition 3.8. Let v and q be a suitable weak solution to the Navier-

Stokes equations in Q and z = 0 be a singular point of v. There exist two

functions ṽ and q̃ having the following properties:

(i) ṽ ∈ L3(Q) and q̃ ∈ L 3
2
(Q) obey the Navier-Stokes equations in Q in

the sense of distributions;

(ii) ṽ ∈ L∞(B×]− 1,−a2[) for all a ∈]0, 1[;
(iii) there exists a number 0 < r1 < 1 such that ṽ ∈ L∞({(x, t) : r1 <

|x| < 1, −1 < t < 0}).
Moreover, functions ṽ and q̃ are obtained from v and q with the help of

the space-times shift and the Navier-Stokes scaling and the origin remains

to be a singular point of ṽ.

We recall z = 0 is a regular point of v if there exists a positive number

r such that v is Hölder continuous in the closure Q(r). A point z = 0 is a

singular point if it is not a regular one.

Proof Consider now an arbitrary suitable weak solution v and q in

Q. Let S ⊂ B×] − 1, 0] be a set of singular points of v. It is closed in

Q. As it was shown in [Caffarelli et al. (1982)], P1(S) = 0, where P1 is

the one-dimensional parabolic Hausdorff measure. By assumptions, S 6= ∅.
We can choose number R1 and R2 satisfying 0 < R2 < R1 < 1 such that

S ∩Q(R1) \Q(R2) = ∅ and S ∩B(R2)×]−R2
2, 0] 6= ∅. We put

t0 = inf{t : (x, t) ∈ S ∩B(R2)×]−R2
2, 0]}.

Clearly, (x0, t0) ∈ S for some x0 ∈ B(R2). In a sense, t0 is the instant

of time when singularity of our suitable weak solution v and q appears in

Q(R1). Next, the one-dimensional Hausdorff measure of the set

St0 = {x∗ ∈ B(R2) : (x∗, t0) is a singular point}
is zero as well. Therefore, given x0 ∈ St0 , we can find sufficiently small

0 < r <
√
R2

2 + t0 such that B(x0, r) ⋐ B(R2) and ∂B(x0, r) ∩ St0 = ∅.
Since the velocity field v is Hölder continuous at regular points, we can

ensure that all statements of Proposition 3.8 hold in the parabolic ball

Q(z0, r) with z0 = (x0, t0). We may shift and re-scale our solution if z0 6= 0

and r 6= 1. �
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In what follows, it is always deemed that such a replacement of v and

q with ṽ and q̃ has been already made. Coming back to the original nota-

tion, we assume that functions v and q satisfy all the properties listed in

Proposition 3.8 and z = 0 is a singular point of v.

One of the most powerful methods to study possible singularities is a

blowup technique based on the Navier-Stokes scaling

u(k)(y, s) = λkv(x, t), p(k)(y, s) = λ2kq(x, t)

with

x = x(k) + λky, x = tk + λ2ks,

where x(k) ∈ R
3, −1 < tk ≤ 0, and λk > 0 are parameters of the scaling

and λk → 0 as k → +∞. It is supposed that functions v and q are extended

by zero to the whole R
3 × R. A particular selection of scaling parameters

x(k), tk, and λk depends upon a problem under consideration.

Now, our goal is to describe a universal method that makes it possible

to reformulate the local regularity problem as a classical Liouville type

problem for the Navier-Stokes equations. To see how things work, let us

introduce the function

M(t) = sup
−1<τ≤t

‖v(·, τ)‖∞,B(r)

for some r ∈]r1, 1[. It tends to infinity as time t goes to zero from the left

since the origin is a singular point of v. Thanks to the obvious properties

of the function M , one can choose parameters of the scaling in a particular

way letting λk = 1/Mk, where a sequence Mk is defined as

Mk = ‖v(, tk)‖∞,B(r) = |v(x(k), tk)|
with x(k) ∈ B(r1) for sufficiently large k. Before discussing what happens if

k tends to infinity, let us introduce a subclass of bounded ancient (backward)

solutions playing an important role in the regularity theory of the Navier-

Stokes equations.

Definition 6.3. A bounded vector field u, defined on R
3×]−∞, 0[, is called

a mild bounded ancient solution to the Navier-Stokes equation if there exists

a function p in L∞(−∞, 0;BMO(R3)) such that u and p satisfy the Navier-

Stokes system

∂tu+ div u⊗ u−∆u+∇p = 0,

div u = 0

in R
3×]−∞, 0[ in the sense of distributions.
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The notion of mild bounded ancient solutions has been introduced in

[Koch et al. (2009)]. It has been proved there that u has continuous deriva-

tives of any order in both spatial and time variables. Actually, the definition

accepted here is different but equivalent to the one given in [Koch et al.

(2009)]. We follow [Seregin and Šverák (2009)].

Our first observation is that all mild bounded ancient solutions are very

smooth.

Proposition 3.9. Let u be an arbitrary mild bounded ancient solution. The

u is of class C∞ and moreover

sup
(x,t)∈Q−

(|∂kt ∇lu(x, t)|+ |∂kt ∇l+1p(x, t)|)+

+‖∂kt p‖L∞(BMO) ≤ C(k, l, ‖p‖L∞(BMO)) <∞

for any k, l = 0, 1, ....

Proof Step 1 Let us show that

∇u ∈ L2(Q−). (6.3.1)

Here, Q− = R
3×]−∞, 0[ and

L2(Q−) = L2,unif(Q−) := {‖f‖L2,loc(Q−) := sup
z0∈Q−

‖f‖L2(Q(z0,1)) <∞}.

Using a standard mollification kernel ω̺, let us introduce

f̺(z) =

∫

Rn

ω̺(z − z′)f(z′)dz′,

where z = (x, t). Then from Definition 6.3, it follows that

∂tu̺ + div (u⊗ u)̺ −△u̺ = −∇p̺, div u̺ = 0. (6.3.2)

Let us test the first equation in (6.3.2) with ϕu̺. Then after integration by

parts, we have

∫

Rn

ϕ(x, t0)|u̺(x, t0)|2dx+ 2

t0∫

t1

∫

Rn

ϕ|∇u̺|2dxdt =

=

∫

Rn

ϕ(x, t1)|u̺(x, t1)|2dx+

t0∫

t1

∫

Rn

|u̺|2(△ϕ+ ∂tϕ)dxdt+
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+2

t0∫

t1

∫

Rn

(ϕ(u ⊗ u)̺ : ∇u̺ + (u ⊗ u)̺ : u̺ ⊗∇ϕ+ (p̺ − a(t))u̺ · ∇ϕ)dxdt

with an arbitrary function a = a(t). Choosing an appropriate non-negative

cut-off function ϕ, we can deduce from the above identity

sup
z0∈Q−

‖∇u̺‖2,Q(z0,1) ≤ c <∞

with a constant c independent of ̺. This certainly implies (6.3.1).

Step 2 Let our non-negative function ϕ belong to the space C∞
0 (Rn×R).

Then from the above identity, we can derive the local energy inequality by

passing to the limit as ̺→ 0:

∫

Rn

ϕ(x, t0)|u(x, t0)|2dx + 2

t0∫

−∞

∫

Rn

ϕ|∇u|2dxdt ≤

≤
t0∫

−∞

∫

Rn

|u|2(△ϕ+ ∂tϕ)dxdt +

t0∫

−∞

∫

Rn

(|u|2 + 2p)u · ∇ϕdxdt.

This makes it possible to apply ε-regularity theory to the mild bounded

ancient solution u. Indeed, restricting ourselves to the case n = 3, we have

1

R2

∫

Q(z0,R)

(|u|3 + |p− [p]B(x0,R)|
3
2 )dz ≤ cR3 < ε,

where ε is an absolute constant and c depends on ‖p‖L∞(BMO) only. So, a

number R for which the above inequality is satisfied depends on the same

norm only. Then, there are positive constants ck with k = 1, 2, ... such that

|∇ku(z0)| ≤
ck

Rk+1

for any z0 ∈ Q−.
Estimates for the pressure are coming from the pressure equation:

△p = −ui,juj,i.
Local regularity theory gives us:
∫

B(x0,1)

|∇kp|2dx ≤ c(k)
[ ∫

B(x0,2)

|∇k(u⊗ u)|2dx+

∫

B(x0,2)

|p− [p]B(x0,2)|2dx
]

for any k = 1, 2, ..., and thus

|∇kp(z0)| ≤ C(k, ‖p‖L∞(BMO))
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for any z0 ∈ Q− and for any k = 1, 2, ....

Step 3. Now, we wish to estimate derivative in time. Directly, from

the equations and the above estimates, we deduce that

|∇k∂tu(z0)| ≤ C(k, ‖p‖L∞(BMO))

for any z0 ∈ Q− and for any k = 0, 1, .... To get higher derivatives of p

in t, we should estimate ∂tp. To achieve this goal, let us use the pressure

equations

△∂tp = −div div (∂tu⊗ u+ u⊗ ∂tu).

This equation leads to the estimate

‖∂tp‖L∞(BMO) ≤ c(‖p‖L∞(BMO)).

Repeating the same arguments as in Step 2, we establish

|∇k∂tp(z0)| ≤ C(k, ‖p‖L∞(BMO))

for any z0 ∈ Q− and for any k = 1, 2, .... In turn, from the equation, we

find that

|∇k∂2t u(z0)| ≤ C(k, ‖p‖L∞(BMO))

for any z0 ∈ Q− and for any k = 0, 1, .... Then we again use the pressure

equation to estimate first L∞(BMO)-norm of ∂2t p and afterwards L∞-norm

of ∇k∂2t p with k = 1, 2, ... And so on. �

The statement below proved in [Seregin and Šverák (2009)] shows how

mild bounded ancient solutions occur in the regularity theory of the Navier-

Stokes equations.

Proposition 3.10. There exist a subsequence of u(k) (still denoted by u(k))

and a mild bounded ancient solution u such that, for any a > 0, the sequence

u(k) converges uniformly to u on the closure of the set Q(a) = B(a)×] −
a2, 0[. The function u has the additional properties: |u| ≤ 1 in R

3×]−∞, 0[

and |u(0)| = 1.

Proof of Proposition 3.10 Our solution v and q has good properties

inside Q1 = B1×] − 1, 0[ with B1 = {r1 < |x| < 1}. Let us list them. Let

Q2 = B2×] − τ22 , 0[, where 0 < τ2 < 1, B2 = {r1 < r2 < |x| < a2 < 1}.
Then, for any natural k,

z = (x, t) 7→ ∇kv(z) is Hölder continuous in Q2;

q ∈ L 3
2
(−τ22 , 0;Ck(B2)).
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The corresponding norms are estimated by constants depending on ‖v‖3,Q,
‖q‖ 3

2 ,Q
, ‖v‖∞,Q1 , and numbers k, r1, r2, a2, τ2. In particular, we have

max
x∈B2

0∫

−τ2
2

|∇q(x, t)| 32 dt ≤ c1 <∞. (6.3.3)

Proof of the first statement can be done by induction and found in [Escau-

riaza et al. (2003)], [Ladyzhenskaya and Seregin (1999)], and [Necas et al.

(1996)]. The second statement follows directly from the first one and the

pressure equation: ∆q = −vi,jvj,i.
Now, let us decompose the pressure q = q1 + q2. For q1, we have

∆q1(x, t) = −div div
[
χB(x)v(x, t) ⊗ v(x, t)

]
, x ∈ R

3, −1 < τ < 0,

where χB(x) = 1 if x ∈ B and χB(x) = 0 if x /∈ B. Obviously, the estimate

0∫

−1

∫

R3

|q1(x, t)|
3
2 dxdt ≤ c

∫

Q

|v|3dz

holds and it is a starting point for local regularity of q1. Using differentia-

bility properties of v, we can show

max
x∈B3

0∫

−τ2
2

|∇q1(x, t)|
3
2 dt ≤ c2 <∞, (6.3.4)

where B3 = {r2 < r3 < |x| < a3 < a2}. From (6.3.3) and (6.3.4), it follows

that

max
x∈B3

0∫

−τ2
2

|∇q2(x, t)|
3
2 dt ≤ c3 <∞. (6.3.5)

However, q2 is a harmonic function in B, and thus, by the maximum prin-

ciple, we have

max
x∈B(r4)

0∫

−τ2
2

|∇q2(x, t)|
3
2 dt ≤ c3 <∞, (6.3.6)

where r4 = (r3 + a3)/2.

Let us re-scale each part of the pressure separately, i.e.,

pki (y, s) = λ2kqi(x, t), i = 1, 2,
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so that pk = pk1 + pk2 . As it follows from (6.3.6), for pk2 , we have

sup
y∈B(−xk/λk,r4/λk)

0∫

−(τ2
2−tk)/λ2

k

|∇yp
k
2(y, s)|

3
2 ds ≤ c3λ

5
2

k . (6.3.7)

The first component of the pressure satisfies the equation

∆yp
k
1(y, s) = −divydivy(χB(−xk/λk,1/λk)(y)u

(k)(y, s)⊗u(k)(y, s)), y ∈ R
3,

for all possible values of s. For such a function, we have the standard

estimate

‖pk1(·, s)‖BMO(R3) ≤ c (6.3.8)

for all s ∈] − (1 − tk)/λ
2
k, 0[. It is valid since |u(k)| ≤ 1 in

B(−xk/λk, 1/λk)×]− (1− tk)/λ
2
k, 0[.

We slightly change pk1 and pk2 setting

pk1(y, s) = pk1(y, s)− [pk1 ]B(1)(s) pk2(y, s) = pk2(y, s)− [pk2 ]B(1)(s)

so that [pk1 ]B(1)(s) = 0 and [pk2 ]B(1)(s) = 0.

Now, we pick up an arbitrary positive number a and fix it. Then from

(6.3.7) and (6.3.8) it follows that for sufficiently large k we have
∫

Q(a)

|pk1 |
3
2 de+

∫

Q(a)

|pk2 |
3
2 de ≤ c4(c2, c3, a).

Using the same bootstrap arguments, we can show that the following esti-

mate is valid:

‖u(k)‖Cα(Q(a/2) ≤ c5(c2, c3, c4, a)

for some positive number α < 1/3. Indeed, the norm ‖u(k)‖Cα(Q(a/2)) is

estimated with the help of norms ‖u(k)‖L∞(Q(a))) and ‖pk‖L 3
2
(Q(a)), where

pk = pk1 + pk2 . Hence, using the diagonal Cantor procedure, we can select

subsequences such that for some positive α and for any positive a

u(k) → u in Cα(Q(a)),

pk1 ⇀ p1, in L 3
2
(Q(a)), [p1]B(1)(s) = 0,

pk2 ⇀ p2 in L 3
2
(Q(a)), [p2]B(1)(s) = 0.

So, |u| ≤ 1 in Q− and u and p = p1 + p2 satisfy the Navier-Stokes system

in Q− in the sense of distributions. Moreover, at it is follows from (6.3.8),

p1 ∈ L∞(−∞, 0;BMO(R3)).
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Next, for sufficiently large k, we get from (6.3.7) that
∫

Q(a)

|∇pk2(y, s)|
3
2 ds ≤ c3λ

5
2

k .

Hence, ∇p2 = 0 in Q(a) for any a > 0. So, p2(y, s) is identically zero. This

allows us to conclude that the pair u and p1 is a solution to the Navier-

Stokes equations in the sense of distributions and thus u is a nontrivial

mild bounded ancient solution satisfying the condition |u(0, 0)| = 1 and

the estimate |u| ≤ 1 in Q−. �
It is worthy to notice that the trivial bounded ancient solution of the

form

u(x, t) = c(t), p(x, t) = −c′(t) · x,
with arbitrary bounded function c(t), is going to be a mild bounded ancient

solution if and only if c(t) ≡ constant. This allows us to make the following

plausible conjecture, see [Seregin and Šverák (2009)].

Conjecture Any mild bounded ancient solution is a constant.

To explain what consequences of the conjecture could be for regularity

theory of the Navier-Stokes equations, let us formulate a question which

can be raised in connection with the ε-regularity theory: what happens if

we drop the condition on smallness of scale-invariant quantities, assum-

ing their uniform boundedness only, i.e, sup0<r<1 F (v, r) < +∞. For

Ladyzhenskaya-Prodi-Serrin type quantities with s > 3, the answer is still

positive, i.e., z = 0 is a regular point. It follows from scale-invariance and

the fact that the assumption Ms,l(v; 1) = sup0<r<1Ms,l(v; r) < +∞ im-

plies Ms,l(v; r) → 0 as r → 0 if s > 3. Although in the marginal case

s = 3 and l = +∞, the answer remains positive, the known proof is more

complicated and will be outlined later.

Let us recall certain definitions and make some general remarks about

relationships between some scale-invariant quantities. Boundedness of

sup
0<r<1

G2(v; r) = G2(v, 1) = G20 < +∞

can be rewritten in the form

|v(z)| ≤ G20√−t
for all z = (x, t) ∈ Q. If v satisfies the above inequality and z = 0 is still

a singular point of v, we say that a singularity of Type I or Type I blowup

takes place at t = 0. All other singularities are of Type II. The main
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feature of Type I singularities is that they have the same rate as potential

self-similar solutions. The important properties connected with possible

singularities of Type I have been proved in [Seregin (2007)], [Seregin and

Zajaczkowski (2006)], and [Seregin and Šverák (2009)] and are as follows.

Proposition 3.11. Let functions v and q be a suitable weak solution to the

Navier-Stokes equations in Q.

(i) If min{G1(v; 1), G2(v; 1)} < +∞, then

g = sup
0<r<1

{A(v; r) + C(v; r) +D(q; r) + E(v; r)} < +∞.

(ii) If

g′ = min{ sup
0<r<1

A(v; r), sup
0<r<1

C(v; r), sup
0<r<1

E(v; r)} < +∞,

then g < +∞.

This proposition admits many obvious generalizations.

If we assume that v possesses uniformly bounded energy scale-invariant

quantities, then, by Proposition 3.10, the same type of quantities will be

bounded for the ancient solution, which is not trivial if z = 0 is a singular

point of v. However, by the conjecture, the above ancient solution must be

zero. So, the origin z = 0 cannot be a singular point of v. This would be

a positive answer to the question formulated above. In particular, accord-

ing to Proposition 3.11, validity of the conjecture would rule out Type I

blowups.

6.4 Liouville Type Theorems

6.4.1 LPS Quantities

Theorem 4.12. Let u be a mild bounded ancient solution to the Navier-

Stokes equations, i.e., u ∈ L∞(Q−) is divergence free and satisfies the

identity ∫

Q−

(u · ∂tw + u⊗ u : ∇w + u ·∆w)dz = 0 (6.4.9)

for any divergence free function w from C∞
0 (Q−). Assume that

sup
0<r<∞

Ms,l(u; r) =

0∫

−∞

( ∫

R3

|u(x, t)|sdx
) l

s

<∞

with 3/s+ 2/l = 1 and l <∞. Then u ≡ 0 in Q−.
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Proof Let us consider the simplest case of the regular LPS quantityM5,5.

By the pressure equation, we may assume

0∫

∞

∫

R3

(|u|5 + |p| 52 )dxdt < +∞.

Given ε > 0, we can find T < 0 such that

T∫

∞

∫

R3

(|u|5 + |p| 52 )dxdt < ε.

Then, by Hölder inequality, we have

1

R2

t0∫

t0−R2

∫

B(x0,R)

(|u|3 + |p| 32 )dxdt < cε
3
5

for any x0 ∈ R
3, any R > 0, and any t0 ≤ T with some universal constant

c. In turn, the ε-regularity theory ensures the inequality

|u(x0, t0)| <
c

R

with another universal constant c. Tending R → ∞, we get u(·, t) = 0 as

t ≤ T . One can repeat more or less the same arguments in order to show

that in fact u is identically zero on R
3×]−∞, 0].

6.4.2 2D case

In two-dimensional case, we have the following Liouville type theorem.

Theorem 4.13. Assume that n = 2 and u is an arbitrary bounded ancient

solution. Then u(x, t) = b(t) for any x ∈ R
2.

To prove the above statement, we start with an auxiliary lemma.

Lemma 6.8. Let functions

ω ∈ W2,1
m (Q−) = {u ∈W 2,1

m,loc(Q−) : sup
z0∈Q−

‖u‖W 2,1
m (Q(z0,1))

<∞},

with m > 3, and u ∈ L∞(Q−) satisfy the equation

∂tω + u · ∇ω −∆ω = 0 in Q−

and the inequality

|u| ≤ 1 in Q−.
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Then, for any positive numbers ε and R, there exists a point z0 = (x0, t0),

x0 ∈ R
2 and t0 ≤ 0, such that

ω(z) ≥M − ε, z ∈ Q(z0, R),

where M = sup
z∈Q−

ω(z).

Remark 6.7. By the embedding theorem, M < +∞.

In order to prove Lemma 6.8, we need a strong maximum principle.

Here, it is.

Theorem 4.14. Strong maximum principle Let functions

w ∈ W 2,1
m (Q(z0, R)) with m > n + 1 and a ∈ L∞(Q(z0, R);R

n) satisfy the

equation

∂tw + a · ∇w −∆w = 0 in Q(z0, R).

Let, in addition,

w(z0) = sup
z∈Q(z0,R)

w(z).

Then

w(z) = w(z0) in Q(z0, R).

Proof of Lemma 6.8 ([Koch et al. (2009)]) In fact, we shall prove

even a stronger result. Let zk be a sequence of points in Q− such that

ω(zk) →M.

We state that

inf
z∈Q(zk,R)

ω(z) →M.

Indeed, assume that this statement is false. Then, we can find a number

ε > 0 and a sequence of points z′k ∈ Q(zk, R) such that

ω(z′k) ≤M − ε.

Now, let us consider shifted functions

ωk(x, t) = ω(xk + x, tk + t), uk(x, t) = u(xk + x, tk + t),

for z = (x, t) ∈ Q(R). By the definition of the space W2,1
m (Q−), these new

functions are subject to the estimates

‖ωk‖W 2,1
m (Q(R)) ≤ c,
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|uk| ≤ 1 in Q(R),

with a constant c that is independent of k. Moreover, we have

∂tω
k + uk · ∇ωk −∆ωk = 0 in Q(R),

ωk(z′′k ) ≤M − ε, z′′k ∈ Q(R),

ωk(z) ≤M z ∈ Q(R).

Using standard compactness arguments, we show

ωk ⇀ ω in W 2,1
m (Q(R)),

uk
⋆
⇀u in L∞(Q(R);R2),

ωk → ω in C(Q(R)),

ω(z) ≤ ω(0) =M z ∈ Q(R), (6.4.10)

ω(z∗) ≤M − ε, (6.4.11)

where z∗ ∈ Q(R). Clearly, ω ∈W 2,1
m (Q(R)) and

∂tω + u · ∇ω −∆ω = 0 in Q(R).

