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Preface

The Lecture Notes are based on the TCC (Graduate Taught Course Center)
course given by me in Trinity Terms of 2009-2011 at Mathematical Institute
of Oxford University. Chapters 1-3 contain material discussed in Trinity
Term of 2009 (16 hours in total), Chapters 4-5 contain lectures of 2010 (16
hours), and, finally, lectures of 2011 are covered by Chapter 6 (16 hours).

Chapters 1-5 can be regarded as an Introduction to the Mathemati-
cal Theory of the Navier-Stokes equations, relying mainly on the classical
PDE’s approach. First, the notion of weak solutions is introduced, then
their existence is proven (where it is possible), and, afterwards, differentia-
bility properties are analyzed. In other words, we treat the Navier-Stokes
equations as a particular case, maybe very difficult, of the theory of nonlin-
ear PDE’s. From this point of view, the Lectures Notes do not pretend to
be a complete mathematical theory of the Navier-Stokes equations. There
are different approaches, for example, more related to harmonic analysis,
etc. A corresponding list of references (incomplete, of course) is given at
the end of the Lecture Notes.

Finally, Chapters 6 and 7 contain more advanced material, which reflects
my scientific interests.

I also would like to thank Tim Shilkin for careful reading of Lecture
Notes and for his valuable suggestions.
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Chapter 1

Preliminaries

1.1 Notation

Let us denote by 2 a domain (open connected set) in R™. Then, C5°(£2; R™)
is set of all infinitely differentiable functions from 2 into R™, having a
compact support in Q. If m = 1, we use abbreviation C§°(€2). However,
even in the case of functions with values in R™, we shall drop the space R™
in the notation of the corresponding spaces very often.

A Lebesgue space L, () is endowed with the standard norm

e = ( [ Is@ar)’
Q

if 1 <p<ooand
[1f oo, = ess sup | f ()]
zeQ
if p= co.

Lemma 1.1. Let 1 < p < co. Then, L,(Q) = [C5(Q)]F»®V dce., L,(Q) is
the completion of C§°(Q?) in L,(Q).

In what follows, we always assume that the exponent of integrability is
finite unless otherwise is specially indicated.

We say that a distribution u, defined in €2, belongs to the Sobolev space
WE(Q) if and only if all its weak derivatives up to order k are integrable in
Q with the power s. The norm of this space is defined as

k
lullwe ) = D IV ulls 0
i=0

We also let

WE(Q) = [Cge ()W @),
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It is said that a distribution u, defined in 2, belongs to the space L¥(Q)
if and only if all its weak derivatives of order k are integrable in {2 with the
power s. This space can be endowed with the usual semi-norm

lull ey = IV ulls 0.
Theorem 1.1. L¥(Q) C L 10c(Q).

PRrOOF For simplicity, let us consider the case £ = 1 only. We have a
distribution 7" such that

/g(x)gp(z)dw =-T(Vy)=—<T,Vyo >

Q
for p € C§°(02) with g = (g;) € Ls(£2). Our aim is to show that T is in fact
a regular distribution, i.e., there exists a function u € L 10c(£2) such that
T="1T,.

Consider a subdomain Q¢ € {2, i.e., a bounded domain Qg C € such

that the closure of Qg belongs to Q. Let 0 < ¢ < dist(2g,09). Define a
linear functional [ : L1(Q) — R in the following way

(V) :=<T,, >
for ¢ € L1(Q) where

w&m:i/waIfw¢@my
Q

and w, is a standard mollifier. Obviously, ¥, € C§°(2). It is easy to check
that ! is a bounded functional on L1 () and thus there exists a function
uf € Loo(€0) such that

10) = [ ufa)i(a)ds
Qo
for all ¢ € L1(€p). Next, for any ¢ € C§° (o), we have

—<T,Vp,>= /gcppd:c = /gggod:c.
Q Q
On the other hand, by known properties of mollification we find
—<T,Vy,>=—-<T,(Vy), >=— /ué’Vgodx.
Qo

The latter means that

go = Vug
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in Qo. Here, 1 = uf — [uf]q, and

[ugla, = |QO|/u0dx

Assuming that 2 has a sufficiently smooth boundary, we can apply the
Poincaré-Sobolev inequality

020 < e, 5, 20) gl oy < s, W)llgll o
Without loss of generality, we may assume that
g — ug
in Ls(Qp). And thus
g=Vug

in Qo.
Next, we take a sequence of domains with sufficiently smooth boundary
such that Q € Q, Q € Q41 for any natural k£ and

Q= G Q.
k=0

Now, a required function u can be defined as follows. We let w = ug in .

Then, repeating the above procedure, we find a function u; € Lg(€1) such

that g = Vuq in 4. It is easy to see that u; —w = Cy on Qy. Then we let

w=u' —Cyon Q \ Q. Since w —u! = —Cy in Q1, g = Vw in Q; and

w € Lg(€1). We can extend function w to {23 in the same way and so on.
So, we have constructed a function w € L 10c(€2) such that

< Ty, Vo >= /w(m)ch(x)dx = —/g(x)go(x)dx
Q Q

for all p € C§°(Q?) and thus < T'— T,,, Vo >= 0 for the same ¢. Hence,
there is a constant ¢ such that T' = T, ;.. Letting © = w + ¢, we complete
the proof. (I

In a similar way, we can show that if u™ € C§°(12) is a Cauchy sequence
in LE(Q), i.e., [|u™—u "[|r() — 0 as m and 7 tend to oo, then there exists
u € L¥(Q) such that [Ju™ — UHLk — 0 as m tends oo. Indeed, supposing
for simplicity that k = 1, we may assume that Vu™ converges to g € L().
Our aim is to find a function u € L joc such that g = Vu in Q.

Now, let domains € be as in the proof of the previous statement. By
Poincaré-Sobolev inequality, we have

™ — " = ([u™]ay = [u"]ay)lls.00 < c(n, 5, Q) IV (U™ = u")ls0, <
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< c(n, 5, Q0) V(W™ —u")|ls0 =0

as m and r go to co. So,

u™ = [u™]q, = wo

in Ls(p) and Vug = g in Q. Repeating this procedure in a bigger do-
main €2y, we finish our proof using the same arguments as in the previous
theorem.

Unfortunately, if a sequence u™ € C§°(€2) converges to u € L¥(Q) in
LE(€), it converges there to u 4w with VFw = 0 as well. This tells us that
in general we should operate with equivalence classes generated by u ~ w
if V¥(u —w) = 0 in Q. So, we can introduce a Banach space E,’;(Q) that
consists of all equivalence classes containing an element w such that there
exists a sequence u™ € C§°(Q) with |[V(u™ — u)||s,0 as m — oo.

In many interesting cases, we can get rid of equivalence classes selecting

a “good” representative from each of them. This usually happens if we
can control a weaker norm. For example, if ) is bounded, the Friedrichs
inequality is valid:
lulls.o < cllullLre)

for any u € C§°(2) with a positive constant independent of w. So, if
u™ € Cg°(Q) converges to w € LE(Q) in L¥(Q), then we can select a
special element v € [w] such that «™ — w in Ls(Q?) and work with it in
what follows. So, we have

Proposition 1.2. For bounded domains €2,
2k 2ok
L (€) = wi(Q).
For unbounded domains, things are more complicated. Let us con-

sider, for example, the space zé(Q) If n > 3, then we can use Gagliardo-
Nirenberg inequality

[ullp.0 < c(n)[|Vul

2,02
for any u € C§°(Q) with p = 2n/(n — 2). This inequality allows to avoid
using equivalence classes for ANY domain €2 in R™.
For n = 2, a half-plane R2 = {z € R? : x5 > 0} is still a “good” case
thanks to the following inequality:
[ulle,m < [[Vullzn

for any u € C§°(R3) with IT = {—o00 < 21 < 00, 0 < 22 < 1}. The proof
of it is the same as for the Friedrichs inequality.
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1.2 Newtonian Potential

The fundamental solution to the Laplace equation is
1 1

B(x) =
() wpn(n —2) |z|n—2
if n > 3 and
1 1
E(x)=—In—
(@) = 5 g

if n = 2, where w,, is the volume of unit ball in R".
For a given function f : R™ — R, we define the Newtonian potential of
f as the following convolution:

u=FExf

or
u(w) = [ B - ) f )y,
R’n
In what follows, we are going to use a standard cut-off function ¢ €
C§°(R™), having the following properties:
0<¢p(z)<1 x € R,

pe) =1 zeB(1), ¢)=0 x¢B(2),

pr(r) = p(z/R).
Here, B(R) is a ball of radius R centred at the origin.

Proposition 2.3. Let f € L,(R") with 1 < p < oo and u = Ex f. The
following statements are true:

(z) [ IV?u|Pdz < c(n,p) [ |f|Pde,
R’VL R’H,

(i) u € [2(RM),

(i) Au=—f

in R™,

PROOF (i) follows from the theory of singular integrals. (iii) follows
from (i), (ii), and from the classical PDE theory.
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Let us prove (ii), assuming that n > 3. By Lemma 1.1, there exists a
sequence f,, € C§°(R") such that f,, — f in L,(R™). Since supp fp, is a
compact set in R™,

i C(m7i)
ViU, ()| < W
for all x € R™, for ¢ = 0,1,2, for all m = 1,2, ..., and for some positive

c(m,i). Here, up = E * fp.
Our aim is to show that
Um € Eﬁ(R")
Indeed, we have

/|V2(<pRum — Up,)|Pdx < c[ / |V 20 |Pda+-

R R"\B(R)

1 P 1 P

ton / |V, |Pdx + T / [t dx] <
B(2R)\B(R) B(2R)\B(R)

1 R" 1 R™

Re Re—Dr T R R-2p

<c / |V2um|pdx+C(m)[ } —0
R"\B(R)
as R — oo for each fixed m.
On the other hand, by (i), we have
IV2u = V?umlpgn < cllf = fmllprn =0

as R — oo. This implies (ii). O

Particular cases

1. Let f(2/,2,) = —f(2', —xy), where 2’ = (21,22, ..., Zn—1). Then
u(x, zn) = —u(x', —x,)
and u, u, = Ou/dz,, and u n, are in Ly 1oc(R™) that implies u(z’,0) = 0.
So, the Newtonian potential w solves the following Dirichlet problem in

half-space:

Au=—f (1.2.1)
in R} = {z = (2/,2,) : x, >0},

u(z’,0) =0
for any a’.

2. The same arguments show that if f(z/,z,) = f(2/,—z,) then u
solves the Neumann boundary value problem, i.e., it satisfies (1.2.1) and
the Neumann boundary condition

un(x',0)=0
for any z’.
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1.3 Equation divu =b

We start with the simplest case {2 = R".

Proposition 3.4. Let 1 < s < co. Given b € Lg(R™), there exists u €
zi(R") with the following properties:

(7) divu =15
in R”,
(i) [Vullsrn < c(s,n)][b]] sz

PROOF We let h = E xb. By Proposition 2.3, VA € LL(R"). If we let
u = —Vh, then, by the same statement,

[Vul|szn = VA5 zn < c(s,n)]|b]ls rn
and
divu = —divVh = —-Ah =b. g
In the case of the half-space, ie., @ = R} = {z = (2/,2,) : 2’ €

R~ 2, > 0}, we have

Proposition 3.5. Let 1 < s < co. Given b € Ly(R?), there exists u €
Ei (R}) with the following properties:

(7) divu =10
in RY,
(i) [Vullsrn < c(s,n)[10]ls,rr7 -

Remark 1.1. The above vector-valued function w satisfies the homoge-
neous boundary condition ul,,—¢o = 0 in the sense of traces in Sobolev
spaces.

PROOF OF PROPOSITION 3.5 To show the essence of the matter, let us
consider a special case n = 3 and s = 2.

Let b € C5°(R3) and b is the even extension of b to R3. Clearly, b €
C3°(R?). Letting h = —E b, we see that

Ah=b=b in R3S,  hgly—0=0 (1.3.1)
and

IV2Rllors < cllbllame - (1.3.2)
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The idea is to look for u in the form
u = Vh+rot A,
where A is unknown vector field. Obviously,
divu=Ah=0b in Ri.

Equations for A is coming from condition u|,,—¢ = 0 that leads to the
following relations

rot A= —-Vh
at z3 = 0. We are seeking A, satisfying additional assumptions:
Algs—0 =0, A3;=0 in R3.
So, the main equations for A = (A1, Az, 0) are:
Ans(2',0) = By(z') a=1,2,

where Bi(x') = h2(2’,0) and Ba(z') = —h1(2’,0) are known functions.
The theory of traces for functions from Sobolev spaces suggests to seek
A in the form:

Aa<xcx3)::xgj/zxxxﬂ+yua>k1yvdyx
RQ

where a function K € C§°(IR?) is supposed to obey the following conditions:

K@)=0 2/ ¢ B ={2' eR?*: 2| <1}, /K(y')dy' =1
R2

Now, our aim is to show that functions

up =hy+ A3,
ug =hyo— A3,

uz =hz+ A1 2 — As,

with A described above, satisfy all the requirements.
Indeed, direct calculations gives us:

8Ba / / /
Aoale) =5 [ G /2 up K + [ Bole! + v/ K )y
R2 R2

(1.3.3)
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Noticing that
0B, 0B, 1
D25 Oy 23

and integrating by parts with respect y3, we can transform the right-hand
side of (1.3.3) to the form

Aas(@) = = [ [Bala’+53) = Balo)] 50 K/ )/ +

R2

+ / Ba(2' +y'zs) K(y')dy'.
R2
By the choice of K, A, 3(2’,0) = Bo(z'),a =1, 2.
Now, our goal is to show the validity of the estimate

IV Aallogs < clblogs,  a=1,2, (13.4)

with some universal constant c. To this end, let us discuss a typical state-
ment from the theory of traces in Sobolev spaces.

Lemma 1.2. For any smooth function f : Ri — R, vanishing for suffi-
ciently large |z|, the following inequality holds:

dx'dy’
IFIP, - //lf 2',0) — f(y',0))? y,‘3 _c/|Vf|2das (1.3.5)
RY

thmey |2’ —

with some universal constant c.

PrOOF By the shift in variables, we can rewrite the left-hand side of
the latter inequality in the following way:

2 ! 2 g,/
I = /|,3/|f o+ 2,0) - f(&,0) P’

Applying the triangle inequality, we find
[f(@ +2,0) = f(a,0)] < [f(a’ + 2, []) = f(a, [+
HF@ 2| = P+ 20+ 1@ ) — f@ 0l (1.3.6)

According to (1.3.6), we should evaluate three integrals. In the first one,
the polar coordinates 2z’ = (Q cos @, psin ) are used to derive identity:

|,|3 / F@|2]) — f(a,0)Pde! =
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71
—2r [’ [ i) - £ 0) e
R2 0
The right-hand side of it can be bounded from above with the help of

Hardy’s inequality:

oo

_ p p ’

P _ Pt < p
/t g(t) — g(0)[Pdt < (pil) /Ig (t)[Pdt
0 0
with 1 < p < c0. So,

[1<27r/dx4/’— 7 g)’ dg<87r/|Vf|2d:v

]R3

Applying similar arguments to I3, we show

/| ,|3/|f o 42| )) = f(2' + 2, 0)2da’ =

W, / S 1D - £ 0Pdy < 87 [ V1P,
RY
To estimate the third term, we exploit the following simple inequality

1
/ !/ !/ / ! 8 / / /
£+ ) = £ D] = | [ G+ e ] <
0

1
< |z’|(/|fo(x’+tz’,|z’|)|2dt)§,
0

/|’|3/|f o+ 2, [2) = f(, |2])Pda’ <

9= / [Iastt s -
/ ,|/|v P 1) Py

which give us
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It remains to make the change of variables z’ = (g cos ¢, gsin ¢)

I3 < 27r/|Vf|2dz
3

and complete our proof. O
Now, our goal is to show that (1.3.5) holds for any function f of class
C?, having the decay

c
(@) < =, (1.3.7)
||
with a positive constant c.
Denoting by B’(R) the unit disk centered at the origin and letting fr =

for, where g is a standard cut-off function, we have

/ / 10 = 1O 1y

B'(R) B'(R

:/ /lfR(ar’,mfR?Ey’,Ode,dy,S
|2 = y/|

B'(R) B'(R)

c/ng|Vf|2d:r+ﬁ / |f|?dx <

Ri (B(2R)\B(R))NR%.

c
<c | |Vf|Pdz + =.
<c [|vsPdo+ g
R
Passing to the limit as R — oo and using Fatou’s lemma, we deduce (1.3.5).
Next, we observe that it is sufficient to show

2
< 3.
VA0 lazy < VRGO 3 . (1.3.8)

Indeed, since
[Vh(z)] < —

for || > 1, one can derive from (1.3.5) and (1.3.2) that

IVAC0) g o < ellVPRllzgy < clBllzgs -
2

®R2) —

Then, statement (ii) of Proposition 3.5 for this particular class of b follows.
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Now, let us prove (1.3.8), directly working out the second derivatives of

A,
! a / A
Aapy(a, 23) / ¥+ ys) o (i K () +
Yy
/ (2 + y'2s) K (y')dy .
Obviously,
0 0 1
2 B, / Fo\ — 2 B, / / =
a5 (2" + y'x3) 95 (' +y $3)$3
Then
1
S = Aapale) = = [ 0Bae’ o/ 22 Ko(w')d
$3R2
where
dBo(2',y ,23) := Bo(2' +y'23) — Bo(2')
and

Kp(y') = (4K (Y')),5y — K ().