By (6.4.10) and by the above strong maximum principle,

ω(z) =M z ∈ Q(R),

which is in a contradiction with (6.4.11). �

Proof of Theorem 4.13 We are going to apply Lemma 6.8 to the

vorticity equation. Let us show first that

sup
z∈Q−

ω(z) =M ≤ 0.

To this end, assume that the latter statement is wrong and in fact

M > 0.

Take a cut-off function ϕ ∈ C∞
0 (B(R)) with the following properties:

0 ≤ ϕ ≤ 1, |∇ϕ| ≤ c/R in B(R),

ϕ ≡ 1 in B(R/2).

By Lemma 6.8, for an arbitrary number R > 0, there exists a point z0R =

(x0R, t0R) with t0R ≤ 0 such that

|ω(z)| ≥M −M/2 =M/2 > 0, z ∈ Q(z0R, R).
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If we let ϕx0R(x) = ϕ(x− x0R), then

A(R) =

∫

Q(z0R,R)

ϕx0R(x)ω(z)dz ≥ M

2
R2|B(x0R, R)| =

M

2
πR4. (6.4.12)

On the other hand, since ω = u2,1−u1,2, we have after integration by parts

A(R) =

∫

Q(z0R,R)

(ϕx0R,2u1 − ϕx0R,1u2)dz ≤

≤ cR3,

where c is a universal constant. The latter inequality contradicts (6.4.12)

for sufficiently large R. So, M ≤ 0. In the same way, one can show that

m ≥ 0, where

−∞ < m = inf
z∈Q−

ω(z).

So, ω ≡ 0 in Q−. Since u(·, t) is a divergence free function in R
2, we

can state that u(·, t) is a bounded harmonic function in R
2. Therefore,

u(x, t) = b(t), x ∈ R
2. Theorem 4.13 is proved.

6.4.3 Axially Symmetric Case with No Swirl

In the case of axial symmetry, it is convenient to introduce the cylindrical

coordinates ̺, ϕ, x3 so that x1 = ̺ cosϕ, x2 = ̺ sinϕ, x3 = x3. The

velocity components are going to be u̺, uϕ, u3. By the definition of axial

symmetry,

u̺,ϕ = ∂u̺/∂ϕ = 0, uϕ,ϕ = 0, u3,ϕ = 0, p,ϕ = 0.

For the vorticity components, we have simple formulae

ω̺ = uϕ,3, ωϕ = u̺,3 − u3,̺, ω3 = uϕ,̺ + uϕ/̺.

Now, assume that vector field u is an arbitrary axially symmetric

bounded ancient solution with zero swirl, i.e., uϕ = 0. This, in particu-

lar, leads to the representation

∇ω = −1

̺
ωϕe̺ ⊗ eϕ + ωϕ,̺eϕ ⊗ e̺ + ωϕ,3eϕ ⊗ e3.

We know that |∇ω| is a bounded function, which implies boundedness of

functions ωϕ,̺, ωϕ,3, and
1
̺ωϕ. Regarding ∇2ω, we can state

0∫

−T

∫

C(a)

[
|ωφ,̺̺|2+2|ωϕ,̺ϕ|2+|ωϕ,33|2+2|(ωϕ/̺),̺|2+2|(ωϕ/̺),3|2

]m
2

̺d̺dϕ ≤
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≤ c(a, T, p) < +∞,

for any a > 0, for any T > 0, and for any m > 1. Here,

C(a) = {x = (x′, x3) ∈ R
3 : |x′| < a, |x3| < a}

and x′ = (x1, x2) so that |x′| = ̺.

Theorem 4.15. Let u be an arbitrary axially symmetric bounded ancient

solution with zero swirl. Then u(x, t) = b(t) for any x ∈ R
3 and for any

t ≤ 0. Moreover, u1(x, t) = 0 and u2(x, t) = 0 for the same x and t or,

equivalently, u̺(̺, x3, t) = 0 for any ̺ > 0, for any x3 ∈ R, and for any

t ≤ 0.

Proof We let η = ωϕ/̺. It is not difficult to verify that η satisfies the

equation

∂tη + u̺η,̺ + u3η,3 − (∆η +
2

̺
η,̺) = 0, ̺ > 0, −∞ < x3 < +∞, t < 0,

where

∆η =
1

̺
(̺η,̺),̺ + η,33 = η,̺̺ + η,33 +

1

̺
η,̺.

Let us make the change of variables

y = (y′, y5) ∈ R
5, y′ = (y1, y2, y3, y4),

̺ = |y′| =
√
y21 + y22 + y23 + y24 , y5 = x3.

Then after simple calculations, we see that a new function

f(y, t) = f(y1, y2, y3, y4, y5, t) = η(̺, ϕ, t)

obeys the equation

∂tf + U · ∇5f −∆5f = 0 (6.4.13)

in Q5
− = R

5×] − ∞, 0[. Here, ∇5 and ∆5 are usual nabla and Laplacian

operators with respect to the Cartesian coordinates in R
5 and

U(y, t) = (U1(y, t), U2(y, t), U3(y, t), U4(y, t), U5(y, t))

with

Ui(y, t) =
u̺(̺, x3, t)

̺
yi, i = 1, 2, 3, 4, U5(y, t) = u3(̺, x3, ).

Obviously, the function U is bounded in Q5
−. However, previous arguments

show that ∇5U is a bounded function as well. Indeed,we have

|∇5U(y, t)| ≤ c(|∇u(x, t)|+ |u̺(̺, x3, t)|/̺) ≤ c|∇u(x, t)| ≤ c < +∞
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for any y ∈ R
5 and any t ≤ 0. So,

|U |, |∇5U | ∈ L∞(Q5
−).

For bounded f , weak solution to (6.4.13) can be defined as follows∫

Q5
−

[
f∂tg + fU · ∇5g + fg div5U + f∆5g

]
dy dt = 0

for any g ∈ C∞
0 (Q5

−). In the way, explained in the previous section, one

can show that, for any m > 1,

f ∈ W2,1
m (Q5

−)

and the norm can be dominated by a positive constant, depending on m,

supQ5
−
|f |, and supQ5

−
(|U |+ |∇5U |) only.

We let

M = sup
y∈R5

sup
t≤0

f(y, t) = sup
x∈R3

sup
t≤0

η(|x′|, x3, t).

Our goal is to show that M ≤ 0. Assume it is not so, i.e., M > 0. Now, let

us apply Lemma 6.8 in our five-dimensional setting. Then, for any R > 0,

there exists a point yR in R
5 and a moment of time tR ≤ 0 such that

f(y, t) ≥M/2, (y, t) ∈ Q((yR, tR), R) = B(yR, R)×]tR −R2, tR[,

where B(yR, R) = {|y − yR| < R}.
By our assumptions,

0 < M0 = sup
x∈R3, t≤0

ωϕ(|x′|, x3, t) < +∞.

We may choose a number R so big as

R > 100
2M0

M
and then let

y∗ = (y′∗, y5R), y′∗ = 50
2M0

M
l + y′R,

where

l ∈ R
4, |l| = 1, (l, y′R) = l1y1R + l2y2R + l3y3R + l4y4R = 0.

It is not difficult to check that y∗ ∈ B(yR, R) and, moreover,

|y′∗| ≥ 50
2M0

M
.

Then we find
M

2
≤ f(y∗, tR −R2/2) ≤ M0

|y′∗|
<

M0

50 2M0

M

=
M

100
.

This means that in fact M ≤ 0. In the same way, one can show that m ≥ 0

and then conclude that f ≡ 0 in Q5
−, which in turn implies

ωϕ(|x′|, x3, t) = 0, ∀(x, t) ∈ Q−,

and therefore

ω ≡ 0 in Q−.

The rest of the proof is the same as in Theorem 4.13.



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 173

Local Regularity Theory for Non-Stationary Navier-Stokes Equations 173

6.4.4 Axially Symmetric Case

We are going to prove the following statement.

Theorem 4.16. Let u be an arbitrary axially symmetric bounded ancient

solution satisfying assumption

|u(x, t)| ≤ A

|x′| , x = (x′, x3) ∈ R
3, −∞ < t ≤ 0, (6.4.14)

where A is a positive constant independent of x and t. Then u ≡ 0 in Q−.

Proof Let us explain our strategy. First, we are going to show that, under

condition (6.4.14), the swirl is zero, i.e., uϕ = 0. Then we apply Theorem

4.15 and state that u(x, t) = b(t). But condition (6.4.14) says b(t) = 0 for

all t ≤ 0. So, our aim now is to show that uϕ ≡ 0 in Q−.
Let us introduce the additional notation:

R̃ = R+ × R, R+ = {̺ ∈ R, ̺ > 0}, Q̃− = R̃×]−∞, 0[,

Π(̺1, ̺2;h1, h2) = {̺1 < ̺ < ̺2, h1 < x3 < h2},

Q̃(̺1, ̺2;h1, h2; t1, t2) = Π(̺1, ̺2;h1, h2)×]t1, t2[.

Now, our aim is to show that

M = sup
Q̃−

̺uϕ ≤ 0.

Assume that it is false, i.e., M > 0, and let

g = ̺uϕ/M.

The new scaled function g satisfies the equation

∂tg + u̺g,̺ + u3g,3 − (∆g − 2g,̺/̺) = 0 in Q̃−.

By the assumptions,

sup
Q̃−

g = 1,
√
u2̺ + u23 ≤ A/̺, |g| ≤ A/M in Q̃− (6.4.15)

and

(̺u̺),̺ + (̺u3),3 = 0 in Q̃−.

To formulate the lemma below, we abbreviate

Π = Π(̺1, ̺2;h1, h2), Q̃ = Π×]t− t1, t[.
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Lemma 6.9. For any ε > 0, there exists a positive number

δ = δ(Π, t, t1, A,M, ε) ≤ ε

such that if

sup
x∈Π

g(x, t) > 1− δ,

then

inf
z∈Q̃

g(z) > 1− ε.

Proof If we assume that the statement of the lemma is false, then there

must exist a number ε0 > 0 such that, for any natural k, one can find

sequences with the following properties:

δk > δk+1, δk → 0, sup
x∈Π

gk(x, t) > 1−δk, inf
z∈Q̃

gk(z) ≤ 1−ε0, (6.4.16)

functions uk and gk satisfy the equations

(̺uk̺),̺ + (̺uk3),3 = 0, ∂tg
k + uk̺g

k
,̺ + uk3g

k
,3 − (∆gk − 2gk,̺/̺) = 0

in Q̃− and the relations

sup
Q̃−

gk = 1,
√

|uk̺|2 + |uk3 |2 ≤ A/̺, |gk| ≤ A/M in Q̃−.

By (6.4.16), there are points (̺k, xk3, t), with (̺k, xk3) ∈ Π, and

(̺′k, x
′
k3, t

′
k) ∈ Q̃ such that

gk(̺k, xk3, t) > 1− 2δk, gk(̺′k, x
′
k3, t

′
k) ≤ 1− ε0/2. (6.4.17)

Weak form of the equations for uk and gk is as follows:
∫

Q̃−

[
gk∂tf + gk(uk̺f,̺ + uk3f,3) + gk(∆f + 2f,̺/̺)

]
̺d̺dx3dt = 0

for any f ∈ C∞
0 (Q̃−). Routine arguments show

uk
⋆
⇀u in L∞(Q̃−;R

2),

gk ⇀ g in W 2,1
m (Q̃2),

where Q̃2 = Π2×]t−t2, t[, Π2 = Π(̺21, ̺
2
2;h

2
1, h

2
2) ⋑ Π, t2 > t1, and m >> 1.

Then we have

gk → g in C(Q̃2) (6.4.18)
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and

sup
Q̃2

g ≤ 1,
√
|u̺|2 + |u3|2 ≤ A/̺, |g| ≤ A/M in Q̃2, (6.4.19)

and

∂tg + (u̺ + 1/̺)g,̺ + u3g,3 − g,̺̺ − g,33 = 0 in Q̃2.

According to (6.4.17) and (6.4.18),

g(̺0, x03, t) = 1, g(̺′0, x
′
03, t

′
0) ≤ 1− ε0/2, t′0 ≤ t, (6.4.20)

where

(̺k, xk3, t) → (̺0, x03, t), (̺′k, x
′
k3, t

′
k) → (̺′0, x

′
03, t

′
0)

and points (̺0, x03, t) and (̺′0, x
′
03, t

′
0) belong to the closure of the set Q̃.

Clearly, by (6.4.19),

g(̺0, x03, t) = sup
z∈Q̃2

g(z) = 1.

By the strong maximum principle, g ≡ 1 in Q̃2. But this contradicts

(6.4.20). �

Now, we proceed with the proof of Theorem 4.161. Take arbitrary

positive numbers R, L, T , and 0 < ε ≤ 1/2. We can always assume that

1− ε ≤ g ≤ 1 on Q̃0 = Π0×]− T, 0[, (6.4.21)

where Π0 = Π(1, R;−L,L). To explain this, we let δ∗ =

δ(Π0, 0,−T,A,M, ε). Obviously, there exists a point (̺0, x03, t0) ∈ Q̃−
such that

1− g(̺0, x03, t0) < δ∗ ≤ ε ≤ 1/2.

It is easy to see

1/2 ≤ ̺0uϕ(̺0, x03, t0)/M = g(̺0, x03, t0) ≤ ̺0/M

and, therefore, ̺0 > M/2 > 0. Then one can scale our functions so that

gλ(r, y3, s) = g(λr, x03 + λy3, t0 + λ2s), λ = ̺0,

uλr (r, y3, s) = λu̺(λr, x03 + λy3, t0 + λ2s),

uλ3 (r, y3, s) = λu3(λr, x03 + λy3, t0 + λ2s).

1The idea of the proof belongs to V. Sverak
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For scaled functions, we have

1− gλ(1, 0, 0) < δ∗,

∂sgλ + uλr gλ,r + uλ3gλ,3 − (∆gλ − 2gλ,r/r) = 0 in Q̃−,

(ruλr ),r + (ruλ3 ),3 = 0 in Q̃−,

sup
Q̃−

gλ = 1,
√

|uλr |2 + |uλ3 |2 ≤ A/r, |gλ| ≤ A/M in Q̃−.

By Lemma 6.9,

1− ε ≤ gλ ≤ 1 on Q̃0.

It is always deemed that this operation has been already made and script

λ is dropped. It is important to notice two things. Numbers R, L, T , and

ε are in our hands and we cannot use the fact |u| ≤ 1 any more since after

scaling |u| ≤ ̺0(R, T, L,A,M, ε).

We choose a cut-off function

Φ(̺, x3, t) = ψ(̺)η(x3)χ(t),

where functions ψ, η, and χ have the following properties:

ψ(̺) = 1 0 ≤ ̺ ≤ R− 1, ψ(̺) = 0 ̺ ≥ R,

|ψ′(̺)|+ |ψ′′(̺)| ≤ c 0 ≤ ̺ < +∞;

η(x3) = 1 |x3| ≤ L− 1, η(x3) = 0 |x3| ≥ L,

|η′(x3)|+ |η′′(x3)| ≤ c |x3| < +∞;

χ(t) = 1 − T + 1 < t ≤ −1, χ(t) = 0 t < −T,

χ(t) = t+ T − T ≤ t ≤ −T + 1,

χ(t) = −t − 1 < t ≤ 0.

So, we have

I0 =

∫

Q̃−

(
∂tg + u̺g,̺ + u3g,3 −∆g

)
Φ̺d̺dx3dt = I ′0 =
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= −2

∫

Q̃−

g,̺
̺
Φ̺d̺dx3dt. (6.4.22)

We replace g with g−1 in the left-hand side of (6.4.22) and, after integration

by parts, have

I0 =
1

4π

∫

Q−

(
∂tΦ + u̺Φ,̺ + u3Φ,3 +∆Φ

)
(1 − g)dxdt.

We know that 1− g ≤ ε in Q̃0. Then, by 6.4.15,

I0 ≥
0∫

−T

L∫

−L

1∫

0

(1− g)
(
∂tΦ+ u3Φ,3 +Φ,33

)
̺d̺dx3dt+ εC0(R, T, L,A,M)

≥ −(L+ T )C1(A,M) + εC0(R, T, L,A,M). (6.4.23)

Next, let us start with evaluation of the right-hand side in (6.4.22).

Integration by parts gives:

I ′0 = −2

0∫

−T

L∫

−L

g(0, x3, t)Φ(0, x3, t)dx3dt+ 2

0∫

−T

L∫

−L

R∫

0

Φ,̺gd̺dx3dt.

The first term on the right-hand side of the above identity is equal to zero.

An upper bound of the second one is derived as follows:

I ′0 = 2

0∫

−T

L∫

−L

R∫

0

Φ,̺d̺dx3dt+ 2

0∫

−T

L∫

−L

R∫

0

Φ,̺(g − 1)d̺dx3dt ≤

≤ 2

0∫

−T

L∫

−L

R∫

0

Φ,̺d̺dx3dt+ εC′
0(R, T, L,A,M) =

= −2

0∫

−T

L∫

−L

Φ(0, x3, t)dx3dt+ εC′
0(R, T, L,A,M) <

< −2(L− 1)(T − 2) + εC′
0(R, T, L,A,M).

The latter, together with identity (6.4.22) and (6.4.23), implies the following

inequality

2(L− 1)(T − 2) ≤ (L+ T )C1(A,M) + εC′′
0 (R, T, L,A,M).

This leads to contradiction for large L and T and sufficiently small ε.

So, the assumption M > 0 is wrong. In the same way, one shows that

inf
Q̃−

̺uϕ = m ≥ 0.

This means that the swirl is zero. �
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6.5 Axially Symmetric Suitable Weak Solutions

In this section, just for convenience, we replace balls B(r) with cylinders

C(r) = {x = (x′, x3), x′ = (x1, x2), |x′| < r, |x3| < r}, C = C(1), and then

Q(r) = C(r)×]− r2, 0[. As usual, let us set

v = v̺e̺ + v3e3 v̂ = vϕeϕ

for v = v̺e̺ + vϕeϕ + v3e3.

Here, we follow paper [Seregin and Šverák (2009)], where results are

stated for the canonical domain Q = Q(1). The general case can be done

by re-scaling.

Theorem 5.17. Assume that functions v ∈ L3(Q) and q ∈ L 3
2
(Q) are an

axially symmetric weak solution to the Navier-Stokes equations in Q. Let,

in addition, a positive constant C exists such that

|v(x, t)| ≤ C√
−t (6.5.1)

for almost all points z = (x, t) ∈ Q. Then z = 0 is a regular point of v.

Theorem 5.18. Assume that functions v ∈ L3(Q) and q ∈ L 3
2
(Q) are an

axially symmetric weak solution to the Navier-Stokes equations in Q. Let,

in addition,

v ∈ L∞(C×]− 1,−a2[) (6.5.2)

for each 0 < a < 1 and

|v(x, t)| ≤ C

|x′| (6.5.3)

for almost all points z = (x, t) ∈ Q with some positive constant C. Then

z = 0 is a regular point of v.

According to the Caffarelli-Kohn-Nirenberg theorem if v and q are an

axially symmetric suitable weak solution and z = (x, t) is a singular (i.e.,

not regular) point of v, then there must be x′ = 0. In other words, all

singular points must seat on the axis of symmetry, which in our case is the

axis x3.

The following estimate is obtained with help of Mozer’s iterations. A

proof is not complicated, see, for example, [Seregin and Šverák (2009)].
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Lemma 6.10. Assume that functions v ∈ L3(Q) and q ∈ L 3
2
(Q) are an

axially symmetric weak solution to the Navier-Stokes equations in Q. Let,

in addition, condition (6.5.2) hold. Then following estimate is valid:

ess sup
z∈Q(1/2)

|̺vϕ(z)| ≤ C(M)
( ∫

Q(3/4)

|̺vϕ|
10
3 dz

) 3
10

, (6.5.4)

where

M =
( ∫

Q(3/4)

|v| 103 dz
) 3

10

+ 1.

Remark 6.8. Under the assumptions of Lemma 6.10, the pair v and q is

a suitable weak solution to the Navier-Stokes equations in Q. Hence, the

right-hand side of (6.5.4) is bounded from above.

With some additional notation

C(x0, R) = {x ∈ R
3 : x = (x′, x3), x

′ = (x1, x2), |x′−x′0| < R, |x3−x03| < R},

Q(z0, R) = C(x0, R)×]t0 −R2, t0[,

we recall the definition of certain scaled energy quantities:

A(z0, r; v) = ess sup
t0−r2<t<t0

1

r

∫

C(x0,r)

|v(x, t)|2dx,

E(z0, r; v) =
1

r

∫

Q(z0,r)

|∇v|2dz, D(z0, r; q) =
1

r2

∫

Q(z0,r)

|q| 32 dz,

C(z0, r; v) =
1

r2

∫

Q(z0,r)

|v|3dz, H(z0, r; v) =
1

r3

∫

Q(z0,r)

|v|2dz,

Ms,l(z0, r; v) =
1

rκ

t0∫

t0−r2

( ∫

C(x0,r)

|v|sdx
) l

s

dt,

where κ = l(3s + 2
l − 1) and s ≥ 1, l ≥ 1.

The following statement is proven in a similar way as Proposition 3.11,

see details in [Seregin and Šverák (2009)].

Lemma 6.11. Under assumptions of Theorem 5.17, we have the estimate

A(zb, r; v) + E(zb, r; v) + C(zb, r; v) +D(zb, r; q) ≤ C1 < +∞ (6.5.5)
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for all zb and for all r satisfying conditions

zb = (be3, 0), b ∈ R, |b| ≤ 1

4
, 0 < r <

1

4
. (6.5.6)

A constant C1 depends only on the constant C in (6.5.1), ‖v‖L3(Q), and

‖q‖L 3
2
(Q).

To prove Theorem 5.18, we need an analogue of Lemma 6.11. Here, it

is.

Lemma 6.12. Under assumptions of Theorem 5.18, estimate (6.5.5) is

valid as well with constant C1 depending only on the constant C in (6.5.3),

‖v‖L3(Q), and ‖q‖L 3
2
(Q).

Lemma 6.12 is proved along the same lines as Lemma 6.11.

As it follows from conditions of Theorem 5.18 and the statement of

Lemma 6.10, the module of the velocity field grows not faster than C/|x′|
as |x′| → 0. Moreover, the corresponding estimate is uniform in time.

However, it turns out that the same is true under conditions of Theorem

5.17. More precisely, we have the following.

Proposition 5.19. Assume that all conditions of Theorem 5.17 hold. Then

|v(x, t)| ≤ C1

|x′| (6.5.7)

for all z = (x, t) ∈ Q(1/8). A constant C1 depends only on the constant C

in (6.5.1), ‖v‖L3(Q), and ‖q‖L 3
2
(Q).