Now, we have

/S2dx§c/dxg/dx/(x—g/|5Ba(x’,y’,:rg)HKg(y’)\dy’)
R2 0 R2 R2

and, by Holder inequality,

r 1
[sao e [don [ ar sy [N [ 16Bala’ o) 1Kty <
R 0 R? S R2
dm3 INEF ™
<c \Kﬂ N|dy' |B ¥ +y'z3) — Bo(2')|?da’.

Introducing polar coordinates y' = Q(COS ©,sin ), we find

1 27

/SQda: <c//gdgd<p/ /|B 2’ + o(cos o, sin )x3) — By (2')|*da’.



Preliminaries 13

If we set 2/ = x3(cos ¢, sin @), then

/Szdx<c/gdg/|/|3/|B "+ 2'0) — Bo(2))2da’.

Letting 3’ = 2’0, we show

|2

Iy |3

Ba / *Boz 7\|2
g//' (Z), , WO 1oy < |V, 002, . (1.3.9)
|2 — L} (®R?)

3
g Y|

With the remaining second derivatives, we proceed as follows:

Aoale) = o / (Ba(a! +y/'5) — Ba(a) K (),
R2
where
R() = s KW)) ) — i K(W))
and
Aanl@) = / (Ba (e + y'z3) — Ba(a))(K(y)) pdy.
R2

So, similar arguments as above lead to the required bound

A% o+ A dr < c||Vh 2

[ s+ A2 e <ATHCOI,
R

Hence, inequality (1.3.8) for smooth compactly supported functions b is

proven.

Now, our aim is to show that
u€ LA(R3) (1.3.10)

for any b € C5°(R%). The proof of (1.3.10) consists of two parts.

STEP 1. First, let us check that Vh € Lo(RY). Indeed, since VZh €
Ly(RY), an embedding theorem implies Vh € Lo(B4 (1)), where By (R) :=
{z € B(R) : z3 > 0}. We know that

Vh(z)| < #
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for |z| > 1. So,

R
/IVhlzdscs / |Vh|*dz+ / |Vh[2dz < ...4c(b) /%g
1

By (R) B (1) B (R)\B4(1)
for any R > 1.
STEP 2. Let us show that VA, € Ly(R3). We know

Ans(z) = / Ba(a + y'e) Ko(y/)dy,
RZ

where

Ko(y') = K(') — (ys K (y))
Let a = 1. Then By(z') = h2(z’,0) and
1
Bi(x' +y'x3) = ih(ac' +y'w3,0)—
D2 3
So,
1 0
Ays(x) = —— [ (M’ +y'w3,0) — h(z',0)) 5 — Ko(y')dy'.
XT3 5112
R2

Repeating the evaluation of A, g3, we find

[ At de < cliC.0)]

3
R

L2 R(2)’

Since |h(x)| < ¢(b)/|x| for || > 1, one can derive with the help of Lemma
1.2 the inequality

BCO), 3 gy < Iz

This means that, by Step 1, A; 3 € Lz(Ri). The same holds true for As 3.
The proof of the fact that A, g € Lg(Ri) is an exercise. So, it has been
proven that

u € Lo(RY) (1.3.11)

provided b € C§°(RY).
Now, we wish to finish the proof of (1.3.10). Letting up = @gru, one
can observe that

/ V(4 — up)2dz < ¢ / Vuldz + cR2 / luf2dz — 0
) RI\B4 (R) B 2R\B4+(R)
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as R — oo.

The function ug is not compactly supported in Ri and we need to cut
it in the direction of x3. To this end, let us introduce the following cut-off
function: x(t) =0if —co <t <e/2, x(t) =2(t—¢/2)/eife/2 <t < e, and
x(t) =1if t > e. Considering ug (z) = ur(z)x(z3), we have

€ €
1
/|V(uR—uR,E)|2da: < c/dm3/|VuR|2da:'+g/d:ﬂ’/|u3|2d$3.
R3 R? 0

0 R2

The first integrals on the right-hand side of the last inequality tends to zero
as € — 0. To show that the second term does the same, we are going to use
two facts. Firstly, ur(z’,0) = 0 and secondly, by the Friedrichs inequality,

I 1>

9 2
/\uR(m',xg)\Qdmg < 062/‘8—3,‘3UR($/7$3)’ dzs.
0 0

So, combining the above inequalities, we show that

€

/ IV(ur — ug.)|?de < c// |Vug|?dz — 0
=

0 R2

as € — 0 for each fixed R > 0.
It remains to mollify ug .. The mollification (up ), belongs to C5°(R3)
for 0 < 7 < 7(R,¢) and

/ IV (une — (ue)s)2de — 0
i

as 7 — 0 for each fixed R and . So, (1.3.10) is proven.
Now, we are going to extend our result to functions b € Ly(R3). Given
b € Ly(R%), there exists b(™ € C§°(R3) such that |[b(™) — b||2)R§,r — 0 as

m — oo. We know that there is (™ € Z% (R3.) having the properties:
divu(™ = (™)
in R} and
IVu™ 5 ps < b0 s -
Moreover, by construction

[Vul™ = Vul gy < b = bl gy,
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which implies that
u™ oy

0 T1(TR3
in Ly(R3). O
Let us mention some consequences and generalizations.

Theorem 3.6. Let Q) C R™ be a bounded domain with Lipschitz boundary,
1 <p<oo, and let

L,(Q):={be L,(Q): /b(x)dm = 0}.

Q

Then, for any b € L,(Q), there exists u € 25(9) with the following proper-
ties:

divu =19
in Q and
IVullp.a < c(p,n, Q)|b]p.0-
Remark 1.2. For bounded domains, we need a restriction on b:

/@@mz:m

Q

which is called the compatibility condition.

Remark 1.3. Proof of Theorem 3.6 is based on Propositions 3.4 and 3.5,
decomposition of the unity, and changes of coordinates. It is quite involved
but does not contain new ideas.

Remark 1.4. There is a different approach to the proof of Theorem 3.6,
which is due to Bogovskii. It is simpler than the above proof. But it relies
upon the theory of singular integrals.

1.4 Necas Imbedding Theorem

The main result of this section reads:

Theorem 4.7. Let 1 < r < oo and let  be a domain in R™. Assume that
the gradient of a distribution p, defined in §2, has the property:

< Vp,w >< K||Vuw| .0
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for any w € C§°(Q;R™).
The following statements are valid:

(i) p € Ly10c(2) and for any O € Q there exists a constant c(r,n, ), Q)
such that

/|p —al"dx < cK
9%

for some constant a;

(ii) if @ = R™ or R} and p € L,(2), then there exists a constant c(r,n)
such that

/|p|rd:c <cK
Q

(#1) if Q is a bounded Lipschitz domain, then p € L.(Q2) and there exists a
constant ¢(r,n, Q) such that

/|p —a|'de < cK
Q

for some constant a.

Proor

(i) Without loss of generality, we may assume that a bounded domain ¢’
has Lipschitz boundary. We claim that there exists a constant ¢(r,n, ), Q)
such that

| <p7q > | S CKHQHr’,Q’ (141)

for any ¢ € C§°(€) with [¢]or = 0. The latter would imply that p is a
regular distribution. Here,

1
[q)w = Tl w/q(w)dw-

By Theorem 3.6, there exists u € E},(Q') such that
divu =g¢q
in ' and

IVullyr o < e(r,n, ¥)lqlle o
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Functions u and ¢ are supposed to be extended by zero outside Q’. Let us
mollify u in a standard way

(u)o(z) = /wg(w —yu(y)dy = /wg(w —yu(y)dy = /wg(w —y)uly)dy
Q Q Rn

with the help of a smooth mollifier w,. So, (u), € C§°(R) for 0 < ¢ <
00(8Y, Q). Moreover, we know that

V(U)Q = (VU)Q
and thus
div (U)Q = (Q)m

IV (wellr.0 < [[Vullr.o < clgll.o,

by the known mollification properties.
Now, we have (in the sense of distributions)

< Vp, (u)y >= — < p,div (u), >= — < p,(q), >,
which implies
| <P (@)e > | S K|V (u)ollr0 < cKlgll.a-
It is worthy to notice that there exists a compact Ky such that Q' c Ky C €,
support of V¥ (¢), and support of V*¢ belong to K, and
Vk(q), — VFq
uniformly in K, for any £k =0,1,... as 0 — 0 and thus
<p, (@) >—<p,qg>

as o — 0. Tending ¢ — 0, we then find (1.4.1).
It follows from Banach and Riesz theorems that there exist P € L, ()
such that ||P||,,q < ¢K and

<p,q>= / Pqdx
%
for any ¢ € C§° () with [¢]a = 0.
Now, let us test the latter identity with ¢ = divu for an arbitrary
u € C§°() (it is supposed that all the functions are extended by zero to
the whole domain 2). As a result, we have

< Vp,u>=— < p,divu >= f/Pdivud:c.

Q/
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This means that V(p|o — P) = 0. And thus, by Theorem 1.1, p — P =
constant on €. So, part (i) is proven.
(i) According to (i), our distribution v is regular and, therefore,

<p,q>= | p(x)q(x)dx
/

for any ¢ € C§°(2).
Given ¢ € C5°(2), we find u € z}‘,(Q) such that divu = ¢ in © and

IVallrr 0 < clgll o

By the definition of 27{,(9)7 there exists a sequence u(™ € C§°() such
that

vul™ — Vu in L, (Q)
and thus
¢ = divu™ — ¢ in L,/ (Q)

as m — oo. Then, as it has been pointed out above, we should have

< Vp,ul™ >=— /pdivu(m)dx =— /pq(m)dx < CKHVU(m)HT/,Q.
Q Q

Passing to the limit, we find the estimate

~ [ bads < exlglc (1.42)
Q

which allows us to state that
[pllr0 < cK.

(iii) Here, it is enough to repeat the same arguments as in (i), replacing €’
with Q, under the additional restriction on ¢ that is [g]q = 0. As a result,
we get estimate (1.4.2) that holds for any ¢ € C§°(Q2) provided [¢]q = 0.
Repeating arguments, used at the end of the proof of the statement (i), we
conclude that there exists P € L,(€2) such that |P||, o < cK and P =p—a
for some constant a. [J

We end up this section with recollecting known facts related to duality
between function spaces. For a given Banach space V', let V' be its dual
one, i.e., the space of all bounded linear functionals on V. Very often, we
need to identify V'’ with a particular function space and such a choice as a
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rule depends on the problem under consideration. There is a relatively gen-
eral construction that is very popular in the theory of evolution problems.
To describe it, let us state the corresponding standing assumptions. We are
given a reflexive Banach space V' with the norm || - ||y and a Hilbert space
with the scalar product (-, ). It is supposed that V' is continuously imbed-
ded into H, i.e., there exists a constant ¢ such that ||v||g = /(v,v) < ¢||v||v
for any v € V and let V be dense in H.

As usual, we identify H' with H itself, i.e., H = H (in the known
functional analysis sense). Now, let us fix f € H, then v — (f,v) is a
bounded linear functional on V' and thus there exists v} € V' with the
properties:

<U},v>:(f,fu) YoeV
and
[vllv: <cllfle  VfeH.

So, we have a bounded linear operator 7 : H — V' (one-to-one by density)
defined by the identity 7f = v} for f € H.

Obviously, 7(H) is a linear manifold of V’. Moreover, it is dense there.
To see that, assume it is not, i.e., there exists v € V' but v} ¢ [r(H)]V .
By the Hahn-Banach theorem, there exists v € V" := (V') with the
properties < v”;v) >= 1 and < v”,v" >= 0 for any v’ € 7(H). Since V
is reflexive, there should be v € V so that < v”,v" >=< v',v > for any
v" € V'. This gives us: < vp,v >= 1 and < v}, v >= (f,v) = 0 for any
f € H. Therefore, v = 0 and we get a contradiction. The latter allows us
to identify V' with the closure of 7(H) in V’. But we can go further and
identify duality relation between V and V' with the scalar product (-, -) on
H. Very often, we call such an identification of V’ the space dual to V
relative to the Hilbert space H.

So, under our standing assumptions, v" € V/ means that there exists a
sequence sequence f,, € H such that

sup{[(fx = fu,v)| : |lvllv =1} =0
as k,n — oo and (v/,v) is just notation for klim (fx,v) that exists for all
c— 00

v € V. Moreover,
[v'[lv: = sup{|(v/,v)[ = [lo]ly = 1}.

If a domain  is such that the space Zi, () is continuously imbedded
into the space L2(f2), all standing assumptions with the particular choice
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of spaces V = Z,l_, (Q) and H = Ly(2) hold. In this case, we shall denote by
° ’
L-1(Q) an identification of the space (L,{,(Q)) according to the aforesaid

”
scheme and the main assumption of Theorem 4.7 can be replaced with the
following one:

Vp € L1 Q).

1.5 Spaces of Solenoidal Vector Fields

First, let us introduce the set of all smooth divergence free vector fields
compactly supported in :

Ceo(Q) :={v € Cg°(Q) : dive =0inQ}.
Next, for 1 < r < oo, we define the following “energy” spaces
THE) = [CFH(@)]
and

Jl(Q) ={ve z}(ﬂ) : dive =0inQ}.

s
In general,

JHQ) 2 JHQ).

T

For r = 2, we use abbreviations:
V@) =73, V(@) =T
Here, it is an example of a domain in R?
Q, =R*\ {z = (0,22, 23), 23 + 23 > 1},
for which
V(Q)\ V() #0.

This example is due to J. Heywood.
There is a wide class of domains for which the above spaces coincide.
For example, we have

Theorem 5.8. Let 1 < m < oo and let Q be R", or R}, or a bounded
domain with Lipschitz boundary. Then

Th(Q) = JL(9).

PROOF See next section.
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1.6 Linear Functionals Vanishing on Divergence Free
Vector Fields

Proposition 6.9. Let Q = R" or R} or be a bounded Lipschitz domain.
Assume that 1 < s < oco. Let, further, [ : 2; (Q) = R be a linear functional
having the following properties:
[(v)] < ellVolls0
for any v € E; (Q) and
l(v)=0

for any v e JL().
Then there exists a function p € Ly(Q), ' = s/(s — 1), such that

l(v) = /pdiv vdx

Q
for any v € 21(9)

PRrOOF Let us consider case {2 = R™ or RY}.

We define a linear functional G : Ls(Q2) — R as follows. Given ¢ €
Ly(9), take any u € L1(Q) such that divu = ¢ and let G(q) = {(u). By
Proposition 3.5, there is at least one function u with this property. Next,

one should show that functional G is well-defined, i.e., for any v € E; ()
with dive = ¢, we have I(u) = [(v). Indeed, u —v € J1(Q) and by our
assumptions [(u —v) = 0 = I(u) — I(v).

It is not a difficult exercise to verify that G is a linear functional.

Now, we can select a special vector-valued function u € L1(Q), for which
we have the identity divu = ¢ and the estimate

IVulls.o < cllglls,o-
The latter implies
G(q) = l(u) < c||Vulls.a < cllglls,o

for any g € Ls(£2). So, the functional G is bounded on L4(Q2) and by Riesz
theorem, there exists p € Ly (2) such that

G(q) = / pqdz

Q
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for any g € Ls(2). Now, for each u € E; (©2), we have the identity

l(u) = G(divu) = /pdiv udz.
Q

For bounded Lipschitz domains, one should replace the space L,(f2)
with its subspace

Ly(©) = {g € Ls(Q) : [gla =0}
and use the same arguments as above. [

However, we can assume that our functional vanish on .J1() only.

Theorem 6.10. Let @ = R" or R} or be a bounded Lipschitz domain.