Proof In view of (6.11), we can argue essentially as in [Seregin and Za-

jaczkowski (2007)].

Let us fix a point x0 ∈ C(1/8) and put r0 = |x′0|, b0 = x03. So, we have

r0 <
1
8 and |b0| < 1

8 . Further, we introduce the following cylinders:

P1
r0 = {r0 < |x′| < 2r0, |x3| < r0}, P2

r0 = {r0/4 < |x′| < 3r0, |x3| < 2r0}.

P1
r0(b0) = P1

r0 + b0e3, P2
r0(b0) = P2

r0 + b0e3,

Q1
r0(b0) = P1

r0(b0)×]− r20 , 0[, Q2
r0(b0) = P2

r0(b0)×]− (2r0)
2, 0[.

Now, let us scale our functions so that

x = r0y + b0e3, t = r20s, u(y, s) = r0v(x, t), p(y, s) = r20q(x, t).
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As it was shown in [Seregin and Zajaczkowski (2007)], there exists a con-

tinuous nondecreasing function Φ : R+ → R+, R+ = {s > 0}, such that

sup
(y,s)∈Q1

1(0)

|u(u, s)|+ |∇u(y, s)| ≤ Φ
(

sup
−22<s<0

∫

P2
1 (0)

|u(y, s)|2dy

+

∫

Q2
1(0)

|∇u|2dy ds+
∫

Q2
1(0)

|u|3dy ds+
∫

Q2
1(0)

|p| 32 dy ds
)
. (6.5.8)

After making inverse scaling in (6.5.8), we find

sup
z∈Q1

r0
(b0)

r0|u(x, t)|+ r20 |∇u(x, t)| ≤ Φ
(
cA(zb0 , 3r0; v) + cE(zb0 , 3r0; v)+

+cC(zb0 , 3r0; v) + cD(zb0 , 3r0; q)
)
≤ Φ

(
4cC1

)
.

It remains to apply Lemma 6.11 and complete the proof of the proposition.

�

Now, we proceed with proof of Theorems 5.17 and 5.18. Using Lemmata

6.10, 6.11, 6.12, Remark 6.8, Proposition 5.19 and scaling arguments, we

may assume (without loss of generality) that our solution v and q have the

following properties:

sup
0<r≤1

(
A(0, r; v)+E(0, r; v)+C(0, r; v)+D(0, r; q)

)
= A1 < +∞, (6.5.9)

ess sup
z=(x,t)∈Q

|x′||v(x, t)| = A2 < +∞. (6.5.10)

We may also assume that the function v is Hölder continuous in the closure

of the set C×]− 1,−a2[ for any 0 < a < 1.

Introducing functions

H(t) = sup
x∈C

|v(x, t)|, h(t) = sup
−1<τ≤t

H(τ),

let us suppose that our statement is wrong, i.e., z = 0 is a singular point.

Then there are sequences xk ∈ C and −1 < tk < 0, having the following

properties:

h(tk) = H(tk) =Mk = |v(xk, tk)| → +∞ as k → +∞.

We scale our functions v and q so that scaled functions keep axial symmetry:

uk(y, s) = λkv(λky
′, x3k + λky3, tk + λ2ks), λk =

1

Mk
,
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pk(y, s) = λ2kq(λky
′, x3k + λky3, tk + λ2ks).

These functions satisfy the Navier-Stokes equations in Q(Mk). Moreover,

|uk(y′k, 0, 0)| = 1, y′k =Mkx
′
k. (6.5.11)

According to (6.5.10),

|y′k| ≤ A2

for all k ∈ N. Thus, without loss of generality, we may assume that

y′k → y′∗ as k → +∞. (6.5.12)

Now, let us see what happens as k → +∞. By the identity

sup
e=(y,s)∈C(Mk)

|uk(e)| = 1 (6.5.13)

and by (6.5.9), we can select subsequences (still denote as the entire se-

quence) such that

uk
⋆
⇀u in L∞(Q(a)), (6.5.14)

and

pk ⇀ p in L 3
2
(Q(a))

for any a > 0. Functions u and p are defined on Q− = R
3×] − ∞, 0[.

Obviously, they possess the following properties:

ess sup
e∈Q−

|u(e)| ≤ 1,

sup
0<r<+∞

(
A(0, r;u) + E(0, r;u) + C(0, r;u) +D(0, r; p)

)
≤ A1,

ess sup
e=(y,s)∈Q−

|y′||u(y, s)| ≤ A2. (6.5.15)

Now, our aim is to show that u and p satisfy the Navier-Stokes equations

Q− and u is smooth enough to obey the identity

|u(y′∗, 0, 0)| = 1. (6.5.16)

To this end, we fix an arbitrary positive number a > 0 and consider numbers

k so big that a < Mk/4. We know that uk satisfies the non-homogeneous

heat equation of the form

∂tu
k −∆uk = −divF k in Q(4a),
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where F k = uk ⊗ uk + pkI and

‖F k‖ 3
2 ,Q(4a) ≤ c1(a) <∞.

This implies the following fact, see [Ladyzhenskaya et al. (1967)],

‖∇uk‖ 3
2 ,Q(3a) ≤ c2(a) <∞.

Now, we can interpret the pair uk and pk as a solution to the non-

homogeneous Stokes system

∂tu
k −∆uk +∇pk = fk, div uk = 0 in Q(3a), (6.5.17)

where fk = −uk · ∇uk is the right-hand side having the property

‖fk‖ 3
2 ,Q(3a) ≤ c2(a).

Then, according to the local regularity theory for the Stokes system, see

Chapter 4, we can state that

‖∂tuk‖ 3
2 ,Q(2a) + ‖∇2uk‖ 3

2 ,Q(2a) + ‖∇pk‖ 3
2 ,Q(2a) ≤ c3(a).

The latter, together with the embedding theorem, implies

‖∇uk‖3, 32 ,(Q(2a)) + ‖pk‖3, 32 ,Q(2a) ≤ c4(a).

In turn, this improves integrability of the right-hand side in (6.5.17)

‖fk‖3, 32 ,Q(2a) ≤ c4(a).

Therefore, by the local regularity theory,

‖∂tuk‖3, 32 ,Q(2a) + ‖∇2uk‖3, 32 ,Q(2a) + ‖∇pk‖3, 32 ,Q(2) ≤ c5(a).

Applying the imbedding theorem once more, we find

‖∇uk‖6, 32 ,Q(2a) + ‖pk‖6, 32 ,Q(2a) ≤ c6(a).

The local regularity theory leads then to the estimate

‖∂tuk‖6, 32 ,Q(a) + ‖∇2uk‖6, 32 ,Q(a) + ‖∇pk‖6, 32 ,Q(a) ≤ c7(a).

By the embedding theorem, sequence uk is uniformly bounded in a Hölder

space, for example, in C
1
2 (Q(a/2)). Hence, without loss of generality, one

may assume that

uk → u in C
1
4 (Q(a/2)).

This means that the pair u and p obeys the Navier-Stokes system and

(6.5.16) holds. So, the function u is the so-called bounded ancient solution

to the Navier-Stokes system which is, in addition, axially symmetric and

satisfies the decay estimate (6.5.15). As it has been shown in Section 5 of

this chapter, such a solution must be identically zero. But this contradicts

(6.1.43). Theorems (5.17) and (5.18) are proved.
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6.6 Backward Uniqueness for Navier-Stokes

Equations

In this section, we deal with another subclass of ancient solutions u possess-

ing the following property: there exists a function p defined on R
3×]−∞, 0[

such that functions u and p are a suitable weak solution to the Navier-Stokes

equations in R
3×] − ∞, 0[, i.e., they are a suitable weak solution on each

parabolic ball of the form Q(a) = B(a)×]−a2, 0[ with < a < +∞. We call u

a local energy ancient solution. Certainly, mild bounded ancient solutions

belong to this subclass.

Local energy ancient solutions can be obtained from a given suitable

weak solution v and q defined in Q with the help of the scaling mentioned

in the previous section provided boundedness of g′ takes place, see the

definition of g′ in Proposition 3.11.

Proposition 6.20. Let v and q be a suitable weak solution to the Navier-

Stokes equations in Q with g′ < +∞ and let u(k)(y, s) = λkv(λky, λ
2
ks)

and p(k)(y, s) = λ2kq(λky, λ
2
ks) with λk → 0 as k → +∞. Then there exist

subsequences of u(k) and p(k) still denoted by u(k) and p(k) such that, for

each a > 0,

u(k) → u

in L3(Q(a)) ∩ C([−a2, 0];L 9
8
(B(a))) and

p(k) ⇀ p

in L 3
2
(Q(a)), where u is a local energy ancient solution with the corre-

sponding pressure p. For them, the energy scale-invariant quantities are

uniformly bounded, i.e.,

sup
0<a<+∞

{A(u; a) + C(u; a) +D(p; a) + E(u; a)} < +∞.

Moreover, if z = 0 is a singular point of the velocity field v, then
∫

Q(3/4)

|u|3dz > c (6.6.1)

with a positive universal constant c, i.e., u is not identically equal to zero.

A proof of this proposition and similar facts can be found in [Escauriaza

et al. (2003)], [Seregin (2007)], [Seregin and Šverák (2009)], and [Seregin
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(2011)]. Let us comment the last statement of Proposition 6.20. Indeed, if

z = 0 is a singular point of v, the ε-regularity theory gives us
1

r2

∫

Q(r)

(|v|3 + |q| 32 )dz > ε > 0

for all 0 < r < 1 and for some universal constant ε. Making the inverse

change of variables, we find
1
a2

∫
Q(a)

(|u(k)|3 + |p(k)| 32 )dyds =

= 1
λ2
ka

2

∫
Q(λka)

(|v|3 + |q| 32 )dxds > ε > 0

for each fixed radius a > 0 and for sufficiently large natural number k.

We cannot simply pass to the limit in the latter identity since it is not

clear whether the pressure p(k) converges strongly. This is a typical issue

for those who work with sequences of weak solutions to the Navier-Stokes

equations. In order to treat this case, let us split the pressure p(k) into

two parts. The first part is completely controlled by the velocity field u(k)

while the second one is a harmonic function with respect to the spatial

variables. This, together with a certain boundedness of the sequence p(k),

implies (6.6.1). For more details, we recommend papers [Seregin (2007)]

and [Seregin (2011)].

We do not know whether local energy ancient solutions with bounded

scaled energy quantities are identically equal to zero. However, there are

some interesting cases for which the answer is positive. Let us describe

them.

Our additional standing assumption of this section can be interpreted

as a restriction on the blowup profile of v and has the form
1

r
15
8

∫

B(r)

|v(x, 0)| 98 dx→ 0 (6.6.2)

as r → 0. The most important consequence of (6.6.2) is that

u(·, 0) = 0, (6.6.3)

where u is a local energy ancient solution that is generated by the scaling

described by Proposition 6.20. Indeed, for any a > 0, we have
1

a
15
8

∫
B(a)

|u(y, 0)| 98 dy ≤

≤ c 1

a
15
8

∫
B(a)

|u(y, 0)− u(k)(y, 0)| 98 dy + c 1

a
15
8

∫
B(a)

|u(k)(y, 0)| 98 dy =

= αk(a) + c 1

(λka)
15
8

∫
B(λka)

|v(x, 0)| 98 dx.
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Now, by Proposition 6.20 and by (6.6.2), the right-hand side of the latter

inequality tends to zero and this completes the proof of (6.6.3).

In a view of (6.6.3), one could expect that our local energy ancient

solution is identically equal to zero. We call this phenomenon a backward

uniqueness for the Navier-Stokes equations. So, if the backward uniqueness

takes place or at least our ancient solution is zero on the time interval

] − 3/4, 0[, then (6.6.1) cannot be true and thus, by Proposition 6.20, the

origin z = 0 is not a singular point of the velocity field v.

The crucial point for understanding the backward uniqueness for the

Navier-Stokes equations is a similar phenomenon for the heat operator with

lower order terms. The corresponding statement for the partial differential

inequality involving the backward heat operator with lower order terms has

been proved in [Escauriaza et al. (2003)] and reads:

Theorem 6.21. Assume that we are given a function ω defined on

R
n
+×]0, 1[, where R

n
+ = {x = (xi) ∈ R

n, xn > 0}. Suppose further that

they have the properties:

ω and the generalized derivatives ∇ω, ∂tω, and ∇2ω are square inte-

grable over any bounded subdomain of Rn
+×]0, 1[;

|∂tω +∆ω| ≤ c(|ω|+ |∇ω|) (6.6.4)

on R
n
+×]0, 1[ with a positive constant c;

|ω(x, t)| ≤ exp{M |x|2} (6.6.5)

for all x ∈ R
n
+, for all 0 < t < 1, and for some M > 0;

ω(x, 0) = 0 (6.6.6)

for all x ∈ R
n
+.

Then ω is identically zero in R
n
+×]0, 1[.

The interesting feature of Theorem 6.21 is that there has been made no

assumption on ω on the boundary xn = 0. In order to prove the theorem,

two Carleman’s inequalities have been established, see details in [Escauriaza

et al. (2003)] and [Escauriaza et al. (2003)] and Appendix A. For the further

improvements of the above backward uniqueness result, we refer to the

interesting paper [Escauriaza et al. (2006)].

Theorem 6.21 clearly indicates what should be added to (6.6.3) in order

to get the backward uniqueness for ancient solutions to the Navier-Stokes

equations. Obviously, we need more regularity for sufficiently large x and a
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decay at infinity. One can hope then to apply Theorem 6.21 to the vorticity

equation

∂tω −∆ω = ω · ∇u− u · ∇ω, ω = ∇ ∧ u,
which could be interpreted as a perturbation of the heat equation by lower

order terms. To make it possible, it is sufficient to show boundedness of

u and ∇u outside of the Cartesian product of some spatial ball and some

time interval. The rest of the section will be devoted to a certain situation,

for which it is really true.

Let us assume that

|u(x, t)|+ |∇u(x, t)| ≤ c < +∞ (6.6.7)

for all |x| > R, for all −1 < t < 0, and for some constant c and try to figure

out what follows from (6.6.7). It is not difficult to see that (6.6.3) and

(6.6.7) implies (6.6.6) and (6.6.4), (6.6.5), respectively. At last, the linear

theory ensures the validity of first condition in Theorem 6.21, see details in

[Seregin (2007)]. So, Theorem 6.21 is applicable and by it, ω(x, t) = 0 for

all |x| > R and for −1 < t < 0. Using unique continuation across spatial

boundaries, see, for instance, [Escauriaza et al. (2003)] or Appendix A, we

deduce ω(x, t) = ∇ ∧ u(x, t) = 0 for all x ∈ R
3 and, say, for −5/6 < t < 0.

Since u is divergence free, it is a harmonic function in R
3 depending on

t ∈] − 5/6, 0[ as a parameter. Therefore, for any a >
√

5/6 and for any

x0 ∈ R
3, by the mean value theorem for harmonic functions, we have

sup
−5/6<t<0

|u(x0, t)|2 ≤ c sup
−5/6<t<0

1

a3

∫

B(x0,a)

|u(x, t)|2dx

≤ c sup
−5/6<t<0

1

a3

∫

B(|x0|+a)

|u(x, t)|2dx ≤ c
a+ |x0|
a3

A(u, a+ |x0|).

Thanks to boundedness of scaled energy quantities stated in Proposition

6.20, the right-hand side of the above inequality tends to zero as a goes to

infinity. By arbitrariness of x0, we conclude that u(x, t) = 0 for all x ∈ R
3

and for −5/6 < t < 0, which contradicts (6.6.1). Hence, the origin z = 0

cannot be a singular point of v.

Coming back to a marginal case of Ladyzhenskaya-Prodi-Serrin condi-

tion, which is called L3,∞-case, and show that it can be completely embed-

ded into the above scheme. So, we assume that functions v and q are a

suitable weak solution to the Navier-Stokes equations in Q and satisfy the

additional condition

‖v‖3,∞,Q < +∞. (6.6.8)
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With the help of Proposition 3.11, it is not so difficult to show that g′ <
+∞. So, for v, all the assumptions of Proposition 6.20 hold and thus

our blowup procedure produces a local energy ancient solution u with the

properties listed in that proposition. Exploited the ε-regularity theory once

more, we can show further that v(·, 0) ∈ L3(B(2/3)), which in turn implies

(6.6.2). Now, in order to prove regularity of the velocity v at the point

z = 0, it is sufficient to verify the validity of (6.6.7). Indeed, by scale-

invariance,

‖u‖3,∞,R3×]−∞,0[ < +∞.

Applying Proposition 6.20 again and taking into account properties of har-

monic functions, one can conclude that

‖p‖ 3
2 ,∞,R3×]−∞,0[ < +∞.

Combining the latter estimates, we show that for any T > 0

0∫

−T

∫

R3

(|u|3 + |p| 32 )dxdt < +∞. (6.6.9)

Our further arguments rely upon the ε-regularity theory. Indeed, letting,

say, T = 4, one can find R > 4 so that

0∫

−4

∫

R3\B(R/2)

(|u|3 + |p| 32 )dxdt < ε.

The rest of the proof of (6.6.7) is easy.

6.7 Comments

The section is essentially the context of my lectures on the local regularity

theory given in Summer School, Cetraro, Italy, 2010, see [Seregin (2013)].

It contains an introduction to the so-called ε-regularity theory in the spirit

of the paper [Escauriaza et al. (2003)], see also [Seregin (2007)] for some

generalizations. A big part of this section is an alternative approach to

derivation of mild bounded ancient solutions and Liouville type theorems for

them presented in [Koch et al. (2009)]. Here, we follow the paper [Seregin

and Šverák (2009)] although proofs of Liouville type theorems is essentially

the same as in [Koch et al. (2009)].
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Chapter 7

Behavior of L3-Norm

7.1 Main Result

Let us consider the Cauchy problem for the classical Navier-Stokes system

∂tv + v · ∇v −∆v = −∇q, divv = 0 (7.1.1)

with the initial condition

v|t=0 = v0 (7.1.2)

in R
3. For simplicity, assume

v0 ∈ C∞
0,0(R

3) ≡ {v ∈ C∞
0 (R3) : divv = 0}. (7.1.3)

In 1934, J. Leray proved certain necessary conditions for T to be a blow

up time. They can be stated as follows. Suppose that T is a blow up time,

then, for any 3 < m ≤ ∞, there exists a constant cm, depending on m only,

such that

‖v(·, t)‖m ≡ ‖v(·, t)‖m,R3 ≡
( ∫

R3

|v(x, t)|mdx
) 1

m ≥ cm

(T − t)
m−3
2m

(7.1.4)

for all 0 < t < T .

However, for the scale-invariant L3-norm, a weaker statement

lim sup
t→T−0

‖v(·, t)‖3 = ∞ (7.1.5)

has been proven in the previous chapter. The aim of this chapter is to

improve (7.1.5). At the moment, the best improvement of (7.1.5) is given

by the following theorem.

Theorem 1.1. Let v be an energy solution to the Cauchy problem (7.1.1)

and (7.1.2) with the initial data satisfying (7.1.3). Suppose that T > 0 is a

finite blow up time. Then

lim
t→T−0

‖v(·, t)‖3 = ∞ (7.1.6)

holds true.

189
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Let us briefly outline our proof of Theorem 1.1 that relays upon ideas

developed in [Seregin (2007)]-[Seregin (2010)]. In particular, in [Seregin

(2007)], a certain type of scaling has been invented, which, after passing to

the limit, gives a special non-trivial solution to the Navier-Stokes equations

provided there is a finite time blow up. In [Seregin (2011)] and [Seregin

(2010)], it has been shown that the same type of scaling and blowing-up

can produce the so-called Lemarie-Rieusset local energy solutions, intro-

duced and carefully studied in the monograph [Lemarie-Riesset (2002)],

see Appendix B for details. It turns out to be that the backward unique-

ness technique is still applicable to those solutions. Although the theory

of backward uniqueness itself is relatively well understood, its realization

is not an easy task and based on delicate regularity results for the Navier-

Stokes equations. Actually, there are two main points to verify: solutions,

produced by scaling and blowing-up, vanish at the last moment of time and

have a certain spatial decay. The first property is easy for solutions with

bounded L3-norm while the second one is harder. However, under certain

restrictions, the required decay is a consequence of the Lemarie-Rieusset

theory. So, the main technical part of the whole procedure is to show

that scaling and blowing-up lead to local energy solutions. On that way, a

lack of compactness of initial data of scaled solutions in L2,loc is the main

obstruction. This is why the same theorem for a stronger scale-invariant

norm of the space H
1
2 is easier. The reason for that is a compactness of

the corresponding embedding, see [Rusin and Sverak (2011)] and [Seregin

(2011)].

In this chapter, we are going to show that, despite of a lack of com-

pactness in L3-case, the limit of the sequence of scaled solutions is still a

local energy solution, for which a spatial decay takes place. Technically,

this can be done by splitting each scaled solution into two parts. The first

one is a solution to a non-linear problem but with zero initial data while

the second one is a solution of a linear problem with weakly converging

non-homogeneous initial data.

We also prove (7.1.4) as a by-product of the proof of Theorem 1.1, see

Section 4.
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7.2 Estimates of Scaled Solutions

Assume that our statement is false and there exists an increasing sequence

tk converging to T as k → ∞ such that

sup
k∈N

‖v(·, tk)‖3 =M <∞. (7.2.1)

By the definition of a blow up time for energy solutions, there exists

at least one singular point at time T . Without loss of generality, we may

assume that it is (0, T ). Moreover, the blow-up profile has the finite L3-

norm, i.e.,

‖v(·, T )‖3 <∞. (7.2.2)

Indeed, by the ε-regularity theory, one-dimensional Hausdorff’s measure of

singular points at the blow up time T is equal to zero. Therefore, v(x, t) →
v(x, T ) as t→ T −0 for a.a. x and thus (7.2.2) follows from Fatou’s lemma.

Let us scale v and q so that

u(k)(y, s) = λkv(x, t), p(k)(y, s) = λ2kq(x, t), (7.2.3)

for (y, s) ∈ R
3×]− λ−2

k T, 0[, where

x = λky, t = T + λ2ks,

λk =

√
T − tk
S

and a positive parameter S < 10 will be defined later.

By the scale invariance of L3-norm, u(k)(·,−S) is uniformly bounded in

L3(R
3), i.e.,

sup
k∈N

‖u(k)(·,−S)‖3 =M <∞. (7.2.4)

Let us decompose our scaled solution u(k) into two parts: u(k) = v(k) +

w(k). Here, w(k) is a solution to the Cauchy problem for the Stokes system:

∂tw
(k) −∆w(k) = −∇r(k), divw(k) = 0 in R

3×]− S, 0[,

w(k)(·,−S) = u(k)(·,−S). (7.2.5)
Obviously, (7.2.5) can be reduced to the Cauchy problem for the heat equa-

tion so that the pressure r(k) = 0 and w(k) can be worked out with the help

of the heat potential. The estimate below is well-known, see, for example

[Kato (1984)],

sup
k
{‖w(k)‖L5(R3×]−S,0[ + ‖w(k)‖L3,∞(R3×]−S,0[} ≤ c(M) <∞. (7.2.6)
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It is worthy to note that, by the scale invariance, c(M) in (7.2.6) is inde-

pendent of S.

As to v(k), it is a solution to the Cauchy problem for the following

perturbed Navier-Stokes system

∂tv
(k) + div(v(k) + w(k))⊗ (v(k) + w(k))−∆v(k) = −∇p(k),

div v(k) = 0 in R
3×]− S, 0[, (7.2.7)

v(k)(·,−S) = 0.

Now, our aim is to show that, for a suitable choice of −S, we can prove

uniform estimates of v(k) and p(k) in certain spaces, pass to the limit as

k → ∞, and conclude that the limit functions u and p are a local energy

solution to the Cauchy problem for the Navier-Stokes system in R
3×]−S, 0[

associated with the initial data, generated by the weak L3-limit of the

sequence u(k)(·,−S).
Let us start with estimates of solution to (7.2.7). First of all, we know

the formula for the pressure:

p(k)(x, t) = −1

3
|u(k)(x, t)|2 + 1

4π

∫

R3

K(x− y) : u(k)(y, t)⊗ u(k)(y, t)dy,

(7.2.8)

where K(x) = ∇2(1/|x|).
Next, we may decompose the pressure in the same way as it has been

done in [Kikuchi and Seregin (2007)], see Appendix B. For x0 ∈ R
3 and for

x ∈ B(x0, 3/2), we let

p(k)x0
(x, t) ≡ p(k)(x, t)− c(k)x0

(t) = p1(k)x0
(x, t) + p2(k)x0

(x, t), (7.2.9)

where

p1(k)x0
(x, t) = −1

3
|u(k)(x, t)|2 + 1

4π

∫

B(x0,2)

K(x− y) : u(k)(y, t)⊗ u(k)(y, t)dy,

p2(k)x0
(x, t) =

1

4π

∫

R3\B(x0,2)

(K(x− y)−K(x0 − y)) : u(k)(y, t)⊗ u(k)(y, t)dy,

c(k)x0
(t) =

1

4π

∫

R3\B(x0,2)

K(x0 − y) : u(k)(y, t)⊗ u(k)(y, t)dy.

Using the similar arguments as in [Lemarie-Riesset (2002)], see also

Appendix B, one can derive estimates of p
1(k)
x0 and p

2(k)
x0 . Here, they are:

‖p1(k)x0
(·, t)‖L 3

2
(B(x0,3/2)) ≤ c(M)(‖v(k)(·, t)‖2L3(B(x0,2))

+ 1), (7.2.10)
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sup
B(x0,3/2)

|p2(k)x0
(x, t)| ≤ c(M)(‖v(k)(·, t)‖2L2,unif

+ 1), (7.2.11)

where

‖g‖L2,unif
= sup

x0∈R3

‖g‖L2(B(x0,1)).

We further let

α(s) = α(s; k, S) = ‖v(k)(·, s)‖22,unif ,

β(s) = β(s; k, S) = sup
x∈R3

s∫

−S

∫

B(x,1)

|∇v(k)|2dydτ.

From (7.2.10), (7.2.11), we find the estimate of the scaled pressure

δ(0) ≤ c(M)
[
γ(0) +

0∫

−S

(1 + α
3
2 (s))ds

]
, (7.2.12)

with some positive constant c(M) independent of k and S. Here, γ and δ

are defined as

γ(s) = γ(s; k, S) = sup
x∈R3

s∫

−S

∫

B(x,1)

|v(k)(y, τ)|3dydτ

and

δ(s) = δ(s; k, S) = sup
x∈R3

s∫

−S

∫

B(x,3/2)

|p(k)(y, τ)− c(k)x (τ)| 32 dy dτ,

respectively. It is known that an upper bound for γ can be given by the

known multiplicative inequality

γ(s) ≤ c
( s∫

−S

α3(τ)dτ
) 1

4
(
β(s) +

s∫

−S

α(τ)dτ
) 3

4

. (7.2.13)

Fix x0 ∈ R
3 and a smooth non-negative function ϕ such that

ϕ = 1 in B(1), spt ⊂ B(3/2)

and let ϕx0(x) = ϕ(x− x0).
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Since the function v(k) is smooth on [−S, 0[, we may write down the

following energy identity

∫

R3

ϕ2
x0
(x)|v(k)(x, s)|2dx + 2

s∫

−S

∫

R3

ϕ2
x0
|∇v(k)|2dxdτ =

=

s∫

−S

∫

R3

[
|v(k)|2∆ϕ2

x0
+ v(k) · ∇ϕ2

x0
(|v(k)|2 + 2p(k)x0

)
]
dxdτ+

+

s∫

−S

∫

R3

[
w(k) · ∇ϕ2

x0
|v(k)|2 + 2ϕ2

x0
w(k) ⊗ (w(k) + v(k)) : ∇v(k)+

+2w(k) · v(k)(w(k) + v(k)) · ∇ϕ2
x0

]
dxdτ = I1 + I2.

The first term I1 is estimated with the help of the Hölder inequality,

multiplicative inequality (7.2.13), and bounds (7.2.10), (7.2.11). So, we find

I1 ≤ c(M)
[ s∫

−S

(1 + α(τ) + α
3
2 (τ))dτ+

+
( s∫

−S

α3(τ)dτ
) 1

4
(
β(s) +

s∫

−S

α(τ)dτ
) 3

4
]
.

Now, let us evaluate the second term

I2 ≤ c

s∫

−S

‖v(k)(·, τ)‖2L3(B(x0,3/2))
‖w(k)(·, τ)‖L3(B(x0,3/2))dτ+

+c

s∫

−S

( ∫

B(x0,3/2)

|w(k)|5dx
) 1

5
( ∫

B(x0,3/2)

|v(k)| 54 |∇v(k)| 54 dx
) 4

5

dτ+

+cβ
1
2 (s)

( s∫

−S

∫

B(x0,3/2)

|w(k)|4dxdτ
) 1

2

dτ+

+c

s∫

−S

‖v(k)(·, τ)‖L3(B(x0,3/2))‖w(k)(·, τ)‖2L3(B(x0,3/2))
dτ.
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Taking into account (7.2.6) and applying Hölder inequality several times,

we find

I2 ≤ c(M)γ
2
3 (s)(s+ S)

1
3+

+c

s∫

−S

( ∫

B(x0,3/2)

|w(k)|5dx
) 1

5
( ∫

B(x0,3/2)

|∇v(k)|2dx
) 1

2×

×
( ∫

B(x0,3/2)

|v(k)| 103 dx
) 3

10

dτ + c(M)β
1
2 (s)(s+ S)

1
10+

+c(M)γ
1
3 (s)(s+ S)

2
3 .

It remains to use another known multiplicative inequality
( ∫

B(x0,3/2)

|v(k)(x, s)| 103 dx
) 3

10 ≤ c
( ∫

B(x0,3/2)

|v(k)(x, s)|2dx
) 1

5×

×
( ∫

B(x0,3/2)

(|∇v(k)(x, s)|2 + |v(k)(x, s)|2dx
) 3

10

and to conclude that

I2 ≤ c(M)γ
2
3 (s)(s+ S)

1
3 + c(M)β

1
2 (s)(s+ S)

1
10 + c(M)γ

1
3 (s)(s+ S)

2
3+

+c
(
β(s) +

s∫

−S

α(τ)dτ)
) 4

5 ×
( s∫

−S

α(τ)‖w(k)(·, τ)‖5L5,unif
dτ

) 1
5

.

Finally, we find

α(s) + β(s) ≤ c(M)
[
(s+ S)

1
5+

+

s∫

−S

(
α(τ)(1 + ‖w(k)(·, τ)‖5L5,unif

) + α3(τ)
)
dτ

]
, (7.2.14)

which is valid for any s ∈ [−S, 0[ and for some positive constant c(M)

independent of k, s, and S.

It is not so difficult to show that there is a positive constant S(M) such

that

α(s) ≤ 1

10
(7.2.15)
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for any s ∈]− S(M), 0[. In turn, the latter will also imply that

α(s) ≤ c(M)(s+ S)
1
5 (7.2.16)

for any s ∈]− S(M), 0[.

To see how this can be worked out, let us assume

α(s) ≤ 1 (7.2.17)

for −S ≤ s < s0 ≤ 0. Then (7.2.14) yields

α(s) ≤ c(M)((s+ S)
1
5 + y(s)) (7.2.18)

for the same s. Here,

y(s) =

s∫

−S

α(τ)(2 + g(τ))dτ, g(s) = ‖w(k)(·, s)‖2L5(R3).

The function y(s) obeys the differential inequality

y′(s) ≤ c(M)(2 + g(s))((s + S)
1
5 + y(s)) (7.2.19)

for −S ≤ s < s0 ≤ 0. After integrating (7.2.19), we find

y(s) ≤ c(M)

s∫

−S

(
(τ + S)

1
5 (2 + g(τ)) exp

{
c(M)

s∫

τ

(2 + g(ϑ))
}
dϑ

)
dτ

(7.2.20)

for −S ≤ s < s0 ≤ 0. Taking into account estimate (7.2.6), we derive from

(7.2.20) the following bound

y(s) ≤ c1(M)(s+ S)
1
5 (7.2.21)

for −S ≤ s < s0 ≤ 0 and thus

y(s) ≤ c1(M)S
1
5 (7.2.22)

for the same s.

Now, let us pick up S(M) > 0 so small that

c(M)(1 + c1(M))S
1
5 (M) =

1

20
. (7.2.23)

We claim that, for such a choice of S(M), statement (7.2.15) holds true.

Indeed, assume that it is false. Then since α(s) is a continuous function on

[−S, 0[ and α(0) = 0, there exists s0 ∈]− S, 0[ such that 0 ≤ α(s) < 1
10 for

all s ∈]− S, s0[ and α(s0) =
1
10 . In this case, we may use first (7.2.22) and

then (7.2.18), (7.2.23) to get

α(s) ≤ c(M)(1 + c1(M))S
1
5 (M) =

1

20
for s ∈]−S, s0[. This leads to a contradiction and, hence, (7.2.15) has been

proven. It remains to use (7.2.18) and (7.2.21) with s0 = 0 in order to

establish (7.2.16).
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7.3 Limiting Procedure

As to w(k), it is defined by the solution formula

w(k)(x, t) =
1

(4π(s+ S))
3
2

∫

R3

exp
(
− |x− y|2

4(s+ S)

)
u(k)(y,−S)dy.

Moreover, by standard localization arguments, the following estimate can

be derived:

sup
−S<s<0

sup
x0∈R3

‖w(k)(·, s)‖2L2(B(x0,1))
+

+ sup
x0∈R3

0∫

−S

∫

B(x0,1)

|∇w(k)(y, s)|2dyds ≤ c(M) <∞.

Obviously, w(k) and all its derivatives converge to w and to its corre-

sponding derivatives uniformly in sets of the formB(R)×[δ, 0] for anyR > 0

and for any δ ∈]−S, 0[. The limit function satisfies the same representation

formula

w(x, t) =
1

(4π(s+ S))
3
2

∫

R3

exp
(
− |x− y|2

4(s+ S)

)
w0(y)dy,

in which w0 is the weak L3(R
3)-limit of the sequence u(k)(·,−S). The

function w satisfies the uniform local energy estimate

sup
−S<s<0

sup
x0∈R3

‖w(·, s)‖2L2(B(x0,1))
+

+ sup
x0∈R3

0∫

−S

∫

B(x0,1)

|∇w(y, s)|2dyds ≤ c(M) <∞.

The important fact, coming from the solution formula, is as follows:

w ∈ C([−S, 0];L3(R
3)) ∩ L5(R

3×]− S, 0[). (7.3.1)

Next, the uniform local energy estimate for the sequence u(k) (with

respect to k) can be deduced from the estimates above. This allows us to

exploit the limiting procedure explained in [Kikuchi and Seregin (2007)],

see Appendix B, in details. As a result, one can select a subsequence, still

denoted by u(k), with the following properties:

for any a > 0,

u(k) → u (7.3.2)
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weakly-star in L∞(−S, 0;L2(B(a))) and strongly in L3(B(a)×]−S, 0[) and
in C([τ, 0];L 9

8
(B(a))) for any −S < τ < 0;

∇u(k) → ∇u (7.3.3)

weakly in L2(B(a)×]− S, 0[);

t 7→
∫

B(a)

u(k)(x, t) · w(x)dx → t 7→
∫

B(a)

u(x, t) · w(x)dx (7.3.4)

strongly in C([−S, 0]) for any w ∈ L2(B(a)). The corresponding sequences

v(k) and w(k) converge to their limits v and w in the same sense and of

course u = v + w. For the pressure p, we have the following convergence:

for any n ∈ N, there exists a sequences c
(k)
n ∈ L 3

2
(−S, 0) such that

p̃(k)n ≡ p(k) − c(k)n ⇀ p (7.3.5)

in L 3
2
(−S, 0;L 3

2
(B(n))).

So, arguing in the same way as in [Kikuchi and Seregin (2007)], see

Appendix B, one can show that u and p satisfy the following conditions:

sup
−S<s<0

sup
x0∈R3

‖u(·, s)‖2L2(B(x0,1))
+ sup

x0∈R3

0∫

−S

∫

B(x0,1)

|∇u(y, s)|2dyds <∞;

(7.3.6)

p ∈ L 3
2
(−S, 0;L 3

2 ,loc
(R3); (7.3.7)

the function

s 7→
∫

R3

u(y, s) · w(y)dy (7.3.8)

is continuous on [−S, 0] for any compactly supported w ∈ L2(R
3);

∂tu+ u · ∇u−∆u = −∇p, div u = 0 (7.3.9)

in R
3×]− S, 0[ in the sense of distributions;

for any x0 ∈ R
3, there exists a function cx0 ∈ L 3

2
(−S, 0) such that

p(x, t)− cx0(t) = p1x0
(x, t) + p2x0

(x, t) (7.3.10)

for all x ∈ B(x0, 3/2), where

p1x0
(x, t) = −1

3
|u(x, t)|2 + 1

4π

∫

B(x0,2)

K(x− y) : u(y, t)⊗ u(y, t)dy,
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p2x0
(x, t) =

1

4π

∫

R3\B(x0,2)

(K(x− y)−K(x0 − y)) : u(y, t)⊗ u(y, t)dy;

for any s ∈]− S, 0[ and for ϕ ∈ C∞
0 (R3×]− S, S[),

∫

R3

ϕ2(y, s)|u(y, s)|2dy + 2

s∫

−S

∫

R3

ϕ2|∇u|2dydτ ≤

≤
s∫

−S

∫

R3

(
|u|2(∆ϕ2 + ∂ϕ2) + u · ∇ϕ2(|u|2 + 2p)

)
dydτ. (7.3.11)

Passing to the limit in (7.2.16), we find

sup
x0∈R3

‖v(·, s)‖2L2(B(x0,1))
≤ c(M)(s+ S)

1
5

for all s ∈ [−S, 0]. And thus

v(·, s) → 0 in L2,loc(R
3)

as s ↓ −S. Then, taking into account (7.3.1), we can conclude that

u(·, s) → w0 in L2,loc(R
3). (7.3.12)

as s ↓ −S.
By definition accepted in [Kikuchi and Seregin (2007)], see Apendix B,

the pair u and p, satisfying (7.3.6)–(7.3.12), is a local energy solution to the

Cauchy problem for the Navier-Stokes equations in R
3×]− S, 0[ associated

with the initial velocity w0.

Now, our aim is to show that u is not identically zero. Using the inverse

scaling, we observe that the following identity takes place:

1

a2

∫

Q(a)

(|u(k)|3 + |p̃(k)| 32 )dy ds = 1

(aλk)2

∫

Q(zT ,aλk)

(|v|3 + |q − b(k)| 32 )dx dt

for all 0 < a < a∗ = inf{1,
√
S/10,

√
T/10} and for all λk ≤ 1. Here, zT =

(0, T ), p̃(k) ≡ p̃
(k)
2 , and b(k)(t) = λ−2

k c
(k)
2 (s). Since the pair v and q− b(k) is

a suitable weak solution to the Navier-Stokes equations in Q(zT , λka∗), we
find

1

a2

∫

Q(a)

(|u(k)|3 + |p̃(k)| 32 )dy ds > ε (7.3.13)

for all 0 < a < a∗ with a positive universal constant ε.
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Now, by (7.3.2) and (7.3.5),

1

a2

∫

Q(a)

|u(k)|3dy ds→ 1

a2

∫

Q(a)

|u|3dy ds (7.3.14)

for all 0 < a < a∗ and

sup
k∈N

1

a2∗

∫

Q(a∗)

(|u(k)|3 + |p̃(k)| 32 )dy ds =M1 <∞. (7.3.15)

To treat the pressure p̃(k), we do the usual decomposition of it into two

parts, see similar arguments in [Seregin (2011)]. The first one is completely

controlled by the pressure while the second one is a harmonic function in

B(a∗) for all admissible t. In other words, we have

p̃(k) = p
(k)
1 + p

(k)
2

where p
(k)
1 obeys the estimate

‖p(k)1 (·, s)‖ 3
2 ,B(a∗) ≤ c‖u(k)(·, s)‖23,B(a∗)

. (7.3.16)

For the harmonic counterpart of the pressure, we have

sup
y∈B(a∗/2)

|p(k)2 (y, s)| 32 ≤ c(a∗)

∫

B(a∗)

|p(k)2 (y, s)| 32 dy

≤ c(a∗)

∫

B(a∗)

(|p̃(k)(y, s)| 32 + |u(k)(y, s)|3)dy (7.3.17)

for all −a2∗ < s < 0.

For any 0 < a < a∗/2,

ε ≤ 1

a2

∫

Q(a)

(|p̃(k)| 32 + |u(k)|3)dy ds ≤

≤ c
1

a2

∫

Q(a)

(|p(k)1 | 32 + |p(k)2 | 32 + |u(k)|3)dy ds ≤

≤ c
1

a2

∫

Q(a)

(|p(k)1 | 32 + |u(k)|3)dy ds+

+ca3
1

a2

0∫

−a2

sup
y∈B(a∗/2)

|p(k)2 (y, s)| 32 ds.
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From (7.3.15)–(7.3.17), it follows that

ε ≤ c
1

a2

∫

Q(a∗)

|u(k)|3dy ds+ ca

0∫

−a2

ds

∫

B(a∗)

(|p̃(k)(y, s)| 32 + |u(k)(y, s)|3)dy ≤

≤ c
1

a2

∫

Q(a∗)

|u(k)|3dy ds+ ca

∫

Q(a∗)

(|p̃(k)| 32 + |u(k)|3)dy ds ≤

≤ c
1

a2

∫

Q(a∗)

|u(k)|3dy ds+ cM1aa
2
∗

for all 0 < a < a∗/2. After passing to the limit and picking up sufficiently

small a, we find

0 < cεa2 ≤
∫

Q(a∗)

|u|3dy ds (7.3.18)

for some positive 0 < a < a∗/2. So, the limit function u is non-trivial.

Proof Theorem 1.1 The limit function w0 ∈ L3 and, hence,

‖w0‖2,B(x0,1) → 0

as |x0| → ∞. The latter, together with Theorem 1.6 from Appendix B, and

ε-regularity theory for the Navier-Stokes equations, gives a required decay

at infinity. To be more precise, there are positive numbers R, T ∈]a∗, S[,
and ck with k = 0, 1, ... such that

|∇ku(x, t)| ≤ ck (7.3.19)

for any x ∈ R
3 \B(R/2) and for any t ∈]− T, 0[.

The second thing to be noticed is that the following important property

holds true:

u(·, 0) = 0. (7.3.20)

This follows from (7.2.2) and (7.3.2), see the last statement in (7.3.2). Since

vorticity ω = ∇ ∧ u vanishes at t = 0 as well, we can apply the backward

uniqueness result from Appendix A to the vorticity equation and conclude

that ω = 0 in (R3 \ B(R/2))×] − T, 0[. Now, our aim is to show that in

fact ω = 0 in R
3×]− T, 0[. If so, u(·, t) is going to be a bounded harmonic

function with the additional property ‖u(·, t)‖L2(B(x0,1)) → 0 as |x0| → ∞
and thus we may conclude that u = 0 in (R3 \B(R/2))×]−T, 0[. The latter
contradicts (7.3.18) and, hence, zT is not a singular point.
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The idea of the proof of the above claim is more or less the same as in

paper [Escauriaza et al. (2003)]. However, in the present case, we have less

regularity and no global finite norm for the pressure. The way out is to

use decomposition (7.3.10) in order to get better estimates for the pressure,

say, in the domain (R3 \ B(R))×] − T, 0[. Indeed, using estimates of type

(7.2.10) and (7.2.11) for the parts of the pressure p1x0
and p2x0

in (7.3.10),

we show

‖p(·, t)− cx0(t)‖L3/2(B(x0,3/2)) < c

provided B(x0, 2) ∈ R
3 \ B(R/2). Here, a constant c is independent of

x0 and t. Then, local regularity theory, applied to the pressure equation

∆p = −div divu⊗ u, together with estimate (7.3.19), implies

|∇kp(x, t)| < c1k

for any x ∈ R
3 \ B(R), any t ∈]0, T [, and any k = 1, 2, .... If we replace

the pressure p with p− [p]B(4R)\B(R), then from Poincare’s inequality, from

previous estimates, and from the equation ∂tu + u · ∇u − △u = −∇p, it
follows that

|∇ku(x, t)|+ |∇kp(x, t)|+ |∇k∂tu(x, t)| < c2k (7.3.21)

for all x ∈ B(4R) \B(R), for all t ∈]− T, 0[, and for all k = 0, 1, ....

Next, we pick up a smooth cut-off function ϕ such that ϕ = 0 out of

B(3R) and ϕ = 1 in B(2R) and introduce auxiliary functions w̃ and r̃

obeying the equations

∆w̃ = ∇r̃, divw̃ = u · ∇ϕ
in B(4R) and the additional conditions

w̃|∂B(4R) = 0,

∫

B(4R)

r̃dx = 0.

In a view of (7.3.19), the regularity theory for the stationary Stokes system

gives the estimates

|∇kw̃(x, t)|+ |∇k r̃(x, t)|+ |∇k∂tw̃(x, t)| < c2k (7.3.22)

being valid for all x ∈ B(4R), for all t ∈] − T, 0[, and for all k = 0, 1, ....