Assume that 1 < s < oo. Let, further, [ : Z;(Q) — R be a linear functional
having the following properties:

li(0)] < el Vvlls.0
for any v € zi(Q) and
l(v)=0

for any v € 3;(9)
Then there exists a function p € Ly (), s’ = s/(s — 1), such that

l(v) = /pdivvdaz

Q
for any v € 2}(9)

PrROOF We start with bounded domains. Let us consider a sequence of

bounded smooth domains €2,,, m = 1,2, ..., with the following properties:
Qm C Qm-‘,—l
and
o0
0= U Q.-
m=1

(o)
Given v € L1(Q), define v™ = v in Q,, and v™ = 0 outside Q,,.

Obviously, v™ € E; (). We also define a linear functional [, : z; (Qm) = R
as follows:
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for any v € Z; (Q). Tt is bounded and, moreover,
i (V)] < || V|50,

with a constant ¢ independent of m.

Using standard properties of mollification, one can show the following
fact: if v € J(Q,,), then v € ji(Q) This immediately implies that
Lm(v) = 0 for any v € J1(Q,). According to Proposition 6.9, there exists
Dm € Ls/(Q,) such that

In(v) = /pmdivvdx
O

for any v € zi (). Obviously, p,, is defined up to an arbitrary constant.
Moreover, pm41 — Pm = ¢(m) = constant in Q,,. So, we can change pp,+1
adding a constant to achieve the identity p,,+1 = pp in €, that makes it
possible to introduce a function p € Ly 10c(£2) so that p = p,, on Qp,. By
construction, it satisfies identity

l(v) = /pdivvdac7 (1.6.1)
Q
and the inequality

l(v) < e[ Volls0
for every v € C§°(Q2) and, as it follows from Theorem 4.7, p € Ly (2). If

so, identity (1.6.1) can be extended to all functions v € E; (©) by density
arguments.

Let us consider the case 0 = R’}. The case = R3 can be treated in
the same and even easier. Our arguments are similar to previous ones. Let

Qm = Q+ e,~. To show that v € J1(y,) implies v™ € 3i(Q), we find
a sequence v*) € C§°(Q,,) such that ||[Vo® — Vs, — 0ask — oc.
Let suppv®) Bi(ent, Ry) = By(Ry) + en= for some R, > 0. By

scaling arguments, we can find a function w®) € z; (By(enil, Ry)) with
the following properties:
divw® = divo®

in By(e,=, Ry) and

va(k) ||s7B+(en%,Rk) < ClldiV’U(k) ||S,B+(en#,Rk)'

One should emphasize that a constant in the above inequality is indepen-
dent of k.
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We let further u® = v®) — w®*) 5o that u® € zi(B+(en%,Rk)),

divu®™ =0 in Q, and
[Vu®Im — Tu™([5.0 < |VoRI™ — Vo™ ||g 0 + [ Vw®™ |20 — 0
as k — oo. Obviously,
(™), € C5H(9Q)
for fixed k and sufficiently small p > 0 and
V(u®m), = (Vu®m), —» vum

in Ly(Q2) as 0 — 0. So, the required implication has been proven.

By Proposition 6.9, there exists p,, € Ly (). Obviously, pmi1 = pm

in Q,,. So, we may define a function p so that p = p,, in Q,,. Next, we
have

Im(v) = /pmdivvdx < C||Vvlls,a..
Q""L
for any v € C§°(§2y,) and thus

< Vpm,v >< Cf|Vulsq,,
for any v € C§° (). From Theorem 4.7 it follows that
Iplls.0,, < cC

for any natural number m. This certainly implies that p € Ly (Q). O
PROOF OF THEOREM 5.8 Indeed, assume that there exists v, € J1(£2)

but v, ¢ }i(Q) By Banach theorem, there exists a functional
° /
Loe (Bo)
with the following properties:
L(ve) =1
and
L(v)=0
for any v € j;(ﬂ) By Theorem 6.10, there exists p € Ly () such that
l(v) = /pdiv vdx
Q
for all v € z;(Q) However,
Le(vy) = /pdivv*d;v =0
Q

since v, € JL(€). This is a contradiction. [J
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1.7 Helmholtz-Weyl Decomposition

Let
J(©) = (G5 @)] =
and
G(Q) :={v € La(4R™) : v = Vp for some distribution p}.

Remark 1.5. We know that if a distribution p € G(Q), then in general
P € L21oc(2). However, if Q is a bounded Lipschitz domain, then in fact
p e LQ(Q)

Theorem 7.11. (Ladyzhenskaya) For any domain ) € R™,
Ly () :== J(Q) & G(Q).
PRrROOF Obviously, our statement is equivalent to the following identity
() = (J(Q)*.
STEP 1 Let € be a bounded Lipschitz domain. It is easy to see that
G(Q) € (T(Q)*,
since

/U -Vpdr =0
Q
for any p € G(2) and for any v € C§%(92). Now, assume

o

ue (J(Q)*,

/Uovdx:()

Q

ie., u € Ly(R) and

for any v € C§%(€2). By Poincaré inequality,

l(v)z/umdmﬁ (/|u|2)é</|v|2)é <

< c(Q)lu

2,0/ Vv[l2,0
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for any v € L3(Q). So, [ : L3(Q) = WL(Q) — R is bounded and I(v) = 0
for any v € j%(ﬂ) = V(Q).
By Theorem 6.10, there exists p € Lo(€)) such that
l(v) = /pdiv vdx
9)
for any v € Z% (©). Therefore, u = Vp and thus p € G(€2) and
(J()*" € G(Q).

STEP 2 We proceed in a similar way as in the proof of Theorem 6.10.
Consider a sequence of domains {2; with the properties: Q; C €;4; and

=],
j=1
where (), is a bounded Lipschitz domain.
Since v € La(Q) = v € L2(;), we can state that, for any j,
v=u +vp),
where
uD e J(Qy), PV e Wy(Qy).
We know that p() is defined up to a constant, which can be fixed by the

/p(j)dx =0,

B,

condition

where B, is a fixed ball belonging to 2.
Here, we are going to make use of the following version of Poincaré’s
inequality

/|q\2dx < c(n,Q,B*){/Wqux—i-’/quﬂ (1.7.1)
Q Q B.

that holds in a bounded Lipschitz domain Q containing the ball B,. A
proof of (1.7.1) is based on standard compactness arguments and can be
regarded as a good exercise.

We further let @) = «) in Q; and @) = 0 outside Q;. It is easy to

check that @) € j(Q) and

1G9z, = 4P ]l20; < vllz0, < V)20
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and, hence, without loss of generality, we may assume that
in Ly(©2) and
u € J(Q).
Next, by (1.7.1), we have for j > s

[ 9P < c(s) [1959 P < e(s)ol 0
Qs s

Letting s = 1, we find a subsequence {j}}72, so that
in Ly(€4). Then we let s = 2 and select a subsequence {j7}2°; of {41},
such that
.2 -2
p(]k) N D2, VP(Jk) N va
in Ly(€Qs). Obviously, po = p1 in €. Proceeding in the same way, we find
a subsequence {j}}72, of {ji '}, such that
-l )
p(]k) — pr, Vp(ﬂk) N Vpl
in La(€;). For the same reason, p; = p;—1 in ;1. Hence, the function p,
defined
P =D
in €y, is well-defined. Using the celebrated diagonal Cantor process, we
find a subsequence pUs) such that

in Ly(w) for each w € Q. Moreover, we have the estimate

/|Vp|2dx§ /|v|2da?
w Q

for any w € Q. So, it is easy to deduce from here that p € G(Q).
Now, fix w € C§°(£2). We have

/v~wdx: /Vp(js) -wd:c—l—/u(js)-wdx.

Js Js Js

For sufficiently large so, suppw C €, and thus for s > sg

/v~wd:r:: /Vp(js)-wdx—i- / ue) . wdz.

Jsq Jsg Jsq
Passing s — oo, we show that v = u + Vp. Orthogonality and uniqueness
can be proven in a standard way (exercise). O
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1.8 Comments

The main goal for writing up Chapter 1 is to show author’s preferences
how the theory of function spaces related to the Navier-Stokes equations
can be developed. In our approach, the basic things are estimates of certain
solutions to the equation divu = f and their applications to the derivation
of the Necas embedding theorem. Each part of this theory can be given in
either more compact way or even in a different way. For example, in Section
3, one could apply very nice Bogovskii’s approach, see [Bogovskii (1980)],
based on the theory of singular integrals. For more generic and detailed
investigation of spaces arising in the Navier-Stokes theory, we refer the
reader to monographs [Ladyzhenskaya (1970)], [Temam (2010)], and [Galdi
(2000)].
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Chapter 2

Linear Stationary Problem

2.1 Existence and Uniqueness of Weak Solutions

Let us consider the Dirichlet problem for the Stokes system
—Au+Vp=f
in €, (2.1.1)
dive =0
u|aQ =0 (2.1.2)

and if n = 3 and Q is unbounded then u(z) — ug as |z| — oco.
In what follows, we always consider the simplest case

uO:O.

Let
(f,9) 3=/f(:6)g(:s)d:s.
Q

If u and p are smooth, then, for any v € C5%(92), integration by parts
gives the following identity:

/(—Au—i- Vp) - vdx = /Vu : Vudz = (Vu, Vo) = (f,v),
e Q

which shows how weak solutions can be defined.
Let us list our standing assumptions: n = 2 or 3 and

f e L)

For example, the above condition holds if f = divF with F' € Lo(Q; M™*"™),
where M"™*"™ is the space of real-valued n x n-matrices.

31
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Definition 2.1. A function u € V/(£2) is called a weak solution to boundary
value problem (2.1.1) and (2.1.2) if and only if

(Vu, Vo) =< f,v >

for any v € C5%(Q).

Remark 2.1. If the domain €2 is such that Poincaré inequality holds in it:
w20 < Vw2,

for any w € C§°(9), then the space (L3(Q)) can be identified with the
space Ly ' (Q) and < f,v >= (f,v), see Section 4 of Chapter 1 for details.

Remark 2.2. Boundary conditions are understood in the sense of traces,
see the definition of spaces 2%(9) and V() in Sections 1 and 5 of Chapter
1. If © is unbounded and n = 3, then condition u(z) — 0 as |z| — oo holds
in the following sense:

(!|u|6dm’)% < C<Q/|Vu|2d:c)%.

Lemma 2.1. (Ezistence). Assume that the domain € is such that if v €

[o,%(ﬂ) and ||[Vv|l2,0 = 0, then v = 0. Given f, there exists at least one
weak solution to boundary value problem (2.1.1) and (2.1.2) that satisfies
the estimate

IVaullz.0 < | fll i) -

PROOF Indeed, [u,v] = (Vu, Vo) is a scalar product in V(€2). On the
other hand, /(v) =< f,v > defines the linear functional on C§%(£2) that is
bounded on V(Q):
)] < 1 aggeny el g

Now, the required existence is an easy consequence of the Banach extension
theorem and Riesz representation theorem. [

If the assumption of the lemma does not hold, one should work with
equivalence classes.

Lemma 2.2. (Uniqueness). Assume that Q) either R® or R? or bounded
domain in R™ with Lipschitz boundary. Then problem (2.1.1) and (2.1.2)
has a unique weak solution.
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PROOF As we know from Chapter 1, in this case,
V(Q) = V(). (2.1.3)
Assume that there are two different solutions u!' and u2. Then
(V(u' —u?), Vo) =0
for every v € G55 () and, by (2.1.3),
IV (! — u2) o0 = 0.
This immediately implies u! = 2. O
If n = 2 and © = R2, the uniqueness takes place in the equivalence
classes, i.e., u! —u? € [0]. The equivalence class [0] consists of functions
that are constant in R2.

To recover the pressure, let us assume that  satisfies conditions of
Theorem 6.10 of Chapter 1 and consider the following linear functional

l(v) = (Vu,Vo)— < f,o>.

It is bounded in zé(Q) and vanishes in V(). By Theorem 6.10 of Chapter
1, there exists a function p € Ly(Q) such that

(Vu,Vo)— < f,v >= (p,divo)

for any v € L3(Q). In other words, functions u and p satisfy the Stokes
system in the sense of distributions. [

2.2 Coercive Estimates

Proposition 2.1. Let Q be a domain with smooth boundary (Q = R™ or
R or bounded domain). Let functions
f € LZ(Q)a g€ W21(Q)7 u € V(Q)v pEe LZ(Q)7
with [gla = 0 if Q is bounded, satisfy the nonhomogeneous Stokes system
—Au+Vp=f
in €,

divu =g

in the sense of distributions.
Then V?u,Vp € La(Q) and the coercive estimate

[V2ull2.0 + [IVpllz.0 < ¢(n, Q) ([ Vgllz.o + || fll2.0)
holds.
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ProoOF To demonstrate the essence of the matter, we restrict ourselves to
the case Q = Ri.

STEP 1 Here, we are going to estimate tangential derivatives of u, i.e.,
derivatives with respect to 2, o = 1,2. Let h = (hy, h2,0) be a vector in
R3 and Ay f(x) == f(z +h) — f(x). We have

7&&}7"& + VAhp = Ahf

div Apu = Apg

with Apu € V(R3). According to Proposition 3.5 of Chapter 1, there exists
wy, € V(RY) such that divwy, = Apg and

[Vwnllzrs < cllAngllors

with a constant ¢ independent of h. Then the previous system can be
transformed to the following form:

—A(Ahu - ’LUh) + VARp = Anf 4+ Awy,
in Ri’_.
div (Apu —wp) =0

Let us denote Apu—wy, by v. We know that v € V(R3) and, therefore,
there exists a sequence v* € C§°(R3) such that ||V(vF — U)HZR?; — 0 as
k — oo.

Testing the above system with v*, we find

I, = (Vu, Vo) = (AL f,0%) = (Vwy, VoP).

Our aim is to estimate the first term of the right-hand side in the above
identity. Indeed, we have

(Anf, o) = _/f(a;—i—h)-Ahv(x)dx < |\f|\2,Ri(/|Ahu|2dx)§.
R3 R3

Since h - es = 0, it is not difficult to show that
(Anf,0") < [nl|If
Passing to the limit as & — oo, we find

||VU||2,1R§r < |h|||f||2,1R§r + ||th||2,1R1-

k
2,R1||Vv ”2,]1%3_'

So, we have

1 1

TVl < e[Ifll2zs + Wmhgugm].
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Tending h to zero, we find the bound for tangential derivatives of v
Hvu,a||2,R§r <cl,
where o = 1,2 and

I= ||f||2,R?;r + ||V9||2,R§r-

To estimate tangential derivatives of the pressure, we come back to the
system at the beginning of Step 1. The first equation there can be re-written
as follows:

VAR = ADpu + Anf

with A = (h1,h2,0). We know that there exists a function wy, € Eé(Ri)
such that divw, = App in R3 and
IVwnllgrs < cllAnpllors -

We also can find a sequence wf € C§°(R3) such that Vw} — Vw, in
Ly(R%) and

/Ahpdivwﬁda: = /V(Ahu)  Vwldr + / Anf - wyde.
R3 R3 R3

The last term on the right-hand side can be treated as above and, as a
result, we have

(Dnfowf) < Bl s |V oz

Applying Holder inequality, the above estimate, and passing to the limit as
k — oo, we show that

|Anplags < e(IVARUozs + hll lozs)

and, hence,

STEP 2 Let us start with evaluation of terms us 33 and p 3. usz33 can
be estimated simply with the help of the equation divu = uq,o +u3 3 = g.
This gives us u3,33 = g,3 — Uqa,30 and thus

Do ‘Q,Ri <cl.

||u3,33H27]R§r <cl.

As to the second term, the above estimate, the equation p 3 = f3 + Aus,
and bounds for tangential derivatives lead to the inequality

Ipsll2 s < cl.
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So, the full gradient of the pressure p obeys the estimate

IVpllozs < eI.
The remaining part of the second derivatives can be estimated with the
help of the equation w33 = —uq,88 + P,o — fo and previous bounds. So,

we have
I %ullp 5 < eI
and this completes the proof. [J

Remark 2.3. The Stokes system holds a.e. in ) provided assumptions of
Proposition 2.1 are satisfied.

In fact, we have more general statement, which is called Cattabriga-
Solonnikov estimates.