Letting U = w − w̃ and P = r − r̃, where w = ϕu and r = ϕp, we find

∂tU + div(U ⊗ U)−∆U +∇P = F = −div(U ⊗ w̃ + w̃ ⊗ U) +G,

divU = 0
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in Q∗ = B(4R)×]− T, 0[,

U |∂B(4R)×]−T,0[ = 0.

Here, G = −div(w̃ ⊗ w̃) + g − ∂tw̃ and

g = (ϕ2 − ϕ)div(u⊗ u) + uu · ∇ϕ2 + p∇ϕ− 2∇ϕ · ∇u− u∆ϕ.

Since u and p are a local energy solution, it follows from its definition

that there exists a set Σ ⊂] − T, 0[ of full measure, i.e., |Σ| = T , such

that U is a weak Leray-Hopf solution to initial boundary problem for the

above system in B(4R)×]t0, 0[ for each t0 ∈ Σ. The rest of the proof is

based upon estimates (7.3.21) and (7.3.22) and unique continuation across

spatial boundaries for parabolic differential inequalities and goes along lines

of arguments in the last section of Chapter 6. Theorem 1.1 is proved.

Let us outline the proof of (7.1.4), which is much easier than the proof

of Theorem 1.1. Indeed, arguing as in the main case, we find a sequence

tk → T − 0 such that

lim
k→∞

‖v(·, tk)‖m(T − tk)
m−3
2m = 0.

The scaling implies ‖u(k)(·,−S)‖m → 0 and thus

‖u(k)(·,−S)‖2,unif → 0. (7.3.23)

For solutions u(k), we may use local energy estimates proved in Appendix

B. In particular, they give the estimate

‖u(k)(·, t)‖2
2,unif ≤ 2c‖u(k)(·,−S)‖2

2,unif

for any t ∈]− S, 0[. And S should be chosen independently of k so that

0 < S <
ln 2

c(1 + (2c‖u(k)(·,−S)‖2,unif)2)
for all k ∈ N. It is possible because of (7.3.23).

So, we can claim that

sup
−S<t<0

‖u(k)(·, t)‖2
2,unif + sup

x0∈R3

0∫

−S

∫

B(x0,1)

|∇u(k)|2dxdt → 0

as k → ∞. This means that the limit solution must be identically zero.

However, using the same arguments as in the previous section, we can show

that the limit solution is not a trivial one provided that the original solution

blows up at time T .
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7.4 Comments

This section is essentially based on my paper [Seregin (2012)], which in turn

summarizes all previous attempts made in [Seregin (2007)]-[Seregin (2010)]

to solve the problem about behavior of L3-norm of the velocity field as time

approaches possible blow up time.
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Appendix A

Backward Uniqueness and Unique

Continuation

A.1 Carleman-Type Inequalities

We start with the first Carleman type inequality which has been already

used in [Escauriaza et al. (2002)] and [Escauriaza et al. (2003)] (see also

[Escauriaza (2000)], [Escauriaza and Vega (2001)], and [Tataru (2000)]).

Proposition 1.2. For any function u ∈ C∞
0 (Rn×]0, 2[;Rm) and for any

positive number a, the inequality
∫

Rn×]0,2[

h−2a(t)e−
|x|2

4t

(
a
t |u|2 + |∇u|2

)
dxdt

≤ c0
∫

Rn×]0,2[

h−2a(t)e−
|x|2

4t |∂tu+∆u|2 dxdt
(A.1.1)

is valid with an absolute positive constant c0 and a function h(t) = te
1−t
3 .

Proof of Proposition 1.2 Our approach is based on the L2-theory

of Carleman inequalities developed essentially in [Hörmander (1963)], see

also [Tataru (2000)].

Let u be an arbitrary function from C∞
0 (Rn×]0, 2[;Rm). We let

φ(x, t) = − |x|2
8t − (a+ 1) lnh(t) and v = eφu. Then, we have

Lv := eφ(∂tu+∆u) = ∂tv − div(v ⊗∇φ) −∇v∇φ+∆v + (|∇φ|2 − ∂tφ)v.

The main step in the above approach is the decomposition of operator tL

into symmetric and skew symmetric parts, i.e.,

tL = S +A, (A.1.2)

where

Sv := t(∆v + (|∇φ|2 − ∂tφ)v)−
1

2
v (A.1.3)

205
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and

Av :=
1

2
(∂t(tv) + t∂tv)− t(div(v ⊗∇φ) +∇v∇φ). (A.1.4)

Obviously,
∫
t2e2φ|∂tu+∆u|2 dxdt =

∫
t2|Lv|2 dxdt

=
∫
|Sv|2 dxdt+

∫
|Av|2 dxdt +

∫
[S,A]v · v dxdt,

(A.1.5)

where [S,A] = SA−AS is the commutator of S and A. Simple calculations

show that

I :=
∫
[S,A]v · v dxdt =

= 4
∫
t2
[
φ,ijv,i · v,j + φ,ijφ,iφ,j |v|2

]
dxdt

+
∫
t2|v|2(∂2t φ− 2∂t|∇φ|2 −∆2φ) dxdt

+
∫
t|∇v|2 dxdt−

∫
t|v|2(|∇φ|2 − ∂tφ) dxdt.

(A.1.6)

Given choice of function φ, we have

I = (a+ 1)

∫
t2
[
−
(h′(t)
h(t)

)′
− h′(t))

th(t)

]
|v|2 dxdt = a+ 1

3

∫
t|v|2 dxdt.

(A.1.7)

By the simple identity

|∇v|2 =
1

2
(∂t +∆)|v|2 − v · (∂tv +∆v), (A.1.8)

we find ∫
t2|∇v|2 dxdt = −

∫
t|v|2 dxdt −

∫
t2v · Lv dxdt

+
∫
t2|v|2(|∇φ|2 − ∂tφ) dxdt.

(A.1.9)

In our case,

|∇φ|2 − ∂tφ = −|∇φ|2 + (a+ 1)
h′(t)

h(t)
.

The latter relation (together with (A.1.7)) implies the bound
∫
t2(|∇v|2 + |v|2|∇φ|2) dxdt

≤ 3I −
∫
t2v · Lv dxdt ≤ b1

∫
t2|Lv|2 dxdt

(A.1.10)

with an absolute positive constant b1. Since

eφ|∇u| ≤ |∇v|+ |v||∇φ|, (A.1.11)
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it follows from (A.1.5)–(A.1.10) that∫
h−2a(t)(th−1(t))2

(
(a+ 1)

|u|2
t

+ |∇u|2
)
e−

|x|2

4t dxdt

≤ b2

∫
h−2a(t)(th−1(t))2|∂tu+∆u|2e− |x|2

4t dxdt.

Here, b2 is an absolute positive constant. Inequality (A.1.1) is proved.

The second Carleman-type inequality is, in a sense, an anisotropic one.

Proposition 1.3. Let

φ = φ(1) + φ(2),

where φ(1)(x, t) = − |x′|2
8t and φ(2)(x, t) = a(1− t)x

2α
n

tα , x′ = (x1, x2, ..., xn−1)

so that x = (x′, xn), and en = (0, 0, ..., 0, 1). Then, for any function u ∈
C∞

0 ((Rn
+ + en)×]0, 1[;Rm) and for any number a > a0(α), the following

inequality is valid:∫
(Rn

++en)×]0,1[

t2e2φ(x,t)
(
a |u|2

t2 + |∇u|2
t

)
dxdt

≤ c⋆
∫

(Rn
++en)×]0,1[

t2e2φ(x,t)|∂tu+∆u|2 dxdt.
(A.1.12)

Here, c⋆ = c⋆(α) is a positive constant and α ∈]1/2, 1[ is fixed.

Proof Let u ∈ C∞
0 (Q1

+;R
m), where Q1

+ = (Rn
+ + en)×]0, 1[. We are going

to use formulae (A.1.2)–(A.1.6) for new functions u, v, and φ. All integrals

in those formulae are taken now over Q1
+.

First, we observe that

∇φ = ∇φ(1) +∇φ(2)

∇φ(1)(x, t) = −x′

4t , ∇φ(2)(x, t) = 2αa 1−t
tα x2α−1

n en.

(A.1.13)

Therefore,

∇φ(1) · ∇φ(2) = 0, |∇φ|2 = |∇φ(1)|2 + |∇φ(2)|2. (A.1.14)

Moreover,

∇2φ = ∇2φ(1) +∇2φ(2),

φ
(1)
,ij =





− δij
4t if 1 ≤ i, j ≤ n− 1

0 if i = n or j = n

,

φ
(2)
,ij =





0 if i 6= n or j 6= n

2α(2α− 1)a 1−t
tα x2α−2

n if i = n and j = n

.

(A.1.15)
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In particular, (A.1.15) implies

φ,ijφ,iφ,j = φ
(1)
,ij φ

(1)
,i φ

(1)
,j + φ

(2)
,ij φ

(2)
,i φ

(2)
,j . (A.1.16)

Using (A.1.14)–(A.1.16), we present integral I in (A.1.6) in the following

way:

I = I1 + I2 +

∫
t|∇v|2 dxdt, (A.1.17)

where

Is = 4
∫
t2
[
φ
(s)
,ij v,i · v,j + φ

(s)
,ij φ

(s)
,i φ

(s)
,j |v|2

]
dxdt

+
∫
t2|v|2

(
∂2t φ

(s) − 2∂t|∇φ(s)|2 −∆2φ(s)

− 1
t |∇φ(s)|2 + 1

t ∂tφ
(s)

)
dxdt, s = 1, 2.

Direct calculations give us

I1 = −
∫
t(|∇v|2 − |v,n|2) dxdt

and, therefore,

I =

∫
t|v,n|2 dxdt+ I2. (A.1.18)

Now, our aim is to estimate I2 from below. Since α ∈]1/2, 1[, we can

drop the first integral in the expression for I2. As a result, we have

I2 ≥
∫
t2|v|2(A1 +A2 +A3) dxdt, (A.1.19)

where

A1 = −∂t|∇φ(2)|2,

A2 = A1 −∆2φ(2) − 1

t
|∇φ(2)|2,

A3 = ∂2t φ
(2) +

1

t
∂tφ

(2).

For A2, we find

A2 ≥ 1− t

tα
x2α−4
n a(2α− 1)

[4α2ax2α+2
n

tα+1
− 2α(2α− 2)(2α− 3)

]
.
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Since xn ≥ 1 and 0 < t < 1, we see that A2 ≥ 0 for all a ≥ 2. Hence, it

follows from (A.1.18) and (A.1.19) that

I ≥
∫
t2|v|2(A1 +A3) dxdt. (A.1.20)

It is not difficult to check the following inequality

A3 ≥ a(2α− 1)
x2αn
tα+2

. (A.1.21)

On the other hand,

−∂t|∇φ(2)|2 −
1

t
|∇φ(2)|2 ≥ (2α− 1)

1− t

t2α+1
4α2a2x2(2α−1)

n ≥ 0

and thus

A1 ≥ 1

t
|∇φ(2)|2. (A.1.22)

Combining (A.1.20)–(A.1.22), we deduce from (A.1.5) the estimate∫
t2|Lv|2 dxdt ≥ I

≥ a(2α− 1)
∫ x2α

n

tα |v|2 dxdt +
∫
t|v|2|∇φ(2)|2 dxdt

≥ a(2α− 1)
∫
|v|2 dxdt+

∫
t|v|2|∇φ(2)|2 dxdt.

(A.1.23)

Using (A.1.8), we can find the following analog of (A.1.9)∫
t|∇v|2 dxdt = − 1

2

∫
|v|2 dxdt −

∫
tv · Lv dxdt

+
∫
t|v|2(|∇φ|2 − ∂tφ) dxdt.

(A.1.24)

Due to special structure of φ, we have

|∇φ|2 − ∂tφ = |∇φ(1)|2 − ∂tφ
(1) + |∇φ(2)|2 − ∂tφ

(2)

= −|∇φ(1)|2 + |∇φ(2)|2 − ∂tφ
(2)

and, therefore, (A.1.24) can be reduced to the form∫ (
t|∇v|2 + t|v|2(|∇φ(1)|2 + |∇φ(2)|2)

)
dxdt

=
∫
t
(
|∇v|2 + |v|2|∇φ|2

)
dxdt = − 1

2

∫
|v|2 dxdt

−
∫
tv · Lv dxdt+ 2

∫
t|v|2|∇φ(2)|2 dxdt−

∫
t|v|2∂tφ(2) dxdt.

(A.1.25)

But

−t∂tφ(2) ≤ a
x2αn
tα

and, by (A.1.11) and (A.1.25),
1
2

∫
te2φ|∇u|2 ≤ −

∫
v · (tLv) dxdt

+2
∫
t|v|2|∇φ(2)|2 dxdt+ a

∫ x2α
n

tα |v|2 dxdt.
(A.1.26)

The classical Cauchy-Schwarz inequality, (A.1.23), and (A.1.26) yield re-

quired inequality (A.1.12). �
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A.2 Unique Continuation Across Spatial Boundaries

We will work with the backward heat operator ∂t+∆ rather than the more

usual heat operator ∂t −∆ since this will save us writing some minus signs

in many formulae. In the space-time cylinder Q(R, T ) ≡ B(R)×]0, T [⊂
R

n × R
1, we consider a vector-valued function u = (ui) = (u1, u2, ..., um),

satisfying three conditions:

u ∈ W 2,1
2 (Q(R, T );Rm); (A.2.1)

|∂tu+∆u| ≤ c1(|u|+ |∇u|) a.e. in Q(R, T ) (A.2.2)

for some positive constant c1;

|u(x, t)| ≤ Ck(|x| +
√
t)k (A.2.3)

for all k = 0, 1, ..., for all (x, t) ∈ Q(R, T ), and for some positive constants

Ck. Here,

W 2,1
2 (Q(R, T );Rm) ≡ {|u|+ |∇u|+ |∇2u|+ |∂tu| ∈ L2(Q(R, T ))}.

Condition (A.2.3) means that the origin is zero of infinite order for the

function u.

Theorem 2.4. Assume that a function u obeys conditions (A.2.1)–(A.2.3).

Then, u(x, 0) = 0 for all x ∈ B(R).

Without loss of generality, we may assume that T ≤ 1. Theorem 2.4 is

an easy consequence of the following lemma.

Lemma A.1. Suppose that all conditions of Theorem 2.4 hold. Then, there

exist a constant γ = γ(c1) ∈]0, 3/16[ and absolute constants β1 and β2 such

that

|u(x, t)| ≤ c2(c1)A0(R, T )e
− |x|2

4t (A.2.4)

for all (x, t) ∈ Q(R, T ) satisfying the following restrictions:

0 < t ≤ γT, |x| ≤ β1R, β2t ≤ |x|2.
Here,

A0 ≡ max
(x,t)∈Q( 3

4R, 34T )
|u(x, t)|+

√
T |∇u(x, t)|.

Remark A.1. According to the statement of Lemma A.1, u(x, 0) = 0 if

|x| ≤ β1R.
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Remark A.2. From the regularity theory for parabolic equations (see [La-

dyzhenskaya et al. (1967)]), it follows that

A0 ≤ c3(c1, R, T )
( ∫

Q(R,T )

|u|2 dz
) 1

2

.

Proof of Lemma A.1 We let λ =
√
2t and ̺ = 2|x|/λ. Suppose that

t ≤ γT ≤ γ, |x| ≤ 3
8R, and 8t ≤ |x|2. Then, as it is easy to verify, we have

̺ ≥ 4 and

λy ∈ B(3R/4) if y ∈ B(̺); λ2s ∈]0, 3/4[ if s ∈]0, 2[

under the condition 0 < γ ≤ 3/16. Thus the function v(y, s) = u(λy, λ2s) is

well defined on Q(̺, 2) = B(̺)×]0, 2[. This function satisfies the conditions:

|∂sv +∆v| ≤ c1λ(|v|+ |∇ v|) (A.2.5)

in Q(̺, 2);

|v(y, s)| ≤ C′
k(|y|+

√
s)k (A.2.6)

for all k = 0, 1, ... and for all (y, s) ∈ Q(̺, 2). Here, C′
k = Ckλ

k.

Given ε > 0, we introduce two smooth cut-off functions such that:

0 ≤ ϕ(y, s) =

{
1, (y, s) ∈ Q(̺− 1, 3/2)

0, (y, s) /∈ B(̺)×]− 2, 2[
≤ 1,

0 ≤ ϕε(s) =

{
1, s ∈]2ε, 2[
0, s ∈]0, ε[ ≤ 1.

We let w = ϕv and wε = ϕεw. Obviously, (A.2.5) implies the following

inequality:

|∂swε +∆wε| ≤ c1λ(|wε|+ |∇wε|)

+c4(|∇ϕ||∇ v|+ |∇ϕ||v| + |∆ϕ||v|+ |∂sϕ||v|) + c4|ϕ′
ε||v|.

(A.2.7)

The crucial point is the application of the following Carleman-type inequal-

ity, see Proposition 1.2, to the function wε

∫
Q(̺,2)

h−2a(s)e−
|y|2

4s (|∇wε|+ |wε|)2 dyds

≤ c5
∫

Q(̺,2)

h−2a(s)e−
|y|2

4s |∂swε +∆wε|2 dyds.
(A.2.8)
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Here, c5 is an absolute positive constant, a is an arbitrary positive number,

and h(t) = te
1−t
3 . We let

A = max
(y,s)∈Q(̺,2)\Q(̺−1, 32 )

|v(y, s)|+ |∇ v(y, s)|

and choose γ sufficiently small in order to provide the condition

10c5c
2
1λ

2 ≤ 20c5c
2
1γ <

1

2
. (A.2.9)

Condition (A.2.9) makes it possible to hide the strongest term in the right-

hand side of (A.2.8) into the left-hand side of (A.2.8). So, we derive from

(A.2.7)–(A.2.9) the following relation

∫
Q(̺,2)

h−2a(s)e−
|y|2

4s (|∇wε|+ |wε|)2 dyds

≤ c6A
2

∫
Q(̺,2)

h−2a(s)e−
|y|2

4s χ(y, s) dyds

+c6
1
ε2

∫
Q(̺,2ε)

h−2a(s)e−
|y|2

4s |v|2 dyds.

(A.2.10)

Here, χ is the characteristic function of the set Q(̺, 2) \Q(̺− 1, 3/2). We

fix a and take into account (A.2.6). As a result of the passage to the limit

as ε→ 0, we find from (A.2.10)

D ≡
∫

Q(̺−1,3/2)

h−2a(s)e−
|y|2

4s (|∇ v|+ |v|)2 dyds

≤ c6A
2

∫
Q(̺,2)

h−2a(s)e−
|y|2

4s χ(y, s) dyds

≤ c′6A
2
(
h−2a(3/2) + ρn−1

2∫
0

h−2a(s)e−
(̺−1)2

4s ds
)
.

(A.2.11)

Since ̺ ≥ 4, it follows from (A.2.11) that:

D ≤ c7A
2
(
h−2a(3/2) + ρn−1

2∫

0

h−2a(s)e−
̺2

8s ds
)
. (A.2.12)

In (A.2.12), the constant c7 depends on n and c1 only.

Given positive number β, we can take a number a in the following way

a =
β̺2

2 lnh(3/2)
. (A.2.13)
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This is legal, since h(3/2) > 1. Hence, by (A.2.13), inequality (A.2.12) can

be reduced to the form

D ≤ c7A
2e−βρ2

(
1 + ρn−1e−β̺2

2∫

0

h−2a(s)e2β̺
2− ̺2

8s ds
)
.

We fix β ∈]0, 1/64[, say, β = 1/100. Then, the latter relation implies the

estimate

D ≤ c′7(c1, n)A
2e−β̺2

(
1 +

2∫

0

h−2a(s)e−
̺2

16s ds
)
. (A.2.14)

It is easy to check that β < ln(3/2)
12 and therefore g′(s) ≥ 0 if s ∈]0, 2[, where

g(s) = h−2a(s)e−
̺2

16s and a and ̺ satisfy condition (A.2.13). So, we have

D ≤ c8(c1, n)A
2e−β̺2

, (A.2.15)

where β is an absolute positive constant.

By the choice of ̺ and λ, we have B(µx
λ , 1) ⊂ B(̺−1) for any µ ∈]0, 1].

Then, setting Q̃ = B(µx
λ , 1)×]1/2, 1[, we find

D ≥
∫

Q̃

e−
|y|2

2 |v|2 dyds. (A.2.16)

Observing that |y|2 ≤ 2µ2 |x|2
λ2 + 2 if y ∈ B(µx

λ , 1) and letting µ =
√
2β, we

derive from (A.2.15) and (A.2.16) the following bound∫

Q̃

|v|2 dyds ≤ c′8A
2e(−2β+µ2

2 ) |x|2

t = c′8A
2e−β |x|2

t . (A.2.17)

On the other hand, the regularity theory for linear parabolic equations give

us:

|v(µx/λ, 1/2)|2 ≤ c9(c1, n)

∫

Q̃

|v|2 dyds. (A.2.18)

Combining (A.2.17) and (A.2.18), we show

|u(
√

2βx, t)|2 = |u(µx, t)|2 = |v(µx/λ, 1/2)|2 ≤ c′9A
2e−β |x|2

t .

Changing variables x̃ =
√
2βx, we have

|u(x̃, t)| ≤
√
c′9Ae

− |x̃|2

4t

for |x̃| ≤ β1R and |x̃|2 ≥ β2t with β1 = 3/8
√
2β and β2 = 16β. It remains

to note that λ ≤
√
2T and

A ≤ max
(x,t)∈Q( 3

4R, 34T )
|u(x, t)|+ λ|∇u(x, t)|.

Lemma A.1 is proved.
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A.3 Backward Uniqueness for Heat Operator in Half Space

In this section, we deal with a backward uniqueness problem for the heat

operator. Our approach is due to [Escauriaza et al. (2003)], see also [Es-

cauriaza et al. (2002)].

Let Rn
+ = {x = (xi) ∈ R

n : xn > 0} and Q+ = R
n
+×]0, 1[. We consider

a vector-valued function u : Q+ → R
m, which is “sufficiently regular” and

satisfies

|∂tu+∆u| ≤ c1(|∇u|+ |u|) in Q+ (A.3.1)

for some c1 > 0 and

u(·, 0) = 0 in R
n
+. (A.3.2)

Do (A.3.1) and (A.3.2) imply u ≡ 0 in Q+? We prove that the answer is

positive if we impose natural restrictions on the growth of the function u

at infinity. For example, we can assume

|u(x, t)| ≤ eM|x|2 (A.3.3)

for all (x, t) ∈ Q+ and for some M > 0. Natural regularity assumptions,

under which (A.3.1)–(A.3.3) may be considered are, for example, as follows:

u and weak derivatives ∂tu, ∇u, and ∇2u are square

integrable over bounded subdomains ofQ+.

}
(A.3.4)

We can formulate the main result of this section.