Theorem 2.2. Assume that all assumptions of Proposition 2.1 are fulfilled.
Let Q be a bounded domain with sufficiently smooth boundary. In addition,
assume that

FEWHR),  geWiH(Q)
with [gla = 0 and with integer k. Then

IV2ullws o) + I Vollws@) < cln,r, kb, Q)| fllwe @) + HVQHWT’V(Q)]

2.3 Local Regularity

Proposition 3.3. Assume that we are given functions

vE W21(B+)7 qE€ LQ(BJr), f € LQ(BJr), g€ W21(B+)7
satisfying the Stokes system

—-Av+Vg=Ff
in B4
dive =g
and the boundary condition
V|gg=0 = 0.
Then, for any T €]0,1],
V2v,Vq € Ly(By (7))

and the following estimate is valid:

IV20ll2,5, ) + IVall2, B () < e(7) {Ilfllz,B+ + llall2, 5, +

Hlgllwy s, + lellwy )] -
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PROOF Let a cut-off function ¢ € C§°(R?) possess the properties: 0 < ¢ <
1, ¢ = 1 in B(7), and ¢ = 0 outside B(1). Introducing new functions
u = v and p = pq, we can verify that they satisfy the following system:

—Au+Vp=f=qpf—2VuVy—vlp+qVp e Ly(RY)
in Rﬁ_.
divo =g =pg+v- Vo e Wi (RY)
By assumptions, u € i; (R3) and p € Lo(R3) and thus we are in a position
to apply Proposition 2.1, which reads that V?u, Vp € Ly(R?) and
IV2ullo s + 1VPllogy < c[IVllagy + 1l |-

Then all the statements of Proposition 3.3 follow. [

The statement below can be proven in the same way as Proposition 3.3.

Proposition 3.4. Assume that we are given functions
UEW%(B)v qGLZ(B)v fELZ(B)v gEW;(B),
satisfying
—Nv+Vg=f
in B.
divvo =g
Then, for any T €]0, 1],
V2v,Vq € Ly(B(1))

and the following estimate is valid:

IV*0ll2,5(r) + IVall2,5(r) < e(7) [Hsz,B + llallz.5+

Hlgllwz s + ol s

2.4 Further Local Regularity Results, n = 2,3

Proposition 4.5. Assume that a divergence free vector field v € Wy (B)
obeys the identity
/ Vv : Vwdz =0

B
for any w € C§%(B). Then

sup  |Vo(x)[? §c(n)/|V1}\2dm.
z€B(1/2) J
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PROOF As it has been explained, one can introduce the pressure ¢ € La(B)
with [¢]p = 0 such that

—Av+Vqg=0
in B
divo =0
in the sense of distributions and

lgllz, < c[|[Vo|l2,5. (2.4.1)

STEP 1 Let o = v — [v]p and fix 1/2 < 7y < 1. By previous results, see
Proposition 3.4,

/ (IV20[? + |Vg|?)da < c(ﬁ,n)[/|@|2dx+/|vv|2dx+/|q|2dx]
B(r1) B B B

According to Poincaré’s inequality

/|17|2da: < c(n>/\w|2dx
B B

and estimate (2.4.1), one can state that

/ (V20| + |Vq|?)dx < c(r1,n) / |Vv|?dx = cl.
B(m1) B
STEP 2 Now, obviously, functions v and g obey the system
—Avy + Vi =0
n B(Tl)
divoy, =0

in the sense of distributions. Repeating the previous arguments in two balls
B(7s) and B(m) with 1/2 < 75 < 71, we find

/ (V05 +Var|*)dz < c(r2,71,n) / (V20 +|Vgl*)da < e(r2, 71,n)1.

B(72) B(r1)

/

B(1/2) =

As a result,

l -1
DY |viq|2)dx < el ).
1 =1

Taking | = 3 and using Sobolev’s imbedding theorem, we show

sup  ([Vo(@)]? + |g(@)]*) <e(n)l. O
z€B(1/2)
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The proof of the following statement is slightly more complicated but
still can be made along similar lines.

Proposition 4.6. Assume that a divergence free vector field v € W4 (By.)
satisfies the boundary condition
U|933:0 =0
and the identity
/ Vv : Vwdr =0
By
for any w € C§4(By.). Then
sup  |Vo(z)|* < ¢(n) / |Vo|2dz.
2€B4(1/2)
B
PRrOOF First, we recover the pressure ¢ € Ly(B,) with [g]p, = 0 such that
—Av+Vqg=0
in B+
dive =0
in the sense of distributions with the estimate
lgllz.z, < el Vollz, - (24.2)
Fix 1/2 < 71 < 1. By Proposition 3.3, we have additional regularity so that
| 192eP +1¥aP s < clmm) [ [ + V0P + o]

B (m1) B+

Since v|y5—0 = 0, Poincaré type inequality ensures the bound:

and, by (2.4.2),

/ (|V20)* + |Vq|?)dz < c(mi,n) / |Voul2de = cI.
By (1) By
Tangential derivatives of v and ¢ satisfy the same equations and boundary
conditions:
—Avo+Vge=0
in By
divo, =0
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and
Uya|13:0 = 0
Assume that n = 3 (n = 2 is an exercise). We have for 1/2 < 75 < 7y
/ (IV*0.0]* + |Vq.al?)dz < c(r1,n) / |Vo|?de = cl.
By (72) By

It remains to evaluate v; 333 and ¢ 33. To this end, we are going to exploit
the incompressibility condition: vs 333 = —va,a33 € Lo(By(72)), which
gives us the bound

/ (V303 |2dx < c.
By (72)
To estimate v4,333, @ = 1,2, one can make use of the identity
q3i = Dvg
and conclude that
/ |Vq73|2dac <cl.
By (72)
Now, exploiting the equations —Awv, 3 + ¢,43 = 0 one more time, we find
V0,333 = —Va,383 + Gas € La(B1(72)).
The latter implies
/ |’l}a7333|2dl‘ S CI.
By (72)
So, the final estimate
/ (V20 + V20 + [ Vol* + [V2q[* + |Vq|? + |q]*)da < eI
By (72)

comes out and it implies

sup  |Vo(z)|* < e(n)l. O
2€B(1/2)
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2.5 Stokes Operator in Bounded Domains

In this section, we always assume that a bounded domain 2 € R™ has
smooth boundary, and n = 2 or 3.
By Ladyzhenskaya’s theorem, given f € L2(Q2), there exists a unique

f1€ 3(9) such that

f=f+Vq

with ¢ € W3 (Q). We let Pf := f1. The operator P : Ly(Q) — L2(Q) is
called the Leray projector.
It is worthy to notice that the Dirichlet problem

—Au+Vp=feLy(Q)

in Q,
divu =0
uloa =0
can be transformed into the equivalent one
—Au + Vpl = f1 S J(Q)
in €,
divu =0
U|BQ = 07

where fi = Pf and p; = p — ¢q. So, without loss of generality, we always

may assume that the right-hand side in the Stokes system belongs to :} ().
We know that

IV2ull20 + [ Vpll2.0 < el fll2.0.
We can also re-write the Dirichlet problem in the operator form
Au=f,
where
A=PA:J(Q) — J(Q)
is a unbounded operator with the domain of the definition
dom A = {u e W2(Q) : divu=0, uloe =01} = JLQ) N W2(Q).

It is called the Stokes operator.
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The Stokes operator A has the similar properties as the Laplace oper-
ator under the Dirichlet boundary conditions. Let us list these properties:

(i) the Stokes operator has a discrete spectrum

(o)

—Au=u, uweJ), u#0,
D<M << <\ <., A — 00,

(i) dim ker (—A — AI) is finite for each k € N,
(iii) the set {¢r}72, of eigenvectors (eigenfunctions) of the Stokes operator

is an orthogonal basis in 3(9) so that (¢r, ;) = dij,

(iv) the set {¢)}72, is an orthogonal system in 5% () as well as in dom A
so that A\, = [[Verll3 o = D¢kl

(v)if f € j])(Q), then || fl2q = Yoo, lek|? < oo, where ¢, = (f,¢k), and
the series Y po | crr convérges to f in Lo (Q),

if f € JA(Q), then [V f[Zq = 35, x| < oo and series Y5°, cron
converges to f in W3 (Q),

if f € dom A, then ||Af||§ﬂ =312, lekl? A2 < oo and series > po ; crpk
converges to f in W3(Q).

The proof of all above statements is based on the Hilbert-Schmidt the-
orem and the compactness of the embedding of W (Q) into L2(9).

Let us describe extension of A to 3%(9) We know that
A Q) NWE(Q) = J(Q)
is a bijection. Given u € j%(ﬂ) N WZ(Q), we have
(—Au,v) = (—Au+ Vp,v) = (—Au,v) = (Vu, Vo)

for any v € C§5(2). From the latter identity, we immediately derive the
following estimate

A o < ==
1Bl 5y 0 < IVl = 1wl

@)
Here, we use the identification of the dual space (3 3(9))’ described in Sec-

tion 4 of Chapter 1 with V = j%(Q) and H = j(Q) and in what follows
we are not going to introduce any special notation for this particular iden-

tification. Since the space 5% (Q) N WZ(Q) is dense in 5% (), there exists
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a unique extension of the Stokes operator A (denoted again by A) from
J3(Q) NWZ(Q) to j% (©2). Moreover, we have the following statement:

Proposition 5.7. (i) The extension A : 3%(9) — (35(9))’ is a bijection.

(i) If f € (j%(Q))’, then

2 2
o - )\ ,
171253 ;fk/ i
where fr = (f, ¢r).

PROOF OF PROPOSITION 5.7 Obviously, A : 3%(9) — E(;;(Q)) is a
bijection. Our aim is to show that

A(T5(9)) = (JH®)- (2.5.1)

—~

Lemma 2.3.o
(i) for f € (J%(Q))', we have

2 S fR A
171255y < ;fk/ ’
(i) if
S fR Ak < o0,
k=1
then the series > o fupr converges to f in (35(9))’, fe A(j%(ﬂ)), and

oo

I1£11% =D filM
k=1

(J3()

PROOF Fix an arbitrary function a € :}% (©)), then

N
aN = E AP — a
k=1

N
(f,a) = Jim (f,a") = A;gnm;fkak <
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(T ) (Zan) < (Sam) Iveko
k=1 k=1 k=1

The latter certainly implies (i).
(ii) First, let us show that the series Y ;- | frpr converges in (:}%
Indeed, let fy = Zgzl frer and then, by (i),

N
2 2
- A — 0
U = oy < 30 S
as M, N — 0.
We denote by f € (3%(9))’ the sum of our series. Then, by (i),
2 2
Ak — 0
17 = 025, o < kzzwfk/ .
and thus
||fN|| Q))/ ||f||(3%(ﬂ))/

Now, the goal is to prove that f € A(;% (€2)). Indeed, we have

N N
=) fron = A(ka@k/)‘k) = Aup,

k=1 k=1
where

N
unN = Z fk%@k/)\k S J%(Q) N W22<Q)
k=1
By direct calculations,
N

IVun = Vunl3 o= > fi/A —0.
k=M+1

Then, by definition of the extension of &,
AUN — Au =f.
Next, we have

N
i, = Bunl?e, = IIVunlzao =Y fi/M = If1%

Jl Q))/ Jl Q))’ i Jl(Q

Lemma 2.4.

A(T3OQ) = {f € (JHQ ka/xmoo}f

k=1
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PROOF According to Lemma 2.3 (ii), we have
U C AJ5(9)).
Now, assume that f C A(J%(Q))7 ie., f = Au for some u € J3(9).
Then we have

fr = (fron) = (D, o) = (u, A or) = Aus.
Since

oo
IVul30="> uire < oo,
k=1
we find

> f k< o
k=1
So, f € U and thus U € A(J3(Q)). O

Now, we proceed with the proof of Proposition 5.7. We are done, if the
implication
FeQ) = D fi/M <oo

k=1
is shown. To this end, we let

N
ar = fi/M,  a =) arps.
k=1
Then
N N
IVa¥[30 =Y lacl*IVerllsa =D fi/Aw
k=1 k=1
So, we have
N
Ny _ 2
(f,a™) = ;fk/xk <1/l s,

which implie;

N

|Val

N
29 = 171 5y (D2 F2/2) 7

(@) —

(J3(Q))

for any natural number N . This completes the proof of Proposition 5.7. [0

N
DS < NI
k=1

2.6 Comments

Chapter 2 contains standard results on linear stationary Stokes system
including the notion of Stokes operator in smooth bounded domains. In
addition, various global and local interior and boundary regularity results
are discussed.
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Chapter 3

Non-Linear Stationary Problem

3.1 Existence of Weak Solutions

Consider the Dirichlet boundary value problem for the classical stationary
Navier-Stokes system

—vAu+u-Vu+Vp=f
in Q, (3.1.1)
divu =0
u|aQ =0 (3.1.2)

and if n = 3 and Q is unbounded then u(z) — 0 as |z| — oo. Here, v is a
positive parameter called viscosity. We always assume that

fe (L)
Definition 3.1. A function u € V(Q) is called a weak solution to boundary
value problem (3.1.1) and (3.1.2) if
v(Vu, Vo) = (u®u, Vo)+ < f,v >
for any v € C&%(Q).
For n = 2 or 3, the imbedding theorems ensure that
U € Ly 10c(€2).

So, the first term on the right-hand side in the identity of Definition 3.1 is
well-defined.
If domain €2 is bounded and has Lipschitz boundary, then

u e L4(Q)

Proposition 1.1. Let © be a bounded Lipschitz domain. Then boundary
value problem (3.1.1) and (3.1.2) has at least one weak solution.

47
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PROOF Let us reduce our boundary value problem to a fixed point problem
and try to apply the celebrated Leray-Schauder principle.

Theorem 1.2. (Leray-Schauder principle) Let X be a separable Banach
space, B : X — X be a continuous operator. Assume that the operator B
has the following additional properties:
(i) B is a compact operator, i.e., it maps bounded sets of X into pre-
compact sets of X. In other words, B is a completely continuous operator;
(1) all possible solutions to the equation

u = AB(u)

satisfy the inequality ||ul|x < R with R independent of A € [0,1].
Then operator B has at least one fized point u, i.e., u = B(u).

We define, as usual, [u,v] := (Vu, Vv) a scalar product on V(Q) that
coincides with V() under assumptions of the proposition. It is not difficult
to show that, for any w € V (),

divw @ w € Ly 1(Q).
As it has been pointed out in Chapter 2, Section 1, for bounded domains, we
can identify the space (L3(Q))" with the space L *(Q) and replace < -,- >
with (-, ).

According to statements of Chapter 2, given w € V(Q), there exists a
unique u € V() such that

Y(Vu, Vo) = (w ® w, Vo) + (£, )
for any v € V(Q). By Riesz representation theorem, we can define an
operator A : V(2) — V() so that
[A(w),v] := (w @ w, Vv)

and

[F,v] == (f,v).
So, the previous identity can be re-written in the operator form
1
u = ;(A(w) + F).

Then, the existence of weak solutions is equivalent to the existence of fixed
point of the above operator equation.

First, let us show that A is a completely continuous operator. To this
end, we take an arbitrary weakly converging sequence such that

w®
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in V(). Then, the compactness of the imbedding of V' (2) into L4 () gives
us:

w® @uw® - wew
in Ly(€2). From the main identity, it follows that
vu® —u™ y) = (w® @ w® — ™ @ w™ V) =0

for any v € V(Q). It remains to insert v = u®) — u(™) into the above
relation and make use of the fact that

[w® @ w® —w™ @ w™|yq -0

as k,m — oo. So, complete continuity of A has been proven.
Now, we need to get estimates of all possible solutions to the equation

vuy = AA(uy) + F,
depending on a parameter A € [0,1]. Since (ux ® uyx, Vuy) = 0, we have
V[ua, ua] = (ux @ ux, Vua) + (f,ux) < [1fll o) IVualze

and thus

1
IVurllze < S1fllp; 1)

The right-hand side of the above inequality is independent of A and thus
the existence of at least one fixed point follows from the Leray-Schauder
principle. [

Regarding the uniqueness of weak solutions, we have the following state-
ment.

Lemma 3.1. Assume that all assumptions of Proposition 1.1 hold. Let in
addition

2

g(n, Q)
— Il e <1
where co(n,§2) is a constant in the inequality

[vllae < co(n, Q) Voll2.0 (3.1.3)

for any v € z% (Q).
Then, our boundary value problem (3.1.1) and (3.1.2) has a unique weak
solution.