Theorem 3.5. Using the above notation introduced, assume that u satisfies

conditions (A.3.1)–(A.3.4). Then u ≡ 0 in Q+.

We start with proofs of several lemmas. The first of them plays the

crucial role in our approach. It enables us to apply powerful technique of

Carleman’s inequalities.

Lemma A.2. Suppose that conditions (A.3.1), (A.3.2), and (A.3.4) hold.

There exists an absolute positive constant A0 < 1/32 with the following

properties. If

|u(x, t)| ≤ eA|x|2 (A.3.5)

for all (x, t) ∈ Q+ and for some A ∈ [0, A0], then there are constants

β(A) > 0, γ(c1) ∈]0, 1/12[, and c2(c1, A) > 0 such that

|u(x, t)| ≤ c2e
4A|x′|2e−β

x2
n
t (A.3.6)

for all (x, t) ∈ (Rn
+ + 2en)×]0, γ[.



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 215

Backward Uniqueness and Unique Continuation 215

Proof In what follows, we always assume that the function u is extended

by zero to negative values of t.

According to the regularity theory of solutions to parabolic equations,

see [Ladyzhenskaya et al. (1967)], we may assume

|u(x, t)|+ |∇u(x, t)| ≤ c3e
2A|x|2 (A.3.7)

for all (x, t) ∈ (Rn
+ + en)×]0, 1/2[.

We fix xn > 2 and t ∈]0, γ[ and introduce the new function v by usual

parabolic scaling

v(y, s) = u(x+ λy, λ2s− t/2).

The function v is well defined on the set Qρ = B(ρ)×]0, 2[, where ρ =

(xn − 1)/λ and λ =
√
3t ∈]0, 1/2[. Then, relations (A.3.1), (A.3.2), and

(A.3.7) take the form:

|∂sv +∆v| ≤ c1λ(|∇v| + |v|) a.e. in Qρ; (A.3.8)

|v(y, s)|+ |∇v(y, s)| ≤ c3e
4A|x|2e4Aλ2|y|2 (A.3.9)

for (y, s) ∈ Qρ;

v(y, s) = 0 (A.3.10)

for y ∈ B(ρ) and for s ∈]0, 1/6].
To apply inequality (A.1.1), we pick up two smooth cut-off functions:

φρ(y) =

{
0 |y| > ρ− 1/2

1 |y| < ρ− 1
,

φt(s) =

{
0 7/4 < s < 2

1 0 < s < 3/2
.

These functions take values in [0, 1]. In addition, function φρ obeys the

inequalities: |∇kφρ| < Ck, k = 1, 2.We let η(y, s) = φρ(y)φt(s) and w = ηv.

It follows from (A.3.8) that

|∂sw +∆w| ≤ c1λ(|∇w| + |w|) + χc4(|∇v|+ |v|).
Here, c4 is a positive constant depending on c1 and Ck only, χ(y, s) = 1 if

(y, s) ∈ ω = {ρ− 1 < |y| < ρ, 0 < s < 2} ∪ {|y| ≤ ρ− 1, 3/2 < s < 2} and

χ(y, s) = 0 if (y, s) /∈ ω. Obviously, function w has the compact support

in R
n×]0, 2[ and we may use inequality (A.1.1), see Proposition 1.2. As a

result, we have

I ≡
∫
Qρ

h−2a(s)e−
|y|2

4s (|w|2 + |∇w|2) dyds ≤ c010(c
2
1λ

2I + c26I1), (A.3.11)
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where

I1 =

∫

Qρ

χ(y, s)h−2a(s)e−
|y|2

4s (|v|2 + |∇v|2) dyds.

Choosing γ = γ(c1) sufficiently small, we may assume that the inequality

c010c
2
1λ

2 ≤ 1/2 holds and then (A.3.11) implies

I ≤ c5(c1)I1.

On the other hand, if A < 1/32, then

8Aλ2 − 1

4s
< − 1

8s
(A.3.12)

for s ∈]0, 2]. By (A.3.9) and (A.3.12), we have

I1 ≤ c23e
8A|x|2

2∫
0

∫
B(ρ)

χ(y, s)h−2a(s)e−
|y|2

8s dyds

≤ c6e
8A|x|2

[
h−2a(3/2) +

2∫
0

h−2a(s)e−
(ρ−1)2

8s ds
]
.

(A.3.13)

Now, taking into account (A.3.13), we deduce the bound

D ≡
∫

B(1)

1∫

1
2

|w|2 dyds =
∫

B(1)

1∫

1
2

|v|2 dyds

≤ c7

∫

Qρ

h−2a(s)e−
|y|2

4s (|w|2 + |∇w|2) dyds

≤ c8(c1)e
8A|x|2

[
h−2a(3/2) +

2∫

0

h−2a(s)e−
ρ2

32s ds
]

= c8e
8A|x|2−2βρ2

[
h−2a(3/2)e2βρ

2

+

2∫

0

h−2a(s)e2βρ
2− ρ2

32s ds
]
.

We can take β = 8A < 1/256 and then choose

a = βρ2/ lnh(3/2).

Since ρ ≥ xn, such a choice leads to the estimate

D ≤ c8e
8A|x′|2e−βρ2

[
1 +

2∫

0

g(s) ds
]
,
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where g(s) = h−2a(s)e−
ρ2

64s . It is easy to check that g′(s) ≥ 0 for s ∈]0, 2[
if β < 1

96 lnh(3/2). So, we have

D ≤ 2c8e
8A|x′|2e−βρ2 ≤ 2c8e

8A|x′|2e−
βx2

n
12t . (A.3.14)

On the other hand, the regularity theory implies

|v(0, 1/2)|2 = |u(x, t)|2 ≤ c′8D. (A.3.15)

Combining (A.3.14) and (A.3.15), we complete the proof of the lemma. �

Next lemma is a consequence of Lemma A.2 and the second Carleman

inequality (see (A.1.12)).

Lemma A.3. Suppose that the function u obeys conditions (A.3.1),

(A.3.2), (A.3.4), and (A.3.5). There exists a number γ1(c1, c⋆) ∈]0, γ/2]
such that u(x, t) = 0 for all x ∈ R

n
+ and for all t ∈]0, γ1[.

Proof As usual, by Lemma A.2 and by the regularity theory, we may

assume

|u(x, t)|+ |∇u(x, t)| ≤ c9(c1, A)e
8A|x′|2e−β

x2
n

2t (A.3.16)

for all x ∈ R
n
+ + 3en and for all t ∈]0, γ/2].

By scaling, we define function v(y, s) = u(λy, λ2s − γ1) for (y, s) ∈ Q+

with λ =
√
2γ1. This function satisfies the relations:

|∂sv +∆v| ≤ c1λ(|∇v| + |v|) a.e. in Q+; (A.3.17)

v(y, s) = 0 (A.3.18)

for all y ∈ R
n
+ and for all s ∈]0, 1/2[;

|∇v(y, s)|+ |v(y, s)| ≤ c9e
8Aλ2|y′|2e

− βλ2y2n
2(λ2s−γ1) ≤ c9e

8Aλ2|y′|2e−β
y2n
2s

(A.3.19)

for all 1/2 < s < 1 and for all y ∈ R
n
+ + 3

λen. Since A < 1/32 and

λ ≤ √
γ ≤ 1/

√
12, (A.3.19) can be reduced to the form

|∇v(y, s)|+ |v(y, s)| ≤ c11e
|y′|2

48 e−β
y2n
2s (A.3.20)

for the same y and s as in (A.3.19).

Let us fix two smooth cut-off functions:

ψ1(yn) =

{
0 yn <

3
λ + 1

1 yn >
3
λ + 3

2

,
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and

ψ2(r) =

{
1 r > −1/2

0 r < −3/4
.

We set (see Proposition 1.3 for the definition of φ(1) and φ(2))

φB(yn, s) =
1

a
φ(2)(yn, s)−B = (1− s)

y2αn
sα

−B,

where α ∈]1/2, 1[ is fixed, B = 2
aφ

(2)( 3λ + 2, 1/2), and

η(yn, s) = ψ1(yn)ψ2(φB(yn, s)/B), w(y, s) = η(yn, s)v(y, s).

Although function w is not compactly supported in Q1
+ = (R3

++en)×]0, 1[,

but, by the statement of Lemma A.2 and by the special structure of the

weight in (A.1.12), we can claim validity of (A.1.12) for w. As a result, we

have
∫

Q1
+

s2e2φ
(1)

e2aφB (|w|2 + |∇w|2) dyds

≤ c⋆

∫

Q1
+

s2e2φ
(1)

e2aφB |∂sw +∆w|2 dyds.

Arguing as in the proof of Lemma A.2, we can select γ1(c1, c⋆) so small

that

I ≡
∫

Q1
+

s2e2aφB (|w|2 + |∇w|2)e− |y′ |2

4s dyds

≤ c10(c1, c⋆)

∫

(Rn
++( 3

λ+1)en)×]1/2,1[

χ(yn, s)(syn)
2e2aφB (|v|2+|∇v|2)e− |y′|2

4s dyds,

where χ(yn, s) = 1 if (yn, s) ∈ ω, χ(yn, s) = 0 if (yn, s) /∈ ω, and

ω ≡ {(yn, s) : yn > 1, 1/2 < s < 1, φB(yn, s) < −D/2},

where D = −2φB(
3
λ + 3

2 ,
1
2 ) > 0. Now, we wish to estimate the right-hand

side of the last inequality with the help of (A.3.20). We find

I ≤ c11e
−Da

+∞∫

3
λ+1

1∫

1/2

(yns)
2e−β

y2n
s dynds

∫

Rn−1

e(
1
24− 1

4s )|y
′|2 dy′.
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Passing to the limit as a → +∞, we see that v(y, s) = 0 if 1/2 ≤ s < 1

and φB(yn, s) > 0. Using unique continuation across spatial boundaries,

we show that v(y, s) = 0 if y ∈ R
n
+ and 0 < s < 1. �

Now, Theorem 3.5 follows from Lemmas A.2 and A.3 with the help

of more or less standard arguments. We shall demonstrate them just for

completeness.

Lemma A.4. Suppose that the function u meets all conditions of Lemma

A.3. Then u ≡ 0 in Q+.

Proof By Lemma A.3, u(x, t) = 0 for x ∈ R
n
+ and for t ∈]0, γ1[. By scaling,

we introduce the function u(1)(y, s) = u(
√
1− γ1y, (1−γ1)s+γ1). It is easy

to check that function u(1) is well-defined in Q+ and satisfies all conditions

of Lemma A.3 with the same constants c1 and A. Therefore, u(1)(y, s) = 0

for yn > 0 and for 0 < s < γ1. The latter means that u(x, t) = 0 for xn > 0

and for 0 < t < γ2 = γ1 + (1 − γ1)γ1. Then, we introduce the function

u(2)(y, s) = u(
√
1− γ2y, (1− γ2)s+ γ2), (y, s) ∈ Q+,

and apply Lemma A.3. After k steps we shall see that u(x, t) = 0 for xn > 0

and for 0 < t < γk+1, where γk+1 = γk + (1 − γk)γ1 → 1. �

Proof of Theorem 3.5 Assume that A0 < M . Then λ2 ≡ A0

2M < 1
2 .

Introducing function v(y, s) = u(λy, λ2s), (y, s) ∈ Q+, we see that this

function satisfies all conditions of Lemma A.4 with constants c1 and A =
1
2A0. Therefore, u(x, t) = 0 for xn > 0 and for 0 < t < A0

2M . Now, we

repeat arguments of Lemma A.4, replacing γ1 to A0

2M and A to M , and end

up with the proof of the theorem. �

A.4 Comments

The whole chapter is essentially due to a part of the paper [Escauriaza et al.

(2003)]
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Appendix B

Lemarie-Riesset Local Energy

Solutions

B.1 Introduction

In this chapter, we are going to construct solutions to the Cauchy prob-

lem for 3D Navier-Stokes equations with slow decaying initial data. For

such initial data, we cannot expect the existence of energy solutions, i.e.,

weak Leray-Hopf solutions, but we can hope to construct solutions that

satisfy the energy inequality at least locally. ε-regularity theory, includ-

ing the Caffarelli-Kohn-Nirenberg theorem, would work for them as well.

The right class of initial data is a certain subspace of the special Morrey

space L2,unif . This class contains slow decaying functions, for example,

interesting homogeneous functions of order minus one.

The main difficulty is caused by the pressure field, which even does

not appear in the definition of weak Leray-Hopf solutions. In the case of

the Cauchy problem, one would hope to use a nice solution formula for the

pressure that is well-defined for weak Leray-Hopf solutions, but it should be

modified somehow in order to be useful for functions with very weak decay

at the spatial infinity. The problem of the existence of weak solutions with

the initial data from L2,unif has been essentially solved by P. G. Lemarie-

Riesset [Lemarie-Riesset (2002)] and our aim is to give an interpretation of

his interesting and important results.

Let us consider the classical Cauchy problem for the Navier-Stokes equa-

tions:

∂tv(x, t) + div v(x, t)⊗ v(x, t) −∆ v(x, t) = g(x, t)−∇ p(x, t),

div v(x, t) = 0

(B.1.1)

221
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for (x, t) ∈ QT = R
3×]0, T [ together with the initial condition

v(x, 0) = a(x), x ∈ R
3. (B.1.2)

It is supposed that

a ∈
◦
E2, g ∈

◦
G2(0, T ). (B.1.3)

Here, spaces
◦
Em and

◦
Gm(0, T ) with m ≥ 1 are defined as follows:

◦
Em= {u ∈ Em : divu = 0 in R

3},

◦
Gm(0, T ) = {u ∈ Gm(0, T ) : divu = 0 in QT = R

3×]0, T [ },

Em = {u ∈ Lm,unif :

∫

B(x0,1)

|u(x)|mdx→ 0 as |x0| → +∞},

Gm(0, T ) = {u ∈ Lm,unif (0, T ) :

T∫

0

∫

B(x0,1)

|u(x, t)|mdxdt → 0

as |x0| → +∞},

Lm,unif = {u ∈ Lm,loc : ‖u‖Lm,unif
= sup

x0∈R3

( ∫

B(x0,1)

|u(x)|mdx
)1/m

< +∞},

Lm,unif (0, T ) = {u ∈ Lm,loc(QT ) : ‖u‖Lm,unif(0,T ) =

= sup
x0∈R3

( T∫

0

∫

B(x0,1)

|u(x, t)|mdxdt
)1/m

< +∞}.

As it has been shown in [Lemarie-Riesset (2002)] (see also references there),

the space
◦
Em is in fact the closure of the set

◦
C

∞
0 (R3) = {u ∈ C∞

0 (R3) : div u = 0 in R
3}

with respect to the norm of the space Lm,unif . For the readers’ convenience,

we give the proof of this fact in the last section of this chapter, see Lemma

B.10.

In monograph [Lemarie-Riesset (2002)], P. G. Lemarie-Riesset proved

that, for g = 0, problem (B.1.1)–(B.1.3) has at least one weak solution
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v with the following properties (see Definition 32.1 in [Lemarie-Riesset

(2002)]): for any T > 0,

v ∈ L∞(0, T ;L2,unif), sup
x0∈R3

T∫

0

∫

B(x0,1)

|∇ v|2dxdt < +∞;

for any compact K,

‖v(·, t)− a(·)‖L2(K) → 0 as t→ +0;

v is a suitable weak solution in the sense of Caffarelli-Kohn-Nirenberg

in QT = R
3×]0, T [.

This definition seems to be a bit weak and admits trivial non-uniqueness.

Indeed, let a smooth vector-valued function c(t) satisfy c(0) = 0. Then

v(x, t) = c(t) and p(x, t) = −c′(t) · x is also a weak solution for zero initial

data. To avoid such type of uniqueness, one may add more restrictions on

the velocity or on the pressure. Our definition involves the pressure in more

explicit way and is follows.

Definition B.1. We call a pair of functions v and p defined in the space-

time cylinder QT = R
3×]0, T [ a local energy weak Leray-Hopf solution or

just a local energy solution to the Cauchy problem (B.1.1)–(B.1.3) if they

satisfy the following conditions:

v ∈ L∞(0, T ;L2,unif), ∇v ∈ L2,unif (0, T ),

p ∈ L 3
2
(0, T ;L 3

2 ,loc
(R3)); (B.1.4)

v and p meet (B.1.1) in the sense of distributions; (B.1.5)

the function t 7→
∫

R3

v(x, t) · w(x) dx is continuous on [0, T ] (B.1.6)

for any compactly supported function w ∈ L2(R
3);

for any compact K,

‖v(·, t)− a(·)‖L2(K) → 0 as t→ +0; (B.1.7)

∫

R3

ϕ|v(x, t)|2 dx+ 2

t∫

0

∫

R3

ϕ|∇v|2 dxdt ≤
t∫

0

∫

R3

(
|v|2(∂tϕ+∆ϕ)

+v · ∇ϕ(|v|2 + 2p) + 2ϕg · v
)
dxdt(B.1.8)
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for a.a. t ∈]0, T [ and for nonnegative smooth functions ϕ vanishing

in a neighborhood of the parabolic boundary of the space-time cylinder

R
3×]0, T [;

for any x0 ∈ R
3, there exists a function cx0 ∈ L 3

2
(0, T ) such that

px0(x, t) ≡ p(x, t)− cx0(t) = p1x0
(x, t) + p2x0

(x, t), (B.1.9)

for (x, t) ∈ B(x0, 3/2)×]0, T [, where

p1x0
(x, t) = −1

3
|v(x, t)|2 + 1

4π

∫

B(x0,2)

K(x− y) : v(y, t)⊗ v(y, t) dy,

p2x0
(x, t) =

1

4π

∫

R3\B(x0,2)

(K(x− y)−K(x0 − y)) : v(y, t)⊗ v(y, t) dy

and K(x) = ∇2(1/|x|).

Remark B.3. It is easy to see that (B.1.4), (B.1.6)–(B.1.8) imply the

following inequality:

∫

R3

ϕ(x)|v(x, t)|2dx+ 2

t∫

t0

∫

R3

ϕ|∇ v|2dxds ≤
∫

R3

ϕ(x)|v(x, t0)|2dx

+

t∫

t0

∫

R3

[
|v|2∆ϕ+∇ϕ · v

(
|v|2 + 2p

)
+ 2ϕg · v

]
dxds. (B.1.10)

It is valid for any t ∈ [0, T ], for a.a. t0 ∈ [0, T ], including t0 = 0, and for

any nonnegative function ϕ ∈ C∞
0 (R3).

Remark B.4. In turn, from (B.1.4), (B.1.6), and (B.1.10), it follows that

if v and p are a local energy solution on the set R
3×]0, T [, then they are

a local energy solution on the set R3×]t0, T [ for a.a. t0 ∈ [0, T ], including

t0 = 0.

We are going to prove the following statements. The first of them shows

that our information about pressure is sufficient to prove decay for both

velocity v and p.

Theorem 1.6. Assume that conditions (B.1.3) hold. Let v and p be a

local energy solution to the Cauchy problem (B.1.1), (B.1.2). Then v and

p satisfy the following additional properties:

v(·, t) ∈
◦
E2 (B.1.11)
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for all t ∈ [0, T ];

v(·, t) ∈
◦
E3 (B.1.12)

for a.a. t ∈ [0, T ];

‖v(·, t)− a(·)‖L2,unif
→ 0 as t→ +0; (B.1.13)

sup
x0∈R3

T∫

0

∫

B(x0,3/2)

|p(x, t)− cx0(t)|
3
2 dxdt < +∞,

sup
x0∈R3

T∫

0

∫

B(x0,3/2)

I{|x|>R}|p(x, t)− cx0(t)|
3
2 dxdt → 0 (B.1.14)

as R → +∞, where I{|x|>R} is the characteristic function of the set {x ∈
R

3 : |x| > R}.

The main theorem of the chapter is Theorem 1.7 below.

Theorem 1.7. Assume that conditions (B.1.3) hold. There exists at least

one local energy solution to the Cauchy problem (B.1.1), (B.1.2).

The substantial counterpart of the proof of Theorem 1.7 is the statement

on the local in time existence of local energy weak solutions.

Proposition 1.8. (local in time solvability) Assume that conditions

(B.1.3) hold. There exist a number T0 ∈]0, T ], depending on ‖a‖L2,unif

and on ‖g‖L2,unif(0,T ) only, and two functions v and p, being a local energy

solution to the Cauchy problem:

∂tv(x, t) + div v(x, t) ⊗ v(x, t) −∆ v(x, t) = g(x, t)−∇ p(x, t),

div v(x, t) = 0

(B.1.15)

for x ∈ R
3 and 0 < t < T0,

v(x, 0) = a(x), x ∈ R
3. (B.1.16)

B.2 Proof of Theorem 1.6

Let us introduce the following decomposition:

p2x0
(x, t) = px0,R(x, t) + p̄x0,R(x, t) (x, t) ∈ B(x0, 3/2)×]0, T [, (B.2.1)
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where

p̄x0,R(x, t) =
1

4π

∫

R3\B(x0,2R)

(K(x− y)−K(x0 − y)) : v(y, t)⊗ v(y, t) dy.

Lemma B.5. For any x0 ∈ R
3, for any t ∈]0, T [, and for any R ≥ 1, the

following estimate is valid:

sup
B(x0,3/2)

|p̄x0,R(x, t)| ≤
c

R
‖v(·, t)‖2L2,unif

. (B.2.2)

Proof By our assumptions,

|K(x− y)−K(x0 − y)| ≤ c
|x− x0|
|x0 − y|4

for x ∈ B(x0, 3/2) and for y ∈ R
3 \B(x0, 2R). And then

|p̄x0,R(x, t)| ≤ c

∫

R3\B(x0,2R)

1

|x0 − y|4 |v(y, t)|
2dy

= c

∞∑

i=0

∫

B(x0,2i+2R)\B(x0,2i+1R)

1

|x0 − y|4 |v(y, t)|
2dy

≤ c

∞∑

i=0

1

(2i+1R)4

∫

B(x0,2i+2R)

|v(y, t)|2 dy

≤ c

∞∑

i=0

1

(2i+1R)4
(2i+2R)3‖v(·, t)‖2L2,unif

.

Lemma B.5 is proved.

We let

α(t) = ‖v(·, t)‖2L2,unif
, β(t) = sup

x0∈R3

t∫

0

∫

B(x0,1)

|∇ v|2 dxds,

γ(t) = sup
x0∈R3

t∫

0

∫

B(x0,1)

|v|3 dxds.