50 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

PRrROOF Let u! and u? be two different solutions to boundary value problem
(3.1.1), (3.1.2). Then, we have

viu' —u? vt —u? = (ur @ ut — P @u? Vut —u?)) =
= (u'® (u' —u?), V(' —u?) + ((u' —u?) @ u?, V(u' —u?)) =

= (' ® @ —u?),V(u' —u?) < |lu! V(! —u?)

lut — u?

|4,Q 4,0 2,Q-

Applying inequality (3.1.3) twice and taking into account the last esti-
mate in the proof of Proposition 1.1 for u!, i.e.,

1
||VU1||2,Q < ;Hf”L;l(Q)v
we find

v[V(! = )3 q < GlIVull3 ol Ve —u?)]3 g <

2
€ 1 2412
< V(! — )l fllz 0

This, by a contradiction, implies the statement of the lemma. [J

Proposition 1.3. Assume that unbounded domain Q is either R3 or R%,
n = 2,3. Then problem (3.1.1) and (3.1.2) has at least one weak solution
satisfying the estimate

1
|Vull2,0 < ;”f”(L;(Q))"

PROOF Let R > 1. Consider problem (3.1.1), (3.1.2) in Qg := B(R) N .
By Proposition 1.1, there exists ur € V(Qg), satisfying the identity
v(Vug, Vv)a, = (ur ® ur, Vo)a, + (f,v)ax

for any v € C§%(Qgr). Extending ug by zero to the whole domain 2, we
notice that

||VuR

1 1
2.0 = [|[Vugl2,0, < ;||f||L;1(QR) < ;||f||(L;(Q))/~

The latter allows us to select a subsequence, still denoted by upr, with the
following properties:

VUR — Vu
in LQ(Q) and

UR — U
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in Ly 1oc(£2). For n = 3, this follows from Hélder inequality, boundedness
in Lg(Q2), and compactness of the imbedding of W4 (B(R)) into La(B(R))
for any fixed R > 1. If n = 2, we can use the inequality

[w]l2,rx]0,af < c(a)[Vwllgs

that is valid for any function w € C§°(R?%) and for all a > 1.
It remains to pass to the limits as R — oo in the identity for up and
show that
v(Vu, Vo) = (u®u, Vo)+ < f,v >

for any v € C§%(€2), which means that u is a required weak solution. [J
Now, the question is whether we can recover the pressure? We shall
consider two cases.
CASE 1 Here, we assume that {2 is a bounded domain with Lipschitz
boundary. Since, for v € C§° (),

l(v) = v(Vu,Vv) — (u @ u, Vo) — (f,v) <

< ClIVolza,

with a positive constant C' = C(v, [[Vull2,, [[ullae; [l ;1)) and I(v) =
0 for any v € C§5(£2), we can use the same arguments as before to recover
the pressure. According to them, there exists p € Lo(£2) such that

v(Vu, Vo) = (u @ u, Vo) + (f,v) + (p, div o)

for any v € Cg°(Q2).
CASE 2 Here, we can use a similar procedure, described in Section 1,
where

Q = U Qm, Qm, C Qrn+17
m=1
and €, is a bounded Lipschitz domain. Since u € Ly 10c(€2) implies u €
L4(Qy,), one can state that there exists p,, € La(€y,) such that
v(Vu, Vov) = (u @ u, Vo)+ < f,v > +(pm, divo)

for any v € C3°(y,). Moreover, we can fix p,, so that p,, = pmy1 in
Q. So, now, if we introduce a function p, letting p = p,, in Q,,, then
D € L2 10c(€2) and the following identity is valid:

v(Vu, Vo) = (u @ u, Vo)+ < f,v > +(p, div o)
for any v € C§°(Q).
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3.2 Regularity of Weak Solutions

We need the following auxiliary statement.

Lemma 3.2. Let a non-decreasing function ® :)0, Rg] — Ry satisfy the
following condition:

() < C<(%>m+e>¢(R) + CR? (3.2.1)

for any 0 < o < R < Ry, for some positive constants c,C e > 0, and for
somem > s > 0.

There exist positive numbers eg = eo(m, s,c¢) and ¢1 = ¢1(m, s,¢) such
that if € < €p, then

P(0) <1 {(i) + CQS} (3.2.2)
Ro
for any 0 < o < Ry.
PRrROOF Let p=7TR, 0 <7 < 1,9 =7". So, if € < ¢, then
®(rR) < 27" ®(R) + CR® = 2e7°% 7% ®(R) + CR® <
m+s

<772 ®R)+CR".

m—s

If we select €¢ so that 2c7 2 < 1, then, after iterations, we have

m+s m+s

®(r*Ry) < TH¥F B(Ro) + CT°RY(1+ 7% + ..+ 7% (1) <

1

1—772

< 77 (Ry) + OT° R}

Given 0 < ¢ < Ry, we find an integer number & such that
RoTk-H <p< Rork.
Then
2(0) < 87" Ro) < (2 2) e(ro) + 0(8) —Hm. D

T/ 1 -1
We are going to prove the following local estimates for weak solutions
to the non-linear stationary Navier-Stokes system.

Lemma 3.3. Let a divergence free vector-valued function u € W4 (B(R))
and a tensor-valued function F € L.(B(R)), with r > n = 3, satisfy the
identity
/ Vu : Vodr = / u®@u: Vodr + / F : Vudx
B(R) B(R) B(R)
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for any v € C§G(B(R)).

Then,
/|Vu|2dx§c((%)3+R( / |u|6da:)%) / |Vu|?dz+
B(e) B(R) B(R)
+eRYD( / |F|de)%
B(R)

for 0 < o < R. Here, c is a universal positive constant.

Lemma 3.4. Let a divergence free vector-valued function u € W3 (B4 (R)),
with u|zg—0 = 0, and a tensor-valued function F € L.(B1(R)), with r >
n = 3, satisfy the identity

/Vu:Vvdx: / u®u: Vodx + / F : Vvdx

B4 (R) B4 (R) B4 (R)
for any v € C§% (B4 (R)).
Then,
3 1
27 < e 6 3 / 2
/ |Vul|*dx _c<<R> +R( / [ul dm) ) |Vu|*dz+

B (o) B4+ (R) Bi(R)
2
+cR3(17%)< / IFlrdx)’

By (R)

for 0 < o < R. Here, c is a universal positive constant.

PROOF OF LEMMA 3.3 We know that divu ® u € Ly '(B(R)). Hence,
there exist

ir € J3(B(R),  pr € L2(B(R)),
with [ﬁR]B(R)) = 0, so that
—vAUr+ Vpr = —divu ®u — div F
in B(R). (3.2.3)
diV ’lNI,R == 0
Multiplying the first equation in (3.2.3) by 4 and integrating the product
by parts, we find
/ |Vig|?de = / (u®@u—[u®ulgp): Virds + / F :apdx
B(R) B(R) B(R)
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and, therefore, after application of the Cauchy-Schwartz inequality, we get
/ \Vig|?de < 2( / @ u— [u® g de + / \F\?dx).
B(R) B(R) B(R)

Next, we treat the first term on the right-hand side of the latter relation
with the help of Gagliardo-Nirenberg inequality and, then, with the help of
Holder inequality. As a result, we have

/\u@u—[u@u]B(R)FdeC( / |V(u®u)\%dm)§§

B(R)
6 6 \3 i g
B(R) B(R) B(R)
<o [ ra)'r [ vopa.
B(R) B(R)

where c is a universal constant.
Let ugr = u — ugr. This function satisfies the identity
/ Vug : Vode =0
B(R)

for any v € C§%(B(R)). By the results of Chapter 2, see Section 2, we have
the following estimate

/ \Vug|? dx<c / \Vug|dz,

B(e) B(R)

which, in turn, implies another one:

/ |Vul?de < c / |Vul?dz + c / |Viig|2d.

B(R)
At first, we apply our earlier estimates for
/ |V11R|2d$
B(R)

and, then, Holder’s inequality for the term, containing F', in order to get
the estimate of Lemma 3.3.
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Lemma 3.5. (Ch.-B. Morrey) Let u € W\, (Q) satisfy the condition

/ |vu|mdx S Kgn—m-Hna
B(o)

for some 0 < a < 1 and for any B(xg,0) C Q C R™ such that 0 < ¢ < oo
with two positive constants K and og.

Then u € C (), i.e., u € C*() for any subdomain Q; € Q.

Here, C*(w) is a Holder space with the norm |[u[|ce @) = ||ullc@) + [U]a.z,
where
[u]aw := sup {M PXyEW, T y}
|z -yl

Lemma 3.6. Assume that all assumptions of Lemma 3.3 hold with R = a.
Then

u e CL-7 (B(a)).

loc

PROOF We remind that the case n = 3 is considered only. Fix Q; € B(a)
and find Q2 such that ; € Q € B(a). By shift, we have, for any B(zo, R) C
B(a), the following estimate

d (2, 0) < c[((%f + RA)(ID(mO,R) + 033—2+2a},
with « =1 - 3/R,

1 2
(zo, R) = / Vul?dr, A= / )’ €= / Flrde)”
B(zo,R) B(a) B(a)

Now, we apply Lemma 3.2 with m =3, s =3 -2+ 2a =1+ 2a. If we let

L. . €0
Ry = 5 min {dlSt (0B(a), ), Z},
then B(zg, R) C B(a) for any zp € Q and AR < g as long as 0 < R < Ry.
Hence,

®(20,0) <1 [(%()3*%2&

for any z¢ € Q and for any 0 < p < Ry. So, we have

<I>(ac0,R) + CQ372+2a}

|VU|2dﬁr S KQ3_2+2a
B(zo,0)

for any 0 < ¢ < Ro, where K' = K(r, [[ullwz(B(a))> | F'll+,B(a), Fo) provided
B(zg,0) C Q. O
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Lemma 3.7. Assume that all assumptions of Lemma 3.4 hold with R = a.
Then

we Co(By (b))
for any 0 < b < a witha=1-3/r.

PROOF We have two types of estimates. The first one is so-called “interior”.
For any by €]b, a[, the following estimate is valid:

®(z0,0) < Ko' ™2 (3.2.4)

for xg € B+(b1)7 T30 > %(a—bl), and 0 < p < Ry = %min{a— by, ,Qo} with
00 = €o/A. Here, K depends on r, Ry, |\uHW21(B+(a)), and || F'[|, B, (a)-
The second estimate is “boundary” one:

@, (zg,0) := / |Vu|?de < Ky o't (3.2.5)
B4 (zo,0)

for zo = (2{,0), |zh] < 3(a —b1), 0 < 0 < Ry, and K depends on the
same arguments as K.

Now, let us denote by @ extension of u to the whole ball B(a) by zero
and let

B (0, 0) = / Vi[2da
B(xo,0)

with 0 < o < Ry and zg € B(by).

Consider two cases: x50 > 1(a — b1) and 239 < 1(a — by). In the first
case, we may use our “interior” estimate (3.2.4) and the definition of @. As

a result, we arrive at the inequality

O (z9, 0) < Ko'+2. (3.2.6)

In the second case, we first assume that xz3p > 0 and if 39 > p, we still
have estimate (3.2.6). Now, suppose that xzo < o. Then, by (3.2.5), we
have

(z0,0) = / |Vul|?dz < / |Vu|?de <

B(z0,0)NB (a) B ((z(,0),0+x30)

< K+(Q + x30)1+2a < 21+2aK+Ql+2oc.
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Now, assume that 239 < 0. If |x30] > o, then, obviously, i)(mo, 0) = 0.
So, let us suppose that —x39 < p. Here,

P (20, 0) = / [Vul|*dz < / \Vul|?dx <
B(wo,0)N B+ (a) B ((2{,0).0)
S K+Ql+2a'

So, the statement of the lemma follows from Morrey’s condition on Hélder
continuity, see Lemma 3.5. [

Proposition 2.4. Let u € W} (B(2a)) be a divergence free function and
satisfy the identity

/ (Vu:Vo—u®u: Vu)de = / f-vdx
B(2a) B(2a)
for any v € C§%(B(2a)). If f is of class C* in B(2a), then u is of class
C* in B(a).

PROOF It is not difficult to check that there exists a tensor-valued function
F of class C'* such that f = —div F'. Then, the identity from the statement
of the proposition can be re-written in the following way

/ Vu : Vudr = / u®u: Vo + / F : Vvdx

B(2a) B(2a) B(2a)
for any v € G54 (B(2a)). From Lemma 3.6, it follows that u belongs, at
least, to C(B(3a/2)). Using the same arguments as in Section 1, we can
recover a pressure p € Lo(B(2a)) (exercise) so that

—Au+Vp=—divG := —div(u @ u+ F)

in B(2a).
dive =0

Since div G € Lo(B(3a/2)), we can apply results of Chapter II on properties
of solutions to the Stokes system and find

V2u € Ly(B(a1)) = Vu € Lg(B(a1)), Vp € La(B(ar))

for any a < a; < %a.
Next, we know that, for k = 1,2,3, functions u € Wj(B(a;1)) and
Dk € La(B(ay)) satisfy the system
—Au,k +Vpy = —div G,k
in B(ay).
divu i =0
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Since V2G € Ly(B(ay)), we can use the linear theory one more time and
get:

VSU S LQ(B(CLQ)) = V2u € LG(B(CLQ)), V2p S LQ(B(CLQ))

for any a < as < ay.
Then, for k,s = 1,2,3, functions ugs € W3 (B(a1)) and prs €
Lo(B(aq)) satisfy the system

_Au,ks + vp,ks = —div G,ks
in B(as),
divu s =0

with V3G € La(B(az)). The similar arguments allow us to deduce that
Viu € Ly(B(as)) = V3u € Lg(B(as)), V3p e Ly(B(as))

for any a < a3z < az. Proceeding, further, in the same way, we complete
the proof of the lemma. [J

Proposition 2.5. Let u € W3 (B(2a)) be a divergence free function and
satisfy the conditions: u|za—0 = 0 and

/ (Vu:Vv—u®u: Vo)de = / fvdx
By (2a) B (2a)
for any v € C§H(B4(2a)). If f is of class C* in B(2a) N{x3 > 0}, then u
is of class C*° in B(a) N {x3 > 0}.

PROOF We start with our proof in a way similar to the proof of the previous
proposition, i.e., we find F of class C* in B(2a) N {x3 > 0} so that f =
—div F'. Then, we recover the pressure p € La(B4(2a)), which gives us:

—Au+Vp=—divG :=—div(uu+ F)
in B+(2a),
dive =0
u|1.3:0 =0.
By Lemma 3.7, u € C(B4(3a/2)) and, by the linear theory,
V2u € Ly(By(a1)) = Vu € Lg(By(a1)), Vp€ La(By(ay))

3
for any a < a1 < 3a.
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Next, for a« = 1,2 and for £ = 1,2,3, we have functions u ) €
W3 (B4 (a1)) and p € La(By(a1)) satisfying the system

—Auy+ Vpy=—divG
in By (aq)
divuy =0

and the boundary condition

U o|zz=0 = 0,

where V2G € La(Bi(a1)). Then, again, we apply the linear theory and
conclude that

V2u 4 € La(Bi(a2)) Vp.a € La(Bi(a2))
for any a < as < a;. We need to establish the same properties for V2u73
and Vp 3. To achieve this goal, it is sufficient to evaluate uy 333 and p 33
for £ = 1,2,3, which is, in fact, not so difficult. Indeed, denoting g;; :=
—Gyj, 5k, we first use the incompressibility condition:
3,333 = —Uq,a33 € La(B4(az)).
For other derivatives, we use the equations:
P33 = 933 + u3 kks € La(By(az))
and
Ua,333 = —Ga3 + D,a3 — Ua,p83 € La(By(a2)).
So, we can state
V3u € Ly(By (a2)) = V?u € Lg(By(az)), V?p € La(By (az)).
Next, for a, 8 = 1,2 and for k,j = 1,2, 3, we have functions
urj € Wy (By(az))  puj € La(Bi(az))
satisfying the conditions

—Au,kj + VpJf]‘ = —div G)kj
in B+(a2),
divug; =0

u7045|l'3:0 =0,

where V3G € La(By(az)). Here, we are going to proceed as in the case of
the third derivatives. We let

hijk = *Gim,mjk-
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From the linear theory, one can deduce that
V*uap € La(Bi(as)),  Vp,ap € La(By(az))
for a < az < as. We start again with the incompressibility condition:
u3,3330 = —Ug B30 € La(By(a3)).

So,
V3u3.0 € La(By(a3)).
Then,
P.33a = h3za + U3 jj3 € La(Bi(as))
and thus
V?p.a € La(B(a3)).
Next,

UB,3330 = —UB,yv3a T D,B3a — Rgas € L2(B4(a3)).
So, we have
V3u,a € LQ(B+(CL3)).
Now, let us go back to the incompressibility condition:
U3 3333 = —Ug g333 = V'ug € La(By(as)).

For the pressure, we have

p.333 = hass + Auzzs = V°p € Ly(By (as)).
Finally,

Ua,3333 = —Ua 5533 + D033 — Paszs = Vius € La(By(az)).

Proceeding in a similar further, we complete the proof of the proposition.
O

Theorem 2.6. Let Q) be R"™, or R}, or a bounded with smooth boundary.
Letu € V(Q) be a weak solution to the stationary Navier-Stokes equations,
see Definition 3.1. Assume that the right hand side in these equations is of
class C™ in the closure of the domain 2. Then w is also of class C*° in
the closure of the domain €.

ProOF For {2 = R™ or R?}, the statement follows from Propositions 2.4 and
2.5. 0

3.3 Comments

Chapter 3 contains standard results on the existence and regularity of solu-
tions to the non-linear stationary boundary value problem. The main point
of the chapter is the local regularity technique, which differs a bit from the
technique developed for standard elliptic systems.



Chapter 4

Linear Non-Stationary Problem

4.1 Derivative in Time

Let us recall some definitions from the theory of distributions. D(2) is
a vector space that consists of all elements, belonging to C§°(Q2), where
the convergence of a sequence of functions ¢ € C§(2) to a function
v € C§° () is understood in the following sense. There exists a compact
K C Q such that suppyk,supppy C K and V"¢ — V™ uniformly on
K for any m > 0. The space of all linear functionals on D(2), being
continuous with respect to the above convergence in D(f2), is denoted by
D'(2). Elements of D’(Q) are called distributions.

We may consider the space D'(a,b; D'(Q2)). Given T € D'(a,b; D'(2)),
let us denote by 0;T or even by %T the following distribution

(@:T () (x) = =T(#)(9:x)

for any ¢ € D(2) and for any x € D(a,b).

It is a too general definition for our purposes and we are going to use
somewhat more specific. Let V' be a Banach space, V* be its dual space
with duality relation < v*,v >.

Definition 4.1. Let v* € Ly j0c(a,b; V*) (t — v*(-,t) € V* is measurable
and ¢ — |[v* (-, t)||v+ is in L1 10c(a, b)). We call u* € D'(a,b; V*) derivative
of v* in t if and only if

b
<utu > (x) = —/ <0 (), 0() > Dx()dt

a

for any v € V and for any x € C§°(a,b). We let u* = 0pv*.

61
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As usual, the left-hand side of the above identity is written in the same way
as the right-hand side, i.e.,

b

b
/ <Ot (-, t),v(-) > x(t)dt = —/ < v (-, t),v(-) > x(t)dt

a

for any v € V and for any x € C§°(a,b), although the left-hand side might
make no sense as Lebesgue’s integral.

Let us discuss the relationship between introduced notion of the deriva-
tive in time and the Sobolev derivatives. Assume that

V,V* € L110c(Q), CP(Q)CV, <v'v>= /v*vd:c,
Q
V" € L1 10c(a,b; L1 10c()) = L110c(2%]a, b]), (4.1.1)
O* € L1 10c(2X]a, b]).

Then 0yv* is a usual Sobolev derivative of v* in the domain Qx]a,b[. To
understand why, we are going to use the following simple statement.

Lemma 4.1. Given € > 0 and ¢ € C§°(Q2x]a, b]), there exist positive inte-
ger number N and functions ¢, € C§°(R2), xx € C§°(a,b), k =1,2,..,N
such that

N

lle =~ erxkllor @xgan) <&
k=1

Let us assume that Lemma 4.1 has been proved. Suppose that 0;v* is the
derivative in the sense of Definition 4.1 and satisfies assumptions (4.1.1).
Our aim is to show that it is Sobolev’s derivative as well. Take an arbitrary
e > 0 and an arbitrary function ¢ € C§°(Q2x]a,b[) and fix them. Clearly,
© € C§° (Y x]a’, b|) for some ' € Q and for some a < o’ and b’ < b. Let a
natural number N(e) and functions ¢ and xj be from Lemma 4.1 in the
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domain 'x]a’,b'[. Then we have

‘7/0*(w,t)8t¢(z,t)dxdt7/8tu*(x,t)¢(x,t)dzdt‘ <

a a Q
‘// x, t 8t<p x,t) — O Z(pk x)xk(t )dmdt‘+
a Q
N(e)
+‘//8tv xt oz, t) Z(pk ) xk(t )dwdt‘
o’ Q
N(e)
<cllp - Z @kaHcl(ﬁ’x[agb/]) (Hv*”Ll(Q’X]a’,b’[) + ||atv*||L1(Q'x]a',b'[))
k=1

S C‘g(”U*HLl(Q’X]a/,b’D + |\8tv*|\L1(Q/X]a,,b,D>.

Tending ¢ to zero, we get
b
//&v (z,t)p(x, t)dedt = // (x,t)0cp(x, t)dxdt (4.1.2)
a’ a’
for any ¢ € C§°(Q2x]a,b[). So, Ov* is Sobolev’s derivative as well.
Regarding the inverse statement, we argue as follows. Suppose that 0;v*
is Sobolev’s derivative, i.e., it satisfies identity (4.1.2) with v* and d;v* from
L1 10c(2x]a, b[). If we assume in addition that C§°(£2) is dense in V, then
Oyv* is a derivative of v* in the sense of Definition 4.1.
PrROOF OF LEMMA 4.1 We may extend ¢ by zero to the whole R™ x R
(@ C R™). Take a cube Cyx] — 1,I[ so that C;x] — [,1[D suppy. Here,
Cr={xeR": |z;| <l,i=1,2,..,n}. Then we can expand ¢ as the
Fourier series in spatial variable =

=30 > eme T,

k=0 |m|=k
where
1 zm
em(t) = 2" /go(x,t)e_”Tdac.
C

The Fourier series converges very well. So, after taking real and imaginary
parts, given € > 0, we find the number N (¢) such that

o = @nee)llere, x—iy) <&
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where @y (z,t) = > (‘i) wr(z)xr(t). Assume that there exist functions
wo € C°(Q ) Xo € C§°(]a, b]) with the following property

po(z)xo(t) =1 (4.1.3)
if (z,t) € suppy. We may let then

51\7(5) = ®n()PoXo

and show

lle — (I)N(a)Hcl(ﬁx[a,b]) = l(¢ - @N(e))SDOXOHCI(ﬁx[a,b]) < c(Q,a,b,l)e.
To justify (4.1.3), let us introduce the following sets

(suppp); = {z € Q: (x,t) €Esuppyp },

A={t€[a,b]: (suppy), # 0}

Let t; = mf t and t3 = supt. We claim that a < t; < t3 < b. Assume that
teA
to = b. Then7 by the definition, there exists a sequence (xy,tx) € supp ¢

with ¢ — b as k — oo. Selecting if necessary a subsequence, we have a
contradiction for the limit point (z,b) € supp ¢. Now, let us show that
K = Uy, <i<t, (supp ¢):

is a closed set of R%. Assume that z; € K and z;, — = as k — 0o. For each
k, one can find ), € [t1, t2] such that (xy,t;) € supp . We may assume that
ti — t € [t1,t2] and then, by the definition of the support, (z,t) € supp ¢.
So, x € K and thus K is closed. It remains to find an open set Q; € €
such that K C €. So, supp¢ C Q1 X [t1,t2]. The rest of the proof is easy.
Il

4.2 Explicit Solution

Consider a bounded domain 2 C R™ with smooth boundary and the fol-
lowing initial-boundary value problem

Ou—Au=f—-Vp and divu=0 in Qr=02x]0,T],
u=0 on 90N xI[0,T], (4.2.1)
u(z,0) =alz) x €.
Assume that

a€cJ (). (4.2.2)
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This problem can be written in the operator form
dru— Au = f € Ly(0,T; (J3(Q))),
uli=0 = a €.J (), (4.2.3)

see notation for the Stokes operator A and for the dual space in the last
section of Chapter 2.

Our task is to construct an explicit solution provided eigenvalues and
eigenfunctions of the Stokes operator A in the domain Q are known. So,
we are given:

~Ap =M\, in Q,
vr=0 on € (4.2.4)

where k=1, 2,....
First, let us expand functions f and a as Fourier series, using eigenfunc-
tions of the Stokes operator,

where

and
a(w) =) arpr(z),  ar = (a,0n).
k=1

By our assumptions,

La(0,T3(J3())) 1)\k

T 1
1712 / L fdt < o,
0

o0

lal3q=""a} < oc. (4.2.5)
We are looking for a solution to (4.2.3) of the form
t)=> cr(t)or(x). (4.2.6)
k=1

Assume that

(0) =ap, k=12, .. (4.2.7)
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Our further calculations are going to be formal. Later on, we will explain
in what sense the formal solution is a solution to problem (4.2.3). So, if we
insert (4.2.6) into (4.2.3), then the identity

D dion + Mk = Y frr

k=1 k=1
comes out, which holds if one lets
g (t) + Meer(t) = fr(t),
Ck(O) = ag, (4.2.8)

where k = 1,2, .... System (4.2.8) has a unique solution
t

ck(t) = e_)"“t(ak + /e)"“Tfk(T)dT). (4.2.9)
0

Let us analyze properties of the formal solution (4.2.6) and (4.2.9). We
have

¢
2
() < 2e Mt 4 2‘ /B_Ak(t_T)fk(T)dT’

t

SQ — 2\t 2+2/ —2XA (t— T)d’r/fk dr

< 2e~ 2t 2 /fk 6_2/\kt/f]?(7')d7'
k 0
So, finally,
t
() <2e g2 4 — " /flg(T)dT. (4.2.10)
0

Summing up the above inequalities, we establish the estimate

Oo o t
IOl = Yot <22 Sk 4 3 [ st
k=1 k=1""% 1
<2 Pl 12 oo (420)
which implies
ull . 0.7320) < 2llall3 + IIF1I2 (4.2.12)

La(0,T5(T5(2)))
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To get the second estimate, we multiply the first equation in (4.2.8) by
¢k (t) and apply Young’s inequality

ci(t)en(t) + Auci (t) = fk( Jer ()

1720
< A0+ o)
So,
(@0) + ek ) < 220

Integration in t gives us:

A T
Ck(T)-F)\k/ci(t)dt<ck(0)+/f;§it)dt
0 OT 2
= aj + / f’;ff) dt.
0

Then, after summation, we arrive at the second estimate

T o0
IVullZ,0.7:L0()) :/Z/\kci(t)dt
k=1

< lall3 + ||f||2L O (4.2.13)

Bounds (4.2.12) and (4.2.13) are called energy estimates.
The final estimate will be derived from (4.2.8) in the following way

T o0
9 AGE
el (O.T3(T5())’ /Z Ak
0

k=1
[ [,
B,
72/2 eAG dt+2/z )\k
0 k=1 0 k=1

< 2[|[Vul|%. o1 . .
<2\ Vullz,0,7:1000)) T ||f||L2(O’T;(J%(Q))/)
So, applying (4.2.13), we find the third estimate

2 < 2|lal|? + 4| F]|? 4.2.14
(|0 ||L2(OT(J2(Q))) lall3 ||f||L T ( )

Now, we wish to figure out in which sense (4.2.3) holds. Let us take an

arbitrary function w € L2(0,T; J3()) and expand it as a Fourier series

= di(t)pk(@)
k=1
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Obviously,
T o0
IVl 0 rizaion = [ YoM t)dt < oo
o k=1
Hence,
T T
//atu wdacdt:/Zc%(t)d;&t)dt7
0 Q 0 k=1

and, by (4.2.8),

T
//(8tu~w+Vu:Vw—f-w)dxdt:
0 Q

T oo
/Z )+ Akck(t) = filt) ) de(£)dt = 0.
o k=1

Taking w(z,t) = x(t)v(z) with v € 3%(9) and y € C}(0,T), we get that,
for a.a. t €]0, T, the identity

/ (atu(w,t) -v(x) + Vu(z,t) Vv(gc)> doe = /f(ac,t) cv(z)dx  (4.2.15)
Q

Q

holds for all v € j%(Q) To be more precise, (4.2.15) is fulfilled at all
Lebesgue’s points of the following functions t — dzu(-,t), t = Vu(-,t), and
t— f(-,t). Identity (4.2.15) is called the weak form of the first equation in
(4.2.3).

It remains to establish in what sense the initial data in (4.2.3) are sat-
isfied.



Linear Non-Stationary Problem 69

Lemma 4.2. Function t — u(-,t) € (}%(Q))’ can be modified on a zero-
measure subset of [0,T] so that, for each v € j%(ﬂ), the function

tr—>/u
Q

PROOF Since u € L2(0,T; (3%(9))’), a.a. points tg € [0,7] are Lebesgue’s
points of t — u(-,t) in the following sense
to+e

1
— 1) —u(-,t ° dt — 0
5 [ ) = o)l 5, e

is continuous on [0,T].

ase — 0.

Denote by S the set of al Lebesgue’s points of ¢ — u(-,t). We know
that |S| = T. Let to < t1 be two points from S. By the definition of the
derivative d;u,

/T/atu(x,t) cv(x)x(t)dzdt = // u(x,t) - v(x)Op x(t)dxdt
0O

for any v € 3% (Q) and for any y € C$(0,T). We can easily extend the latter

identity to functions y € I/f/%(o, T). Pick up a test function x = x. so that
Xe(t) =0if0<t<tp—corti+e<t<T,x:(t)=1iftg+e <t <t;—e¢,
Xe(t) =t —to+e)/(2e) ifto—e <t <to+e,and x.(t) = (t1 +ec—1)/(2¢)
ift1 —e <t <ty +e. Then, we have

T tite
//atu(x,t)~ x)Xe(t)dzdt = —// (x)dzdt
0 Q t1—e Q
to+e
// (x,t) - v(x)dzdt. (4.2.16)
tg € Q
Obviously,
to+e
‘%6 / /(u(x,t)—u(x,to)>-U(x)dmdt’
to—e Q

1
< — St) —u(-t dt
<o [ et = a5y 0 O, ) 0
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as € — 0. So, after taking the limit, we find

/u(x,t1)~v(x)dx:/u(x,to) (@ der//atu x,7) - v(x)dadr

Q Q to

for a.a. t; € [0,7]. Since the right-hand side of the above identity is a
continuous function with respect to t1, the left-hand side is continuous in
t1 as well. O
Now, coming back to our function u, we notice that u €
Loo(0,T; La(2)). Therefore, we can state that

t— / x,t) is continuous in t on [0, T

for each function v Gj (Q) and even for each function v € Ly(2). The
latter follows from the fact that, for any v € Lo(2), the Helmholtz-Weyl
decomposition holds in the Ladyzhenskaya form so that v = vy + Vp, where

v1 €7 () and p € WE(Q), and thus

/u(a:,t) ~o(x)dx = /u(aﬁ,t) - vy (z)dz,

Q Q

o
since u(-,t) €.J (Q).
Since u(-,0) = a(-) by construction of u, our initial data are satisfied at
least in the following sense

lim / (@, 1) - v(z)dz = / a(z) - v(w)da

t——+0
Q Q

for any v € La(Q).
However, in our particular case, we can gain even more.

Theorem 2.1. Assume that
we Ly(0,T; J5Q)),  dwu e La(0,T; (JAQ))).
Then u € C([0,T]; L2(R2)) and

t
1 1
[ [ o wdodt = St 010~ Sl )l (4.2.17)

t1 Q

for all t,t1 €0, 7).
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PROOF Indeed, for

we have

T
2 psaioy = | 30 A0
0

and

~

= 1
2 L2
0l v = | S5, ora
| &

In a view of Lemma 4.2, it is sufficient to show that the function ¢ —
lw(-, t)]|2,0 is continuous. We know that functions ¢ — dj(t) are continuous
n [0,7]. Therefore, the function ¢t — gn(t) = Z,ivzl d2(t) is continuous
on [0,T] as well. We know also that gn (t) — [Ju(-,1)[|3o as N — oo. So,
we need to show that the sequence gy (t) is uniformly bounded and the
convergence is uniform.
First, we show uniform boundedness. Indeed,

LN
gn(t) — gn(tr) =2 / > di(7)di(r)dr (4.2.18)
t k=1

for any t,t; € [0,T] and thus

g (t) < gn(t) +2 /Z (d (¢ )(/Zxkdk dt)

< gN(tl) + 2|Vl Ly0,1:20(2) Hat Ul o Sanyy

The above inequality can be integrated with respect to t;
T

1
an(®) < 7 [ ow(t)dt + 2Vl o rizacon 10l
0

La(0,T5(J5(9))")

= T)\ ”VU'HLz 0,T;L2(82)) + 2||VU||L2 0,T;L2(£2)) ||8t ||L (O,T;(E;(Q))')'
So, the uniform boundedness follows.