By the known multiplicative inequality, we have

γ(t) ≤ c
( t∫

0

α3(s) ds
) 1

4
(
β(t) +

t∫

0

α(s) ds
) 3

4

. (B.2.3)
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From our assumptions and from (B.2.3), it follows that:

ess sup
0<t<T

α(t) + β(T ) + γ
2
3 (T ) ≤ A < +∞. (B.2.4)

Next, fix a smooth cut-off function χ so that

χ(x) = 0, x ∈ B(1), χ(x) = 1, x /∈ B(2),

and then, for χR(x) = χ(x/R), let

αR(t) = ‖χRv(·, t)‖2L2,unif
, βR(t) = sup

x0∈R3

t∫

0

∫

B(x0,1)

|χR∇ v|2 dxds,

γR(t) = sup
x0∈R3

t∫

0

∫

B(x0,1)

|χRv|3 dxds, GR = sup
x0∈R3

T∫

0

∫

B(x0,1)

|χRg|2 dxds

δR(t) = sup
x0∈R3

t∫

0

∫

B(x0,3/2)

|χRpx0 |
3
2 dxds.

An analogue of (B.2.3) is available with the form

γR(t) ≤ c
( t∫

0

α3
R(s) ds

) 1
4
(
βR(t) +

t∫

0

αR(s)ds+
1

R2

t∫

0

α(s)ds
) 3

4

. (B.2.5)

Lemma B.6. Assume that v and p are a local energy weak Leray-Hopf

solution to the Cauchy problem (B.1.1)–(B.1.3) in the space-time cylinder

QT . Then we have the estimate

sup
0<t<T

αR(t) + βR(T ) + γ
2
3

R(T ) + δ
4
3

R(T ) ≤ C(T,A)
[
‖χRa‖2L2,unif

+

+GR +
1

R2/3

]
. (B.2.6)

Proof. To simplify our notation, we let p̂ = px0 .

We fix x0 ∈ R
3 and a smooth nonnegative function ϕ such that

ϕ = 1 in B(1), sptϕ ⊂ B(3/2)

and let ϕx0(x) = ϕ(x − x0). For ψ = χ2
Rϕx0 , we find from inequality

(B.1.10):

L ≡
∫

R3

ψ(x)|v(x, t)|2 dx+ 2

t∫

0

∫

R3

ψ|∇ v|2dxds =
5∑

i=1

Ii, (B.2.7)



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 228

228 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

where

I1 =

∫

R3

ψ|a|2dx, I2 =

t∫

0

∫

R3

|v|2∆ψ dxds,

I3 =

t∫

0

∫

R3

∇ψ · v|v|2 dxds, I4 = 2

t∫

0

∫

R3

∇ψ · vp̂ dxds,

I5 = 2

t∫

0

∫

R3

ψg · v dxds.

Obviously,

I1 ≤ c‖χRa‖2L2,unif
, (B.2.8)

I2 ≤ c

t∫

0

αR(s) ds+ C(T,A)
1

R
, (B.2.9)

I5 ≤ c
( t∫

0

αR(s) ds+GR

)
. (B.2.10)

The term I3 is evaluated with the help of Hölder inequality in the following

way:

I3 ≤ cγ1/3(t)
(
γ
2/3
R (t) +

c

R
γ2/3(t)

)
.

So, by (B.2.4),

I3 ≤ C(T,A)
(
γ
2/3
R (t) +

1

R

)
. (B.2.11)

Next, we let

I4 = I ′ + I ′′,

where

I ′′ = 4

t∫

0

∫

B(x0,3/2)

χRϕx0∇χR · vp̂ dxds
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and, by Hölder inequality,

I ′′ ≤ c
1

R

( t∫

0

∫

B(x0,3/2)

|v|3 dxds
) 1

3
( t∫

0

∫

B(x0,3/2)

|p̂| 32 dxds
) 2

3

.

From Lemma B.5 and the theory of singular integrals, we find

t∫

0

∫

B(x0,3/2)

|p̂| 32 dxds ≤ c

t∫

0

∫

B(x0,2)

|v|3 dxds+ c

t∫

0

α
3
2 (s) ds. (B.2.12)

Now, (B.2.4) and (B.2.12) give us

I ′′ ≤ C(T,A)
1

R
. (B.2.13)

I ′ can be estimated with the help of Hölder inequality as follows:

I ′ ≤ cJγ
1
3

R(t), (B.2.14)

where

J =
( t∫

0

∫

B(x0,3/2)

|χRp̂|
3
2 dxds

) 2
3

.

Obviously, J ≤ J1 + J2 + J3 with

J1 =
( t∫

0

∫

B(x0,3/2)

|χRp
1
x0
| 32 dxds

) 2
3

, J2 =
( t∫

0

∫

B(x0,3/2)

|χRpx0,ρ|
3
2 dxds

) 2
3

,

J3 =
( t∫

0

∫

B(x0,3/2)

|χRp̄x0,ρ|
3
2 dxds

) 2
3

for ρ =
√
R. We start with evaluation of J1. Letting

χRp
1
x0

= q1 + q2,

where

q1(x, t) = −1

3
χR(x)|v(x, t)|2

+
1

4π

∫

B(x0,2)

K(x− y)(χR(x)− χR(y)) : v(y, t)⊗ v(y, t) dy,
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q2(x, t) =
1

4π

∫

B(x0,2)

K(x− y)χR(y) : v(y, t)⊗ v(y, t) dy,

we use the theory of singular integrals and find the estimate for q2:

t∫

0

∫

B(x0,3/2)

|q2|
3
2 dxds ≤ c

t∫

0

∫

B(x0,2)

|χR|
3
2 |v|3 dxds

≤ C(T,A)γ
1/2
R (t). (B.2.15)

Since

q1(x, t) = −1

3
χR(x)|v(x, t)|2

+
1

4π

∫

B(x0,2)

K(x− y)(χR(x)− χR(x0)) : v(y, t)⊗ v(y, t) dy

+
1

4π

∫

B(x0,2)

K(x− y)(χR(x0)− χR(y)) : v(y, t)⊗ v(y, t) dy,

the same arguments lead to the estimate

t∫

0

∫

B(x0,3/2)

|q1|
3
2 dxds ≤ cγ1/2(t)γ

1/2
R (t) +

c

R3/2

t∫

0

∫

B(x0,2)

|v|3 dxds

+c

t∫

0

∫

B(x0,2)

|χR(x0)− χR(x))|
3
2 |v(x, s)|3 dxds

≤ C(T,A)
( 1

R3/2
+ γ

1/2
R (t)

)
.

Combining the latter estimate with (B.2.15), we find

J1 ≤ C(T,A)
( 1

R
+ γ

1/3
R (t)

)
. (B.2.16)

Next, we let

χRpx0,ρ = q3 + q4,

where

q3(x, t) =
1

4π

∫

B(x0,2ρ)\B(x0,2)

(K(x− y)−K(x0 − y))(χR(x)
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−χR(y)) : v(y, t)⊗ v(y, t) dy,

q4(x, t) =
1

4π

∫

B(x0,2ρ)\B(x0,2)

(K(x−y)−K(x0−y))χR(y) : v(y, t)⊗v(y, t) dy.

For x ∈ B(x0, 3/2), we have

|q3(x, t)| ≤ c

∫

B(x0,2ρ)\B(x0,2)

|K(x− y)−K(x0 − y)| |x− y|
R

|v(y, t)|2 dy

≤ c
ρ

R

∫

R3\B(x0,2)

|K(x− y)−K(x0 − y)||v(y, t)|2 dy.

The same arguments as in the proof of Lemma B.5 work here and show

that

|q3(x, t)| ≤ c
ρ

R
α(t) = c

1√
R
α(t) ≤ C(T,A)

1√
R
, (B.2.17)

where we used ρ =
√
R. Similar arguments work for q4:

|q4(x, t)| ≤ cα
1/2
R (t)α1/2(t) ≤ C(T,A)α

1/2
R (t), x ∈ B(x0, 3/2).

(B.2.18)

From (B.2.17) and (B.2.18), it follows that

J2 ≤ C(T,A)
[ 1√

R
+
( t∫

0

α
3/4
R (s) ds

) 2
3
]

≤ C(T,A)
[ 1√

R
+
( t∫

0

α3
R(s) ds

) 1
6
]
. (B.2.19)

The term J3 can be estimated with the help of (B.2.2):

J3 ≤ c
1

ρ
α(t) ≤ C(T,A)

1√
R
. (B.2.20)

So, by (B.2.14), (B.2.16), (B.2.19), and (B.2.20), we have

J ≤ C(T,A)
[ 1√

R
+ γ

1/3
R (t) +

( t∫

0

α3
R(s) ds

) 1
6
]

(B.2.21)

and

I ′ ≤ C(T,A)γ
1
3

R(t)
[
γ
1/3
R (t) +

1√
R

+
( t∫

0

α3
R(s) ds

) 1
6
]

≤ C(T,A)
[
γ
2/3
R (t) +

1

R
+
( t∫

0

α3
R(s) ds

) 1
3
]
. (B.2.22)
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Now, we can derive from (B.2.7)–(B.2.11), (B.2.13), and (B.2.22):

αR(t) + βR(t) ≤ c‖χRa‖2L2,unif
+ cGR + c

t∫

0

αR(s) ds

+C(T,A)
[
γ
2/3
R (t) +

1

R
+
( t∫

0

α3
R(s) ds

) 1
3
]

and, by (B.2.3) and Young inequality, we find the main inequality

αR(t) + βR(t) ≤ c‖χRa‖2L2,unif
+ cGR

+C(T,A)
[ 1
R

+

t∫

0

αR(s) ds+
( t∫

0

α3
R(s) ds

) 1
3
]
. (B.2.23)

The important consequence of (B.2.23) is as follows:

α3
R(t) ≤ c‖χRa‖6L2,unif

+ cGR3 + C(T,A)
[ 1

R3
+

t∫

0

α3
R(s) ds

]
.

The latter implies

αR(t) ≤ C(T,A)
[
‖χRa‖2L2,unif

+GR +
1

R

]
,

which, together with (B.2.23), (B.2.21), and (B.2.3), proves (B.2.6). Lemma

B.6 is proved.

Proof of Theorem 1.6 Now, the proof of Theorem 1.6 is easy. In par-

ticular, (B.1.11) follows from (B.1.4) and (B.1.6), while (B.1.12) is deduced

from (B.2.4) and (B.2.6). In turn, (B.1.7) and (B.2.6) imply (B.1.13).

Regarding the pressure, we observe, by known results for singular inte-

grals, that

∫

B(x0,3/2)

|p1x0
(x, t)| 32 dx ≤ c

∫

B(x0,2)

|v(x, t)|3 dx.

So, the first estimate in (B.1.14) follows from (B.2.2) and from (B.2.6).

Finally, the second estimate in (B.1.14) is one of the statements of Lemma

B.6, see (B.2.6). Theorem 1.6 is proved.
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B.3 Regularized Problem

Assume that condition (B.1.3) holds. Then according to Lemma B.1.3, we

can consider the following regularized problem:

∂tv
ε + Fε(v

ε) · ∇ vε −∆ vε = gε −∇ pε,

div vε = 0
(B.3.1)

in R
3×]0,+∞[ with

gε ∈ L2(QT ), div gε = 0, (B.3.2)

vε|t=0 = aε ∈
◦
C

∞
0 (R3) (B.3.3)

in R
3. Here,

Fε(u)(x, t) ≡
∫

R3

̺ε(x− x̄)u(x̄, t) dx̄,

̺ε is a standard smoothing kernel,

‖aε − a‖L2,unif
→ 0, ‖gε − g‖L2,unif (0,T ) → 0 (B.3.4)

as ε→ 0. And, we may assume that

‖aε‖L2,unif
≤ 2‖a‖L2,unif

, ‖gε‖L2,unif(0,T ) ≤ 2‖g‖L2,unif(0,T ) (B.3.5)

for all ε. Moreover, we may assume also that gε is a function of class C∞

in QT and, for each ε > 0, there exists Rε > 0 such that the support of

gε(·, t) lies in B(Rε) for all t ∈]0, T [.
It is known that problem (B.3.1)–(B.3.3) has a unique smooth solution

vε with finite energy. Moreover, we can define the pressure in the following

way:

pε(x, t) =
1

4π

∫

R3

1

|x− x̄|div div
(
vε(x̄, t)⊗ Fε(v

ε)(x̄, t)
)
dx̄

= −1

3
vε(x, t) · Fε(v

ε)(x, t) (B.3.6)

+
1

4π

∫

R3

K(x− x̄) : vε(x̄, t)⊗ Fε(v
ε)(x̄, t) dx̄,

where K(x) = ∇2(1/|x|).
Our aim is to find estimates of vε and pε that are uniform with respect

to ε.
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In what follows, we shall use the following decomposition of the pressure.

For any x0 ∈ R
3 and for any 0 < r ≤ R, we let

p̂εx0,r(x, t) ≡ pε(x, t)− pεx0,r(t) = p1εx0,r(x, t) + p2εx0,r,R(x, t) + p3εx0,R(x, t),

(B.3.7)

where

pεx0,r(t) ≡
1

4π

∫

R3\B(x0,r)

K(x0 − x̄) : vε(x̄, t)⊗ Fε(v
ε)(x̄, t) dx̄,

p1εx0,r(x, t) ≡ −1

3
vε(x, t) · Fε(v

ε)(x, t)+

+
1

4π

∫

B(x0,r)

K(x− x̄) : vε(x̄, t)⊗ Fε(v
ε)(x̄, t) dx̄,

p2εx0,r,R(x, t) ≡

≡ 1

4π

∫

B(x0,2R)\B(x0,r)

(
K(x− x̄)−K(x0 − x̄)

)
: vε(x̄, t)⊗ Fε(v

ε)(x̄, t) dx̄,

p3εx0,R(x, t) ≡

≡ 1

4π

∫

R3\B(x0,2R)

(
K(x− x̄)−K(x0 − x̄)

)
: vε(x̄, t)⊗ Fε(v

ε)(x̄, t)dx̄.

Using the same arguments as in the proof of Lemma B.5, we prove

Lemma B.7. For any x0 ∈ R
3 and for any R ≥ 1, we have the following

estimate

sup
x∈B(x0,r)

|p3εx0,R(x, t)| ≤
cr

R
‖vε(·, t)‖L2,unif

‖Fε(v
ε)(·, t)‖L2,unif

. (B.3.8)

Assuming that 0 < ε < 1, we observe that

‖Fε(v
ε)(·, t)‖L2,unif

≤ c‖vε(·, t)‖L2,unif
. (B.3.9)

Taking into account the standard estimates for singular integrals, Lemma

B.7, and inequality (B.3.9), we find:

‖p1εx0,r(·, t)‖L 3
2
(B(x0,r)) ≤ c‖vε(·, t)‖2L3((B(x0,2))

, (B.3.10)
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sup
x∈B(x0,3r/4)

|p2εx0,r,R(x, t)| ≤ C1(r, R)‖vε(·, t)‖2L2,unif
, (B.3.11)

sup
x∈B(x0,r)

|p3εx0,R(x, t)| ≤ c
r

R
‖vε(·, t)‖2L2,unif

. (B.3.12)

We let

αε(t) = ‖vε(·, t)‖2L2,unif
, βε(t) = sup

x0∈R3

t∫

0

∫

B(x0,1)

|∇ vε|2 dxds,

γε(t) = sup
x0∈R3

t∫

0

∫

B(x0,1)

|vε|3 dxds, G = sup
x0∈R3

T∫

0

∫

B(x0,1)

|g(x, t)|2 dxdt.

By the known multiplicative inequality, we have

γε(t) ≤ c
( t∫

0

α3
ε(s) ds

) 1
4
(
βε(t) +

t∫

0

αε(s)ds
) 3

4

. (B.3.13)

Now, we can derive the energy estimate.

Lemma B.8. For any t ≥ 0, the following energy estimate is valid:

αε(t) + βε(t) ≤ c
[
‖a‖2L2,unif

+G+

t∫

0

(αε(s) + α3
ε(s)) ds

]
. (B.3.14)

Proof We fix x0 ∈ R
3 and a smooth nonnegative function ϕ such that

ϕ = 1 in B(1), sptϕ ⊂ B(3/2)

and let ϕx0(x) = ϕ(x− x0).

From system (B.3.1) and (B.3.2), it is easy to derive the identity

E ≡
∫

R3

ϕ2
x0
(x)|vε(x, t)|2dx+ 2

t∫

0

∫

R3

ϕ2
x0
|∇ vε|2dxds+

=

∫

R3

ϕ2
x0
|aε+

t∫

0

∫

R3

[
|vε|2∆ϕ2

x0
+∇ϕ2

x0
·Fε(v

ε)
(
|vε|2 +2p̂εx0,2

)
+ (B.3.15)

+2ϕ2
x0
gε · vε

]
dxds.
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By Hölder inequality and by (B.3.5), we show

E ≤ c
[
‖a‖2L2,unif

+G+

t∫

0

αε(s) ds+ γε(t) +

t∫

0

∫

B(x0,3/2)

|p̂εx0,2|
3
2 dxds

]
.

(B.3.16)

On the other hand, (B.3.10)–(B.3.12) imply

t∫

0

∫

B(x0,3/2)

|p̂εx0,2|
3
2 dxds ≤ c

(
γε(t) +

t∫

0

α
3
2
ε (s) ds

)
. (B.3.17)

Taking into account (B.3.13), we derive from (B.3.16) and (B.3.17) the

following estimate

αε(t) + βε(t) ≤ c
[
‖a‖2L2,unif

+G+

t∫

0

αε(s) ds+

t∫

0

α
3
2
ε (s) ds

+
( t∫

0

α3
ε(s) ds

) 1
4
(
βε(t) +

t∫

0

αε(s)ds
) 3

4
]
.

Applying Young’s inequality twice, we complete the proof of the lemma.

Lemma B.8 is proved.

A simple consequence of Lemma B.8 is the following statement.

Lemma B.9. There exist positive constants A and T0 ≤ T depending on

‖a‖L2,unif
and G only such that

sup
0<t<T0

αε(t) + βε(T0) + γ
2
3
ε (T0) + δ

4
3
ε (T0) ≤ A, (B.3.18)

where

δε(t) = sup
x0∈R3

t∫

0

∫

B(x0,3/2)

|p̂εx0,2|
3
2 dxds.

Indeed, let

T0 := min
{
T,

ln 2

c(1 + (2c(‖a‖2L2,unif
+G))2)

}
. (B.3.19)

We claim that if 0 ≤ t < T0, then αε(t) < 2c(‖a‖2L2,unif
+ G). Otherwise,

there should exist T ′ < T0 such that

αε(t) < 2c(‖a‖2L2,unif
+G)
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for 0 ≤ t < T ′ and

αε(T
′) = 2c(‖a‖2L2,unif

+G).

The main inequality implies the following estimate

αε(t) ≤ c
(
‖a‖2L2,unif

+G+ (1 + (2c(‖a‖2L2,unif
+G))2)

t∫

0

αε(τ)dτ
)

for 0 ≤ t < T ′. In turn, this inequality implies

αε(t) ≤ c(‖a‖2L2,unif
+G) exp{c(1 + (2c(‖a‖2L2,unif

+G))2)t}
for the same t. And thus we find

2c(‖a‖2L2,unif
+G) ≤ c(‖a‖2L2,unif

+G) exp{c(1+ (2c(‖a‖2L2,unif
+G))2)T ′}.

But this is possible only if T ′ ≥ T0 and contradicts the above assumption.

B.4 Passing to Limit and Proof of Proposition 1.8

First, we fix n ∈ N. From Lemma B.9, it follows that the following estimate

is valid:

sup
0<t<T0

∫

B(n)

|vε(x, t)|2 dx+

T0∫

0

∫

B(n)

|∇vε|2 dxdt ≤ cn3A. (B.4.1)

Using the known multiplicative inequality, we find from (B.4.1)

T0∫

0

∫

B(n)

|vε| 103 dxdt ≤

≤ c
(

sup
0<t<T0

∫

B(n)

|vε(x, t)|2 dx
) 2

3

T0∫

0

∫

B(n)

(
|∇vε|2 + 1

n2
|vε|2

)
dxdt

and thus
T0∫

0

∫

B(n)

|vε| 103 dxdt ≤ cn5A
5
3 . (B.4.2)

To estimate the pressure, we use (B.3.10)–(B.3.12) with x0 = 0 and

r = R = 2n. So, we have

pεn(x, t) ≡ p̂ε0,2n(x, t),
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where p̂ε0,2n(x, t) ≡ pε(x, t)− pε0,2n(t), and

T0∫

0

∫

B(n)

|pεn|
3
2 dxdt ≤ C(n, T0, A). (B.4.3)

The derivative in time can be estimated with the help of the Navier-

Stokes equations in the following way:

T0∫

0

∫

B(n)

∂tv
ε · w dxdt

=

T0∫

0

∫

B(n)

(
vε ⊗ Fε(v

ε) : ∇w −∇vε : ∇w + pεndivw + gε · w
)
dxdt

≤
( T0∫

0

∫

B(n)

|vε|3 dxdt
) 1

3
( T0∫

0

∫

B(n)

|Fε(v
ε)|3 dxdt

) 1
3
( T0∫

0

∫

B(n)

|∇w|3 dxdt
) 1

3

+
( T0∫

0

∫

B(n)

|∇vε|2 dxdt
) 1

2
( T0∫

0

∫

B(n)

|∇w|2 dxdt
) 1

2

+
( T0∫

0

∫

B(n)

|pεn|
3
2 dxdt

) 2
3
( T0∫

0

∫

B(n)

|∇w|3 dxdt
) 1

3

+c
( T0∫

0

∫

B(n)

|gε|2 dxdt
) 1

2
( T0∫

0

∫

B(n)

|w|2 dxdt
) 1

2

for any w ∈ C∞
0 (B(n)). Since

T0∫

0

∫

B(n)

|Fε(v
ε)|3 dxdt ≤

T0∫

0

∫

B(2n)

|vε|3 dxdt,

we have
T0∫

0

∫

B(n)

∂tv
ε · w dxdt ≤ C(n, T0, A,G)

( T0∫

0

∫

B(n)

|∇w|3 dxdt
) 1

3
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for any w ∈ C∞
0 (B(n)). The latter estimates implies

‖∂tvε‖Xn ≤ C(n, T0, A,G), (B.4.4)

where Xn is the space dual to L3(0, T0;
◦
W 1

3 (B(n))) and
◦
W 1

3 (B(n)) is the

closure of C∞
0 (B(n)) in W 1

3 (B(n)).