From (4.2.18), one can deduce uniform continuity. Indeed,

t
1
_ < . 2 : ° .
an(®) — gw(t2)] < 2( [ IV o) 0wl 1 54
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Hence, gn (t) converges to [|u(-,t)||3 o, uniformly, which means that the func-
tion ¢ +— ||u(-, )3 , is continuous on [0, 7.
Finally, (4.2.17) follows directly from (4.2.18) if N — +o0. O
Actually, an abstract analogue of Theorem 2.1 takes places:

Theorem 2.2. Let H be a Hilbert space, V be a reflexive Banach space,

and V is continuously imbedded into H. Let V contain a countable set S
which is dense in V and in H, i.e.,

Let V* be a dual space to V' with respect to scalar product in H with the
norm

[[0"]

v =sup{(v*,v)g : veV, |vly =1}

Assume that v € L,(0,T;V) N Ly(0,T; H) and v € Ly (0,T;V*) with

p'=p/(p—1) andp>1.
Then, v € C([0,T); H) and

lo(, B)llF = o )1 = 2/(5tv('77)7v('7T))HdT

for any t,t1 € [0,T].

PROOF We start with some general facts. Let t — wv(-,t), where v €
L,(0,T;V). It is supposed that v is extended by zero outside [0,T]. The
first fact is the integral continuity: for any € > 0, there is a number §(g) > 0
such that

T

/ (-t + R) —v(-t)|2dt < e

0

whenever |h| < 6(g). This property provides the following. Let

T
/ws (t = 7m)v(-, 7)dr,
0
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where w, is a standard mollifying kernel. We then have

ot = ot <
0
< [ o) = o0l e =
- / || / welt — T)(0(-,7) — v(- ) dr |t <

< / / we(t —7)[Jv(, 7) —v(-, )|} drdt =

— 00 —0O0

= [ [ wattliotta ) = ot )l ardt < 4

—0o0 — 00

provided & < 14(v). This means that v. — v in L,(0,T;V).
It can be shown (exercise) that

atv&('? t) = (atv)f('7 t)
provided 0 < ¢ <t <T —&. So, we can claim
Opve — Opv in Ly 10c(0,T5V7).

Further, we can use the same trick as in the case of star-shaped domains.
Without loss of generality, we may replace the interval |0, 7| with ] — 1, 1].
We take A > 1 and define

At =v(3), <A
and thus
1
8t’()>‘(.’t) = Xasv(.7 8)‘5:%'

Here, the crucial things are as follows:
[[v* — v, (-1,1v) + [[v* — V| pgy(=1,15) = 0
and
10" = Bevllr,, (—1,150+) = O
as A — 1. Moreover, for fixed A > 1,

[0 = (WMl —1,5v) + 10 = el y1,150) — 0
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and
18s0* = 35 (v™)ell L, (~1.15v+) — O

as € — 0. Summarizing these two properties, we may construct a sequence
v*) that is differentiable in t and satisfies:

1™ =0l 110 + I10® = 0lly (1,2 = 0
and
(|00 — vllr, (—1,5v-) =0

as k — oo.
Now, let u = v(®) — v("™) we have the identity

lu(, Ol = 2/ @Oeu(,7),ul 7)) mdr + Jul )13, (4.2.19)

t1

which implies the bound

1
sup Ju(-,t)[|7 < 5(2||5tu|\L,,/(71,1;V*) ullL,(-1,1,v) + ||U||%2(71,1;H))-

—1<t<1

In turn, the above inequality yields that the v(*) is a Cauchy sequence in
C([0,T); H) and thus v®) converges to v in C([0,T]; H). The identity of
Theorem 2.2 can be derived from (4.2.19) with u = v(*) and k — co. O

Theorem 2.3. Assume that a €.J (Q) and f € L2(0,T; (35((2))’) There

ezists @ unique function u called a weak solution to (4.2.1) such that:
w € Ly(0,T; J5(Q)),  dpu € La(0,T; (J5(Q))'); (4.2.20)
for a.a. t € [0,T],
/ [@u(x,t) -v(z) + Vu(z,t) : Vfu(x)} dx = /f(x,t) cv(z)dr  (4.2.21)
Q Q
for any v € 3%(9),
u(-,0) =a(") (4.2.22)

and (4.2.22) is fulfilled in the La-sense, i.e., ||u(-,t) —a(-)|]l2,a — 0 as
t — 40. Moreover,

u e C(0,T]; Lo(9)).
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Proor Existence has been already proven. It remains to show uniqueness.
Assume that u! is another solution satisfying (4.2.20)—(4.2.22). Then for
w = u — u' we have

/Btw x,t) - v(x)de + /Vw(w,t) : Vou(z)dz =0

for a.a. t € [0,7] and for any v € JQ(Q) and thus

/8tw x,t) - w(x, t)de +/|Vw(x,t)\2dm =0.

Integrating the latter identity with respect to ¢ in [0, to], we get, by Theorem
2.1,

lw(-,to)l3.0 < w(-0)[3q=0

for any to € [0,7]. O

4.3 Cauchy Problem

Here, we assume that 2 = R™ and consider the following initial value
problem

Ou—Au=f—Vp and divu=0 in Qr=R"x]0,T],
u(z,0) =a(z) ze€R" (4.3.1)
Assume that
a €J=J (R"). (4.3.2)
It is supposed also that
f € Ly(0, ;). (4.3.3)
In this case, the Cauchy problem can be reduced to the Cauchy problem
for the heat equation
Ou—Au=f in Qr,
u(z,0) =a(x) ze€R™ (4.3.4)
Indeed, assume that u is a solution to the Cauchy problem (4.3.4). Take
the divergence of equations in (4.3.4). Then we have
Oidivu — Adivu =0 in Qr,
divu(z,0) =0 z € R™
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By the unique solvability of the Cauchy problem for the heat equation, one
can state that divu = 0 in Q7. The pressure field is an arbitrary function
of t.

Solution to (4.3.4) can be given in an explicit form with the help of the
fundamental solution to the heat equation:

u(z,t) = | Tz —y,t)a(x)dx + D(x —y,t —7)f(y, 7)dydr,
where

T(a,t) = — e
(4mt)=
for x € R™ and ¢t > 0. This formula is a good source for understanding
properties of solutions to (4.3.1).

4.4 Pressure Field. Regularity
Let us go back to initial-boundary value problem (4.2.1) and its functional
formulation (4.2.2)
Opu — Au = f € Ly(0,T; (JA(Q)),
Uly=0 = a €J (). (4.4.1)

Assuming that our domain (2 is bounded and has sufficiently smooth bound-
ary, we have constructed a weak solution to (4.4.1) with the help of eigen-
functions ¢y, of the Stokes operator in 2, namely, in the form:

u(e, 1) = Y exl(t)pu().
k=1

For unknown coefficient ¢ (t), the following system of equations

() + Meer(t) = fr(t),
cr(0) = ay (4.4.2)

holds, where k = 1,2, ... and where

fr(t) = /f(x,t) ep(@)de = (f( 1), 06(), ar = (a, ).
Q

Now, we are going to assume additionally that

acJNQ),  feLs0,T;T (). (4.4.3)
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Then,
T oo
2 _ 2 _ 2
912, 5oy = 1B r = [ D (00t < .
o k=1
IVall3.q = Z \pai < oo. (4.4.4)
k=1

Next, let us multiply the first equation in (4.4.2) by ¢, sum up the
result from 1 to N, integrate the sum in time over the interval ]0,t[, and
find the identity

N t N
%Z)\kci(t)+/2|c;€(7)|2d7

which yields the bound
¢

N t N N N
Sondt)+ [ Y lenPar <Y wat+ [ Y sinr
k=1 0 k=1 k=1 0

2

k=1
< [Va

2.0 + ”f”%,QT‘

Passing to the limit as N — oo, we derive the following important estimate

t
IVul O30+ / 10su(-, 7|3 0dT < [IVal3 o + I f1I3.q. (4.4.5)
0

that is valid for any ¢ € [0, T7.
Now, our aim is to recover the pressure field. To this end, we proceed
as follows. Consider the linear functional

le(v) = /Q(Vu(x,t) : Vou(z) 4 Opu(z, t) - v(z) — f(x,t) -v(z))dx

for any 2% (). Tt obeys the estimate
()] < [[Vu(, D2l Vollze + (10u(, Dllz.a + 1 Dll2.0)llv

According to Poincare’s inequality, ||v]2.0 < ¢(©)||Vv]2.0. So, the func-
tional v — [;(v) is bounded for a.a. ¢ € [0,7] and a bound of its norm
is:

2,Q-

11l < () UIVul, 2.0 + 10l D20 + £ Dl20)- (4.4.6)
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Moreover, l;(v) = 0 for any v € 3% (). For bounded domains with Lipschitz
boundary, there exists a function ¢t — p(-,t) € L2(Q2), see Chapter I, such
that

W) = [ pladiveds, )20 < [l
Q
It follows from (4.4.6) that

IPll2or < c[IVullzan + 10ulzr + Ifllaee|-  (447)

So, we have

/Vu(x,t) : Vou(z)dx — /p(x,t)divv(x)dx

Q Q

= /f(sc,t) ~v(z)dr — /@u(w,t) -v(z)dx (4.4.8)
Q Q

for any v € i%(Q) and for a.a. t € [0,T].

For those t, i.e., for which (4.4.8) holds, we may apply the regularity
theory developed in the case of the linear stationary Stokes system. More
precisely, one can estimate higher derivatives in spatial variables:

IV2u(, )ll2,0 + VP B)ll2.0 < el B)ll2.0 + 18:ul- B)]20
and thus

IV2ull2,0, + VPll2,.00 < c(fll2.0r + 0ull2.0r)-

Combining the latter estimate with (4.4.5), we get the final bound:
|0cull2.0r + IV2ull2r + [IVPl2.0r < c(Ifll2@r + IVal20).  (4.4.9)
Now, let us show that Vu € C([0,T]; L2(£2)). To this end, we are going

to use Theorem 2.2, introducing H = :}% (Q) with scalar product (u,v)g =

(Vu, Vo) and V = jé(Q) N W2(Q) with the norm ||v]|y = ||Av||2.0. Now,

we are going to verify that V* = 3((2) is dual to V_with respect H.
Indeed, let I € V*. So, we have |l[(v)] < ¢|Av|z,q for any v € V.

Since A(V) = 3(9), one can define G(p) = I(v), where p = —Aw, for

any p € j(Q) Obviously, |G(p)| < |Ipll2,olll]l- Moreover, it is not difficult

to check that |G|| = ||I||. By the Riesz theorem, there exists a unique

vt e j(Q) such that

G(p) = /v* - pd,

Q
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[0*[l2,2 = [|I]| and
l(v) =— /v* - Avdz = /Vv* : Vodz.
Q Q

Now, every element v* of j () defines a linear functional on V by
formula

—/v* - Avdz = /vv* : Vodz < ||[v*||z.all Avllz.a < v*|l.allv]v.

Q Q

So, V* ~ j(Q), i.e., spaces are isometrically isomorphic. By Theorem 2.2,
Vu € C([0, T]; L2(2)).

Summarizing mentioned above, one can formulate the following result.

Theorem 4.4. Assume that the boundary of a bounded domain 2 is smooth
and conditions (4.4.3) holds. Then,
we Wyt(Qr),  peWy’(Qr),
with estimate (4.4.9). In addition, Vu € C([0,T]; L2(2)) and equations
Ou— Au = f — Vp, divu =0
are satisfied a.e. in Qr.

In fact, a more general statement is known about solutions to initial
boundary value problems for the Stokes system.

Theorem 4.5. Let 2 be a bounded domain with smooth boundary. Con-
sider the following initial boundary value problem

Ou—Au=f—-Vp and divu=0 in Qr=0x]0,T],

ﬁ /p(a:,t)dx = [p(-,t)]a =0, t € 10,77, (4.4.10)
Q

ulorr =0,
where 8'Qr is the parabolic boundary of Qr.
Let f € Ls (Qr) := L;i(0,T; Ls(Q?)) for some finite numbers s > 1 and
1> 1. Then problem (4.4.10) has a unique solution such that u € Wi}l(QT)
and p € WS1 ,lo (Qr), satisfying the following coercive estimate

”u”ijll(QT) + ||p||W_§1:l°(QT) <c s, Ln)llflle@n)-
Here, we have used the following notion:
W3 (@Qr) = {v € Li(0, T;W3(Qr)), 9w € Li(0,T; Ls()},

Wh(Qr) = {v € Li(0, T; WH(Q1))},
and
W2 Qr) = W2 (@r),  W!'(Qr) =Wi(Qr).
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4.5 Uniqueness Results

Lemma 4.3. Let v € L1(0,T; 3m(§2)) with m > 1 and Q be a bounded
domain in R™ with sufficiently smooth boundary. If 1 < m < 2, assume in
addition that n = 2 or 3. Suppose, further, that

/ v (Opw + Aw)dzdt =0
Qr
for w(z,t) = x(t)W(x) with an arbitrary function x € C*([0,T]) and an
arbitrary divergence free field W € C2?(Q) subject to the end condition
X(T) = 0 and to the boundary condition W = 0 on OS2, respectively.
Then v is identically zero in Qr. Here, Qp = Qx]0,T.

PROOF Take as a test function w = x(t)pr(x), where @ is the k-th eigen-
function of the Stokes operator. x(¢) is a smooth function, satisfying the
end condition x(7") = 0. Since 2 is a domain with smooth boundary, the
eigenfunction ¢y is a smooth function as well. Indeed, it follows from em-
bedding theorems, regularity theory for the Stokes system, and bootstrap
arguments. Then, we have

/ oz, 1) - O (Do () — x(O)Meoi(2))ddt = 0
Qr

and thus
T

/ () () = X(OA) = 0 (4.5.1)
0
for any x € C%([0,T]) with x(T) = 0, where

vg(t) = /v(x,t) i (z)dx.

Q
From (4.5.1), it follows that

Vg (t) + Aor(t) = 0
The latter immediately implies that v (t) = 0 for ¢ € [0, T].

Now, we wish to show that v(x,t) = 0 for any € Q and ¢ € [0,T].
Let us start with the simplest case m > 2. Obviously, for bounded

domains, 3m(Q) - 32(9) Hence, v(-,t) € 32(9) and

lo(, t)l13.0 =D vi(t) = 0.
k=1
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Let us consider now the case, in which
l<m<2. (4.5.2)
First, we shall show
/v(m,t) cu(x)dr =0 (4.5.3)
Q
for any u € C§%(2) and for a.a. ¢ € [0,T]. To this end, fix an arbitrary

test function u € CF%(Q2) and let
N

Sy = Z Ck Py

k=1

cr = / U - prd.
Q

We know that Sy — u in L2(2) as N — oco. But it is not sufficient to
justify (4.5.3) by taking the limit below

0= [ v(z,t) - Sy(x)dz — [ v(z,t) - u(x)de, N — oo,
/ /

where

for a.a. t € [0,T]. However, assuming additionally that n =2 or n = 3, we
will be able to show that sequence Sy is bounded in L, (2) and this will
imply (4.5.3) in the case 1 <m < 2.

Indeed, let us consider first n = 2. Then, by embedding theorems, we

have
1 1

(/|SN|m/dx)W < c(m,Q)(/|VSN|2dx)2
Q Q

N
< ¢(m,Q) ( Z )\kci) < ¢(m, Q)||Vu
k=1

N

2,0

So, required boundedness follows.
In the case n = 3, we have

1 1
(/|5N\m’dx)W gc(m,Q)(/(|sz|2+ |V25N|2)d;v)§.
Q Q
If we let —ASy = fn € La(R), then simply, by definition of the Stokes
operator, the partial sum SV solves the following boundary value problem
—ASN+VpN = fn,  divSy =0 in Q

SN|3Q =0.
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Now, we are again in a position to apply the regularity theory, developed
for the stationary Stokes system, that gives the estimate

V2SN ll2.0 + VPN 2,0 < ()] fn

2,Q-

So, we have
N N
IV2Snll2.0 < c(Q)IASK|2,0 < e(2) D Nici
k=1

< Q) Auflz0 < @)l Aullz0 < (Q)][VZulz20:

And thus boundedness of ||Sn||m/,o has been proven in the case n = 3 as
well.

Now, the aim is to show that v is identically zero in Qr. Fix t € [0,T]
and consider a linear functional

l(w) = /v~wd:c, w e z}n,(ﬂ)
Q

By Poincaré’s inequality, it is bounded in z}n,(Q) and, by (4.5.3), vanishes
on 371,1/(9), ie.,

l(w)=0 Ywe JL ().