Now, we argue by induction in n. Let n = 1. Estimates (B.4.1)–(B.4.4)

make it possible to apply the known compactness arguments and to find

sequences v1,k and p1,k1 such that

v1,k
⋆
⇀ v1 in L∞(0, T0;L2(B(1))),

v1,k ⇀ v1 in L2(0, T0;W
1
2 (B(1))),

v1,k → v1 in L3(0, T0;L3(B(1))),

F1,k(v
1,k) → v1 in L3(0, T0;L3(B(δ))), ∀δ < 1,

p1,k1 ⇀ p1 in L 3
2
(0, T0;L 3

2
(B(1)))

as k → +∞. We let v = v1 and p = p1 in B(1)×]0, T0[. Obviously, the pair

v and p satisfies the Navier-Stokes equations in the sense of distributions

and the local energy inequality in B(1)×]0, T0[. The latter means that

∫

B(1)

ϕ(x, t)|v(x, t)|2 dx+ 2

t∫

0

∫

B(1)

ϕ|∇v|2 dxdt ≤
t∫

0

∫

B(1)

(
|v|2(∂tϕ+∆ϕ)

+v · ∇ϕ(|v|2 + 2p) + 2ϕg · v
)
dxdt

for a.a. t ∈]0, T0[ and for non-negative smooth functions ϕ vanishing in a

neighborhood of the parabolic boundary of space-time cylinder B×]0, T0[.

Now, let n = 2. By the same arguments as above, we assert that there

exists sequences v2,k, which is a subsequence of v1,k, and p2,k2 such that

v2,k
⋆
⇀ v2 in L∞(0, T0;L2(B(2))),

v2,k ⇀ v2 in L2(0, T0;W
1
2 (B(2))),

v2,k → v2 in L3(0, T0;L3(B(2))),

F2,k(v
2,k) → v2 in L3(0, T0;L3(B(δ))), ∀δ < 2,

p2,k2 ⇀ p2 in L 3
2
(0, T0;L 3

2
(B(2))).

The functions v2 and p2 satisfy the Navier-Stokes equations and the lo-

cal energy inequality in the space-time cylinder B(2)×]0, T0[. Obviously,

that v2 = v on B×]0, T0[. So, we may extend v by letting v = v2 on
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B(2)×]0, T0[. As to the function p2, it follows from the Navier-Stokes equa-

tions that ∇p2 = ∇p on B×]0, T0[. This means that p2(x, t) − h2(t) =

p(x, t) for x ∈ B and for t ∈]0, T0[. Since both p2 and p belong to

L 3
2
(0, T0;L 3

2
(B)), we conclude the h2 ∈ L 3

2
(0, T0). This allows to extend

the function p to B(2)×]0, T0[ so that p = p2−h2 on B(2)×]0, T0[. Clearly,

p ∈ L 3
2
(0, T0;L 3

2
(B(2))) and the functions v and p satisfies the Navier-

Stokes equations and the local energy inequality on the space-time cylinder

B(2)×]0, T0[.

In the case n = 3, we repeat the above arguments choosing a subse-

quence of the sequence v2,k and replacing balls B and B(2) with balls B(2)

and B(3), respectively. Continuing this process, we arrive at the following

result. There exist two functions v and p defined on R
3×]0, T0[ such that

v ∈ L∞(0, T0;L2,loc(R
3)) ∩ L2(0, T0;W

1
2,loc(R

3)),

p ∈ L 3
2
(0, T0;L 3

2 ,loc
(R3)). (B.4.5)

Next, letting v{k} = vk,k, we observe that v{k} is a subsequence of

the sequence {vn,k}∞k=n, i.e., there exists a sequence of natural numbers

{rk}∞k=n having the following properties:

v{k} = vn,rk , k = n, n+ 1, ..., rn = n, rk → ∞
as k → ∞. Then we may let

p{k}n = pn,rkn .

Obviously, p
{k}
n is a subsequence of the sequence {pn,kn }∞k=n. For these new

sequences and for any n ∈ N, we have

v{k}
⋆
⇀ v in L∞(0, T0;L2(B(n))),

v{k} ⇀ v in L2(0, T0;W
1
2 (B(n))),

v{k} → v in L3(0, T0;L3(B(n))), (B.4.6)

F{k}(v
{k}) → v in L3(0, T0;L3(B(δ))), ∀δ < n,

p{k}n ⇀ pn in L 3
2
(0, T0;L 3

2
(B(n)))

and

‖∂tv‖Xn ≤ C(n, T0, A,G), (B.4.7)

pn(x, t) = p(x, t) − cn(t), x ∈ B(n), t ∈]0, T0[ (B.4.8)

for some cn ∈ L 3
2
(0, T0). From (B.3.18) and (B.4.6), it is easy to derive the

estimate

ess sup
0<t<T0

‖v(·, t)‖2L2,unif
+ sup

x0∈R3

T0∫

0

∫

B(x0,1)

|∇v|2 dxdt ≤ 2A. (B.4.9)
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Now, by (B.4.7) and (B.4.9), we see that, for each n ∈ N,

the function t 7→
∫

B(n)

v(x, t) · w(x) dx is continuous on [0, T0] (B.4.10)

for any w ∈ L2(B(n)).

We notice further that for the solution of the regularized problem we

have the following identity:

∫

R3

ϕ(x)|v{k}(x, t)|2dx+ 2

t∫

0

∫

R3

ϕ|∇ v{k}|2dxds =
∫

R3

ϕ|a{k}|2dx+

+

t∫

0

∫

R3

[
|v{k}|2∆ϕ+∇ϕ · F{k}(v

{k})
(
|v{k}|2 + 2p{k}n

)
+ (B.4.11)

+2ϕg{k} · v{k}
]
dxds,

which is valid for any function ϕ ∈ C∞
0 (R3). Taking into account

(B.3.4), (B.4.6)–(B.4.8), and (B.4.10), we deduce from (B.4.11) the inequal-

ity

∫

R3

ϕ(x)|v(x, t)|2dx+ 2

t∫

0

∫

R3

ϕ|∇ v|2dxds ≤
∫

R3

ϕ|a|2dx

+

t∫

0

∫

R3

[
|v|2∆ϕ+∇ϕ · v

(
|v|2 + 2p

)
(B.4.12)

+2ϕf · v
]
dxds.

The latter holds for any t ∈ [0, T0] and for any nonnegative function ϕ ∈
C∞

0 (R3). On the other hand, from (B.4.10) and from (B.4.12) it follows

that
∫

R3

ϕ|v(x, t)− a(x)|2 dx→ 0 as t→ +0 (B.4.13)

for all ϕ ∈ C∞
0 (R3). So, v meets (B.1.7). The validity of (B.1.8) follows

from (B.4.6). It remains to establish decomposition (B.1.9).



August 27, 2014 14:25 LectureNotesonLocalRegularity LectureNotes page 242

242 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

Thanks to (B.3.18), we have
T0∫

0

∫

B(x0,3/2)

|p̂εx0,2|
3
2 dxdt ≤ A. (B.4.14)

We would like to emphasize that the constant on the right-hand sides of

(B.4.14) is independent of ε and x0. Let p̂
{k}
x0,2

be the sequence generated

by v{k} via (B.3.7). For each x0 ∈ R
3, we can find subsequences p̂

{k},x0

x0,2

and v{k},x0 such that

p̂
{k},x0

x0,2
⇀ px0 in L 3

2
(B(x0, 3/2)×]0, T0[).

So, it follows from (B.4.14) that
T0∫

0

∫

B(x0,3/2)

|px0 |
3
2 dxdt ≤ A (B.4.15)

for each x0 ∈ R
3. Passing to the limit in the Navier-Stokes equations on

the set B(x0, 3/2)×]0, T0[, we show that

∇(p− px0) = 0

on B(x0, 3/2)×]0, T0[ in the sense of distributions. So, we state that, for

any x0 ∈ R
3, there exists a function cx0 ∈ L 3

2
(0, T0) having the property

p(x, t)− px0(x, t) = cx0(t) (B.4.16)

for x ∈ B(x0, 3/2) and t ∈]0, T0[. Now, let us show the validity of (B.1.9).

Using decomposition (B.3.7) and the theory of singular integrals, we observe

p
1{k},x0

x0,2
→ p1x0

in L 3
2
(B(x0, 3/2)×]0, T0[).

Obviously,

p
2{k},x0

x0,2,R
→ p2x0,R in L 3

2
(B(x0, 3/2)×]0, T0[),

where

p2x0,R(x, t) =
1

4π

∫

B(x0,2R)\B(x0,2)

(K(x− y)−K(x0− y)) : v(y, t)⊗ v(y, t) dx.

By (B.3.12), we also have

sup
x∈B(x0,3/2)

|p3{k},x0

x0,R
(x, t)| ≤ 1

R
C(A, T0)

on ]0, T0[. On the other hand, the integral in the definition of p2x0,R
con-

verges to p2x0
as R → +∞. This follows from the Lemma B.7 and the

inequality∫

B(x0,2R)\B(x0,2)

|K(x− y)−K(x0 − y)||v(y, t)|2 dx ≤ c‖v(·, t)‖2L2,unif

which is valid on B(x0, 3/2)×]0, T0[. Passing to the limit as R → +∞, we

show (B.1.11). Proposition 1.8 is proved.
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B.5 Proof of Theorem 1.7

The idea of the proof of the main theorem is the same in [Lemarie-Riesset

(2002)]. It is based on the theory of solvability of the Cauchy problems for

the Stokes and Navier-Stokes systems with initial data from
◦
E3. A proof

of them can be done along standard lines and is omitted here.

We start with the most important part: the linear theory. Consider the

Cauchy problem for the Stokes system:

∂tv(x, t) −∆ v(x, t) +∇ p(x, t) = −div f(x, t) + g(x, t),

div v(x, t) = 0

(B.5.1)

for x ∈ R
3 and 0 < t < T ,

v(x, 0) = a(x), x ∈ R
3. (B.5.2)

It is supposed that

a ∈
◦
E3, g ∈

◦
G3(0, T ), f ∈ G 5

2
(0, T ). (B.5.3)

Theorem 5.9. Assume that conditions (B.5.3) hold. There exists a unique

pair of functions v and p having the following properties:

v ∈ L∞(0, T ;L3,unif), (1 +
√

|v|)|∇v| ∈ L2,unif (0, T ),

p ∈ L 5
2
(0, T ;L 5

2 ,loc
(R3));

v and p satisfy (B.5.1) in the sense of distributions;

‖v‖L∞(0,T ;L3,unif ) ≤ c
[
‖f‖L 5

2
,unif

(0,T ) + ‖g‖L3,unif(0,T ) + ‖a‖L3,unif

]
;

the t 7→
∫

R3

v(x, t) · u(x) dx is continuous on [0, T ] for any compactly

supported functions u ∈ L 3
2
(R3);

v ∈
◦
G5(0, T ), v(·, t) ∈

◦
E3, ∀t ∈ [0, T ];

‖v(·, t)− v(·, t0)‖L3,unif
→ 0 as t→ t0 + 0, ∀t0 ∈ [0, T ],

v(·, 0) = a(·);
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for any x0 ∈ R
3, there exists cx0 ∈ L 5

2
(0, T ) such that

p(x, t)− cx0(t) = p1x0
(x, t) + p2x0

(x, t)

for any x ∈ B(x0, 3/2) and for any t ∈]0, T [, where

p1x0
(x, t) = −1

3
trf(x, t) +

1

4π

∫

B(x0,2)

K(x− y) : f(y, t) dy,

p2x0
(x, t) =

1

4π

∫

R3\B(x0,2)

(K(x− y)−K(x0 − y)) : f(y, t) dy

and

sup
x0∈R3

T∫

0

∫

B(x0,3/2)

|p(x, t) − cx0(t)|
5
2 dxdt < +∞,

sup
x0∈R3

T∫

0

∫

B(x0,3/2)

I{|x|>R}|p(x, t)− cx0(t)|
5
2 dxdt → 0

as R → +∞.

Using Theorem 5.9 and successive approximations, see, for example, [Escau-

riaza et al. (2003)] and [Galdi (2000)], we can prove the following theorems

about solvability of the Cauchy problem:

∂tv(x, t) + div v(x, t)⊗ v(x, t) −∆ v(x, t) +∇ p(x, t) = g(x, t),

div v(x, t) = 0

(B.5.4)

for x ∈ R
3 and 0 < t < T ,

v(x, 0) = a(x), x ∈ R
3, (B.5.5)

under assumptions that

a ∈
◦
E3, g ∈

◦
G3(0, T ). (B.5.6)

Theorem 5.10. Suppose that conditions (B.5.6) hold. There exists a num-

ber T0 ∈]0, T [ with the following property. Given a and g, there exists a pair

of functions v and p that is a local energy solution in the space-time cylinder

QT0 = R
3×]0, T0[, such that

v ∈ C([0, T0];
◦
E3) ∩

◦
G5(0, T0),
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√
|v||∇v| ∈ L2,unif (0, T0), p ∈ L 5

2
(0, T0;L 5

2 ,loc
(R3));

sup
x0∈R3

T0∫

0

∫

B(x0,3/2)

|p(x, t) − cx0(t)|
5
2 dxdt < +∞,

sup
x0∈R3

T0∫

0

∫

B(x0,3/2)

I{|x|>R}|p(x, t)− cx0(t)|
5
2 dxdt → 0

as R → +∞.

Moreover, assume that a pair u and q is a local energy solution to the

Cauchy problem

∂tu(x, t) + div u(x, t)⊗ u(x, t)−∆u(x, t) +∇ q(x, t) = g(x, t),

div u(x, t) = 0

(B.5.7)

for x ∈ R
3 and 0 < t < T0,

u(x, 0) = a(x), x ∈ R
3. (B.5.8)

Then, u = v.

Theorem 5.11. Suppose that conditions (B.5.6) hold. Given T > 0, there

exists a constant ε(T ) with the following property. If

‖g‖L3,unif(0,T ) + ‖a‖L3,unif
≤ ε(T ),

then there exists a pair of functions v and p that is a local energy solution

in the space-time cylinder QT , such that:

v ∈ C([0, T ];
◦
E3) ∩

◦
G5(0, T ),

√
|v||∇v| ∈ L2,unif (0, T ), p ∈ L 5

2
(0, T ;L 5

2 ,loc
(R3));

‖v‖L∞(0,T ;L3,unif ) ≤ cε(T );

sup
x0∈R3

T∫

0

∫

B(x0,3/2)

|p(x, t) − cx0(t)|
5
2 dxdt < +∞,

sup
x0∈R3

T∫

0

∫

B(x0,3/2)

I{|x|>R}|p(x, t)− cx0(t)|
5
2 dxdt → 0

as R → +∞.

Moreover, assume that a pair u and q is a local energy solution to the

Cauchy problem (B.5.4), (B.5.5). Then, u = v.
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Now, let us outline the proof of Theorem 1.7.

So, according to Proposition 1.8, we can find a number T0 ∈]0, T ] and a

pair of functions v and p that are a local energy solution in the space-time

cylinder QT0 . If T0 = T , then we are done. Assume that it is not. By

Theorem 1.6, we can find t0 ∈]0, T0[ so that

v(·, t0) ∈
◦
E3,

v and p are a local energy solution in R
3×]t0, T0[.

Next, there exist T1 and a pair of functions u and q that is a local

energy solution in R
3×]t0, T1[ and u ∈ C([t0, T1];

◦
E3) with u(·, t0) = v(·, t0).

However, we know that there must be v = u in R
3×]t0, T1[. Without loss of

generality, we may assume that T1 < T . Using density of smooth functions,

let us decompose v(·, t0) = a1 + a2 and g = g1 + g2 so that

‖g1‖L3,unif (0,T ) + ‖a1‖L3,unif
≤ ε(T − t0),

a2 ∈
◦
C

∞
0 (R3),

and g2 is a function of class C∞ in QT and there exists R2 > 0 such that

the support of g2(·, t) lies in B(R2) for all t ∈]t0, T [. According to Theorem

5.11, there exists a pair u1 and q1, which is a local energy solutions to the

Cauchy problem:

∂tu1(x, t) + divu1(x, t)⊗ u1(x, t)−∆u1(x, t) +∇ q1(x, t) = g1(x, t),

divu1(x, t) = 0

for x ∈ R
3 and t0 < t < T ,

u1(x, t0) = a1(x), x ∈ R
3.

Moreover,

‖u1‖L∞(t0,T ;L3,unif ) ≤ cε(T − t0). (B.5.9)

We seek functions u2 and q2, solving the following Cauchy problem:

∂tu2(x, t) + div (u2(x, t)⊗ u2(x, t) + u1(x, t) ⊗ u2(x, t)+

+u2(x, t) ⊗ u1(x, t)) −∆u2(x, t) +∇ q2(x, t) = g2(x, t), divu2(x, t) = 0

for x ∈ R
3 and t0 < t < T ,

u2(x, t0) = a2(x), x ∈ R
3.
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We state that this problem has a weak Leray-Hopf solution with the finite

global energy satisfying the local energy inequality. To see that it is really

possible, let us comment the crucial term in proving a priori global energy

estimate. This term has the form

I0 =

t∫

t0

∫

R3

(u2 ⊗ u1 + u1 ⊗ u2) : ∇u2dxds.

So, we need to estimate the integral

I =

t∫

t0

∫

R3

|u1|2|u2|2dxds.

To this end, we fix x0 ∈ R
3 and apply successively Hölder’s and Gagliardo’s

inequalities, and estimate (B.5.9):

t∫

t0

∫

B(x0,1)

|u1|2|u2|2dxds ≤
t∫

t0

( ∫

B(x0,1)

|u1|3dx
) 2

3
( ∫

B(x0,1)

|u2|6dx
) 1

3

ds

≤ c‖u1‖2L∞(t0,T ;L3,unif )

t∫

t0

∫

B(x0,1)

(
|∇u2|2 + |u2|2

)
dxds

≤ cε2(T − t0)

t∫

t0

∫

B(x0,1)

(
|∇u2|2 + |u2|2

)
dxds.

Using Besicovitch covering lemma, we can easily show

I ≤ cε2(T − t0)

t∫

t0

∫

R3

(
|∇u2|2 + |u2|2

)
dxds

and therefore

I0 ≤ cε(T − t0)

t∫

t0

∫

R3

(
|∇u2|2 + |u2|2

)
dxds.

The latter allows us to hide I0 into the left-hand side of the global energy

inequality by choosing ε(T − t0) sufficiently small and to find

∫

R3

|u2(x, t)|2dx+

t∫

t0

∫

R3

|∇u2|2dxds ≤
∫

R3

|a2(x)|2dx+ 2

t∫

t0

∫

R3

g2 · u2dxds.
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Using this estimate and suitable approximations, we can easily prove our

statements about u2. In addition, all above arguments show that pressure

q2 may be taken in the form

q2 =
1

4π
K ∗ (u2 ⊗ u2 + u1 ⊗ u2 + u2 ⊗ u1)

and, moreover,

q2 ∈ L 3
2
(R3×]t1, T [)

and we have representation:

q2(x, t)− c2x0(t) = q12x0
(x, t) + q22x0

(x, t)

for x0 ∈ B(x0, 3/2) and t ∈]t0, T [, where
q12x0

= −1

3
(|u2(x, t)|2 + 2u1(x, t) · u2(x, t))+

+
1

4π

∫

B(x0,2)

K(x− y) : (u2 ⊗ u2 + u1 ⊗ u2 + u2 ⊗ u1)(y, t)dy,

q22x0
=

1

4π

∫

R3\B(x0,2)

(K(x−y)−K(x0−y)) : (u2⊗u2+u1⊗u2+u2⊗u1)(y, t)dy,

c2x0(t) =
1

4π

∫

R3\B(x0,2)

K(x0 − y) : (u2 ⊗ u2 + u1 ⊗ u2 + u2 ⊗ u1)(y, t)dy.

Now, we let

u = u1 + u2, q = q1 + q2.

Our task is to verify that this new pair is a local energy solution to the

Cauchy problem:

∂tu(x, t) + divu(x, t)⊗ u(x, t)−∆u(x, t) +∇ q(x, t) = g(x, t),

divu(x, t) = 0

for x ∈ R
3 and t0 < t < T ,

u(x, t0) = a(x), x ∈ R
3.

The most difficult part of this task is to show that u and q satisfy the

local energy inequality. It can be done essentially in the same way as

the corresponding part of the proof of the uniqueness for C([0, T ];
◦
E3)-

solutions. And this immediately implies that u = v in the R
3×]t0, T1[.

Since p(x, t) − q(x, t) = c(t) ∈ L 3
2
(t0, T1), we can change function cx0 in a

suitable way and assume that q = p in the R3×]t0, T1[. So, the pair u and q

can be regarded as a required extension of v and p to the whole space-time

cylinder QT . Theorem 1.7 is proved.
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B.6 Density

Lemma B.10. For any f ∈
◦
Em and for any ε > 0, there exists fε ∈

◦
C∞

0 (R3) such that

‖f − fε‖Lm,unif
< ε. (B.6.1)

Proof Let

Bk = B(xk, 2), xk ∈ Z
3.

Clearly
⋃
k

Bk = R
3. Moreover, there is a universal constant N2 with the

following property:

for any x0 ∈ R
3, the ball B(x0, 1) is covered by not more

than N2 balls Bk.

For this covering, we can find a partition of unity such that

ϕk ∈ C∞
0 (R3), sptϕk ⊂ Bk, ϕk ≥ 0,

∑

k

ϕk = 1.

Now, given R > 0, we introduce two smooth cut-off functions

χ(x) = 1, x ∈ B(1), sptχ ⊂ B(2), χR(x) = χ(x/R).

We fix a ball Bk. There exists a function vk ∈
◦
W 1

2 (Bk;R
3) that is a solution

of the equation

div vk = f · ∇χRϕk − 1

|B(2)|

∫

Bk

f · ∇χRϕk dx

and satisfies the estimate

‖vk‖Bk
≤ c

R
‖f‖Bk

≤ c

R
‖f‖Lm,unif

with a universal constant c. Extending vk by zero to the whole R
3, we set

vR =
∑

k

vk

and observe that, for each R > 0, the function vR has a compact support

and, moreover,

div vR = f · ∇χR in R
3,

‖vR‖B(x0,1) ≤
∑

k

‖vk‖B(x0,1) ≤
cN2

R
‖f‖Lm,unif

, ∀x0 ∈ R
3.
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Next, we let

uR = fχR − vR.

Obviously, we have

divuR = 0 in R
3,

and uR has a compact support. Since f ∈ E2, we see that, for an arbitrary

ε > 0, we can find R > 0 such that

‖f − uR‖Lm,unif
≤ ‖f − fχR‖Lm,unif

+ ‖vR‖Lm,unif

≤ ‖f − fχR‖Lm,unif
+
cN2

R
‖f‖Lm,unif

< ε.

To complete the proof of the lemma, it is enough to smooth uR which

is easy. Lemma B.10 is proved.

B.7 Comments

The main source for the content of Appendix B is the monograph of P.-G.

Lemarie-Riesset [Lemarie-Riesset (2002)]. Our interpretation of his results

is given in the paper [Kikuchi and Seregin (2007)] and we follow it here.

We wish to emphasize that the Lemarie-Riesset conception of local energy

weak Leray-Hopf solution1 is heavily used in Chapter 7.

1In fact, G.-P. Lemarie-Riesset himself calls them simply local Leray solutions
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