As we know, every functional, possessing the above properties, can be pre-
sented in the form

l(w) = /pdiv wdz, Yw € zin/(Q)
Q
for some p € L,,(2). The latter means that v = —Vp.
Our next step is to show that p is a solution to the Neumann problem:
Ap =0in Q and dp/dv = 0 on O, where v is the unit outward normal to
the surface 02, in the following sense

/ Vp-Vadz =0, Vg Wr (Q). (4.5.4)
Q
Indeed, Vp = —v € jm(Q) Therefore, there exists a sequence w®) e

C5%(€) such that w*) — Vp in L, (). So,

/w(k) ~qum:0—>/Vp-qux:0
Q Q
for any ¢ € W, (Q).
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Now, our problem has been reduced to the following uniqueness ques-
tion: Let p e WL(Q), 1 <m <2, and

/vp Vgdz =0  VYqe W} (Q).
Q
Then p must be a constant in €.
Assume that f is a smooth function on 02 and satisfies compatibility

condition
/ f(s)ds = 0.
o0

Consider the classical Neumann problem: Ag =0 in © and 9¢q/dv = f
on 0f2. There exists a smooth solution to this problem. For it, we have

O:/Vp~qux:/p@ds:/pfds.
v
Q

a0 a0
Since f is a smooth function satisfying the compatibility condition only, we
can claim that

p=ca
on 02 for some constant c;.
We let further p; = p — ¢; and p; is a solution to the homogeneous
Dirichlet boundary problem: Ap; = 0 in Q and p; = 0 on 9. To show

that p; is in fact identically zero, we find for any ¢ € W2,(Q) with ¢ = 0
on 0f)

/Vp1 -Vqdx = — /plAqu.

Q Q
We may select a function ¢ in a special way so that Ag = |p;|™ signp; =
f € Ly () with ¢ = 0 on 0. It is well known that such a function exists
and belongs to W2,(€2). Hence,

Oz/Vpl-qux: —/\pl\mdaz
Q Q

and thus p is a constant in Q and v =0 in Q7. Lemma 4.3 is proved.
We have another uniqueness result.

Theorem 5.6. Let v € Ly(0, T} 3%(9)) with m > 1 and Q be a bounded
domain with sufficiently smooth boundary. Assume

/(v -Oww — Vv : Vw)dz =0 (4.5.5)
Qr
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for any w(z,t) = x(O)W (z), where x € C*([0,T]) such that x(T) = 0 and
W e C5u(9).

Then v is identically zero in Q.

PROOF By density arguments, (4.5.5), of course, holds for any W € !%n, (Q).
Take any function W € C?(Q) with W = 0 on 99 and div W = 0 in (.

We know that W € 37171/ (Q), see Chapter I, Theorem 4.3. So, v satisfies all
assumptions of Lemma 4.3 and therefore v = 0 in Q7.

The above proof works well under additional assumption on n if 1 <
m < 2. However, we can give an alternative proof that does not need
extra assumptions on the spatial dimension. We assume that (4.5.3) has
been already proved. Then we can take test function in (4.5.3) in the
following way W = V Aw with arbitrary function w € C§°(§2). This implies
V Awv(,t) =0 in Q. Taking into account the fact that v is divergence free,

we deduce that v(-,t) is a harmonic function in 2 belonging to j}n(Q) The
rest of the proof is more or less the same as the final part of the proof of
Lemma 4.3, see arguments providing p; = 0 there. Theorem 5.6 is proved.

4.6 Local Interior Regularity

In this section, we shall restrict ourselves to the 3D case just in order to
reduce a number of parameters. Although it is clear that the extension to
other dimensions is straightforward.

The problem of local interior regularity can be formulated as follows.
Consider the Stokes system in a canonical domain, say, in Q = Bx] —1,0]

Ou — Au=f —Vp, divu = 0. (4.6.1)

We always assume that functions v and p have some starting differentiabil-
ity properties. Keeping in mind the 3D non-stationary non-linear problem,
we supposed that

wEWLQ),  PE Linal@) (4.6.2)

for some finite m and n being greater than 1.

Assuming that some additional information about the right-hand side
f is given, we shall try to make some conclusions about smoothness of u
and p in smaller parabolic balls Q(r) = B(r)x] —r2,0].

It is known that, for stationary Stokes system as well as for the heat
equation, solutions are smooth locally as long as f is smooth. However, in
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the case of non-stationary Stokes system, we have smoothing in spatial vari-
ables but not in time. This can be seen easily from the following example,
in which f =0 and

u(x,t) = c(t)Vh(z), p(z,t) = = (t)h(z).

Here, h is a harmonic function in B and ¢ is a given function, defined on
[0, T]. This solution is infinitely differentiable inside B but, under assump-
tions (4.6.2), it is just Holder continuous in time. There is no smoothing in
time despite the smoothness of f.

In general, we have the following statement.

Proposition 6.7. Assume that w and p satisfy (4.6.1), conditions (4.6.2),
and let

[ € Lsn(Q) (4.6.3)

with s > m.
Then v € W2, (Q(1/2)) and p € W/2(Q(1/2)) and the estimate

10ctlls,n,001/72) + IVl s m.01/2) + VDllsin0a1/2)

< c([fllsin.@ + ullmm.g + IVUllmng + [Pllmn.Q) (4.6.4)
holds.

PROOF It is sufficient to prove this proposition for case s = m. General case
can be deduced from it by embedding theorems and bootstrap arguments.

Fix a non-negative cut-off function ¢ € C§°(Bx] — 1,1]) so that ¢ =1
in B(1/2)x] —(1/2)2,(1/2)?[. For any t €] — 1,0[, we determine a function
w(+,t) as a unique solution to the boundary value problem

Aw(-,t) — Vq(-,t) =0, divw(-,t) = v(-,t) - Voo, 1)
in B and
/q(m,t)dm =0, w(-,t) =0

B
on 0B. It satisfies the estimate

IV2w(, )ls,5 + la( )ls.5 + IVa(,t)s,5 <
<c|V(v(,t) - V(1) ls,5- (4.6.5)
Letting
V = pv —w, P =yp—q,
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F=opf +v0ip —2VoVp —vAp + pVp — Osw,

we observe that new functions V' and P are a unique solution to the fol-
lowing initial boundary value problem

oV — AV =F - VP, divV =0
in Q,
V=0
on &Q. The statement of Theorem 4.5 and the estimate there yield

1000|1500 /2) + 1V s .m.001/2) + [IVPllsn0(1/2) < ¢A + || 0w]s,n.0,
(4.6.6)
where
A= fllsnq+ Ivlsng + IVVllsn.q + Plsn.q-

So, our task is to evaluate the last term on the right-hand side of (4.6.6).
The main tool here is duality arguments developed by V. A. Solonnikov.

Introducing new notation u = d;w and r = dq, we can derive from the
equations for w and ¢

Au(-,t) — Vr(-,t) =0,
divu(-,t) = (-, t) - V(- t) +v(-,t) - V(- t) (4.6.7)
in B,

/r(w,t)dac =0, u(-,t) =0 (4.6.8)

on 0B.
Given g € Ly(B) with s’ = s/(s — 1), let us define a function @ as a
unique solution to the boundary value problem
Au—Vr=y, diva =0 (4.6.9)
in B

b

/?(x)dx =0, w@=0 (4.6.10)

on OB. Moreover, function 7 satisfies the estimate
17lls.8 + [IV7lls,B < cllglls,B- (4.6.11)
Now, from (4.6.7)—(4.6.11), it follows that
/u(z,t) ~g(x)dx = /u(:r,t) - (Au(x) — Vr(x))dz

B B
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= /?(z)div u(z, t)de = /?(z)(@tv(x,t)'Vgo(as,t)Jrv(x,t)~V8tg0(z,t))dx.
B B

The derivative ;v can be expressed from the Navier-Stokes equations. So,

we derive from the previous identity the following:

/u(:c,t) <g(z)dx = /?(z)(A v(z,t) — Vpa,t)+ f(z,t)) - Vo(z, t)de

B B

+/17(:17)v(:17,t) -V orp(z, t)de.
B
Integration by parts and estimate (4.6.11) imply

/M%ﬂﬂ@ﬂwﬁﬂﬂmMWhﬂkB+WWhﬂhB+M@ﬂ
B
and thus

|s,8)

|10sw]| s,m,0 < cA.

Proposition 6.7 is proved.

Keeping in mind the 3D non-stationary non-linear problem, one cannot
expect that the number n is big. In such cases, the following embedding
result can be useful.

Proposition 6.8. Assume that v € W2, (Q) with

2 3
l<n<2, p=2-=-2>0.
n S

Then
0(2) = v(2)| < e(m,n,s)(|x — 2’| + [t = ¢'|2 ) (]| s.n.0

+IVllsnq + ”v2v”s,n,Q + (100l s,n,0)
for all z = (z,t) € Q(1/2) and for all 2’ = (2',t') € Q(1/2). In other
words, v is Holder continuous with exponent p relative to parabolic metric
in the closure of Q(1/2).

Finally, using bootstrap arguments, we can prove the following statement
which in a good accordance with the aforesaid example.

Proposition 6.9. Assume that conditions (4.6.2) hold with 1 < n < 2 and
f=0. Let u and p be an arbitrary solution to system (4.6.1). Then for
any 0 < 7 < 1 and for any k = 0,1, ..., the function (z,t) — VFu(z,t) is
Hélder continuous with any exponent less than 2 —2/n in the closure of the
set Q(7) relative to the parabolic metric.
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4.7 Local Boundary Regularity
To describe the results of this section, we are going to exploit the following
notation:

x = (2, x3), ' = (21, 22),
Q. (r)=Cy(r)x] =% 0[CR* xR,  Cy(r) =b(r)x]0,r[c R?,

b(r)={2' €R?: |2/| <r}.
The complete analogue of Proposition 6.7 is as follows, see [Seregin
(2002)], [Seregin (2002)], and [Seregin (2009)].

Proposition 7.10. Assume that we are given three functions

uw€ Wpt(Q1(2),  p€Lna(Q4(2),  f € Lmn(Q4(2)
with m1 > m satisfying the system
Ou—Au=f—Vp, dive =10 in Q4(2),
and the homogeneous Dirichlet boundary condition
u(z’,0,t) = 0.
Then u e W', (Q4(1)) and p € W30 (Q4 (1)) with the estimate

mi,mn

10l L, iy + VUL, 0y FIVDIL,., L0i) <

<c(lullr,, .cor@) +IVullL,, .cor@) 1Pl Lm .0r@) + 1L, .0 @)-

If we assume f = 0 and 1 < n < 2, then, by an embedding the-
orem similar to Proposition 4.6.2, u is Holder continuous in the closure
of the space-time cylinder Q. (1). Holder continuity is defined with re-
spect to the parabolic metrics and the corresponding exponent does not
exceed 2 — 2/n. However, in general, the analogue of Proposition 6.9 is
not true in the boundary regularity theory, i.e., in general there is no fur-
ther smoothing even in spatial variables. Let us describe the corresponding
counter-example.

We are looking for non-trivial solutions to the following homogeneous
initial boundary value problem

O —Av=-Vgq, diveo =0 (4.7.1)
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in Ri x] — 4,0[ under the homogeneous Dirichlet boundary condition

v(@,0,t)=0 2 €R? —4<t<0, (4.7.2)
and under homogeneous initial data
v(x,—4) =0 z € RY. (4.7.3)

Here R% = {z = (2/,23) : x3 > 0}.
Taking an arbitrary function f(t), we seek a non-trivial solution to
(4.7.1)—(4.7.3) in the form of shear flow, say, along x;-axis:
U(I,t) = (’LU(Ig,t),0,0), Q(xvt) = 7.f(t)x1~
Here, a scalar function u solves the following initial boundary value problem

w(0,t) =0, (4.7.5)
w(y, —4) =0, (4.7.6)

where 0 < y < +00 and —4 < t < 0 and wy, = 0%w/dy>.
It is not so difficult to solve (4.7.4)—(4.7.6) explicitly:

t VAT +4)
w@ﬁ%zé%/j@fo4MT / e e, (4.7.7)
—4 0

Keeping in mind that our aim is to construct irregular but integrable solu-

tion, we choose the function f as follows
1

f@) = e 0<a<l/2 (4.7.8)
Then, direct calculations show us:
(i) w is a bounded smooth function in the strip |0, +00[x] — 4, 0[ satisfying
boundary and initial conditions;
(i) wy(y,t) > c(a)yl%za for y and t subject to the inequalities y? > —4t,
0<y<3,and —9/8 <t <0.
(iil) Let s, s1, I, and {1 be numbers greater than 1 and satisfy the condition
‘K:mw{%O—é)l—%}<a<%. (4.7.9)
Then
0 €W (Ce(3)x] = 9/4.0), g € Ley 1, (C1(3)x] —9/4,0]).
Assume we are given numbers 1 < m < +oco and 1 < n < 2. Letting
s =s1 =mand !l =13 = n and choosing « so that inequality (4.7.9)
holds. The functions v and ¢ constructed above for the chosen o meet all
the conditions of Proposition 7.10 with f = 0. However, Vv is unbounded
in any neighborhood of the space-time point z = (z,¢t) = 0. This is a
counter-example taken from [Seregin and Sverdk (2009)], which is an essen-
tial simplification of the corresponding counter-example in [Kang (2005)].
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4.8 Comments

Chapter 4 contains standard material about existence, uniqueness, and reg-
ularity of solutions to the non-stationary Stokes system. A bit unusual facts
for an introductory course are in the last three sections. In particular, fine
uniqueness theorems and local regularity issues are discussed in Sections
5-7. They are needed for the local regularity analysis in Chapter 6.



Chapter 5

Non-linear Non-Stationary Problem

5.1 Compactness Results for Non-Stationary Problems

Our standing assumptions are as follows. We are given a triple of Banach
spaces Vg, V, and Vi, having the following properties:

(i) Vo C V C V4, Vp is a reflexive space;

(ii) imbedding Vp C V is compact;

(iii) imbedding V' C V; is continuous;

(iv) v € Vp and ||v]|y, = 0 imply ||v||v = 0.
Lemma 5.1. Given n > 0, there exists C(n) > 0 such that

[ollv < mllvllve + C)llvliv, (5.1.1)

for any v e V.

PrOOF Usual compactness arguments work. Assume that the statement is
wrong. Then for any n € N there exists v,, € Vj such that

lvnllv > nllvallve + nlloallv,-
Then after normalization, we have
lonllv =1 >nllvllve + nllog v,

where v/, = v, /||vn|lv. The sequence v/, is bounded in a reflexive space,
and thus without loss of generality we may assume that

/
v,, — Vo
in Vy and thus

/
v,, — Vo

91
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in V and V;. Since n||v),||v, is bounded and therefore ||v) ||v, = 0 = |lvo||v;-
Hence, by assumption (iv), ||vo|ly = 0. However, 1 = ||v,||v — |lvo|ly. This
leads to contradiction. Lemma 5.1 is proved.

Proposition 1.1. (Aubin-Lions lemma) Let 1 < po,p1 < 0o, Vi is reflex-
we, and define

W = {lollw = lollz,0r) + 10l o) < o0}
Then W is compactly imbedded into L,,(0,T;V).

PROOF Suppose that sequence u?) is bounded in W. Then, without loss
of generality, we may assume that

ul@ sy

in L,,(0,T; V) and
Au) — du

in Ly, (0,T;V1). Setting v) = ) — u, we need to show that

09 50
in L,,(0,T;V). By Lemma 5.1, we have for arbitrary number 1 > 0

[0 )l < nlloD () v, + Clo@ ¢ )]lv,

and thus

0|2, 0.1y < v 1L, 0.15v0) + CODIVD L, 0,75v1)

<en+ CvP L, 0.1:v)-

So, it is enough to show

in L, (0,T; V7). To this end, we are going first to prove that
sup sup [0 (-, 8)|v, < oo. (5.1.3)
j 0<t<T

Indeed, if (5.1.3) would hold, then (5.1.2) would follow from
[0 (1)l — 0 (5.1.4)

for a.a. ¢ € [0,T] and Lebesgue’s theorem. So, our goal is to prove (5.1.3)
and (5.1.4).
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To prove (5.1.3), we exploit the following formula (it is a simple conse-
quence of the definition of the derivative in time)

e /atw) 7)dr + 09 (-, s) (5.1.5)

for any 0 < s,t < T, which implies
t
[vDCO)llve < 09 8) v +/H3tv(j)(ﬂ)\|v1d7

< ”U(j)(" 5)||V1 + TE Hatv(j) ||Lp1(07T§V1)'

The latter inequality can be integrated in s. As a result, we get (5.1.3).
Now, we wish to explain validity of (5.1.4). To this end, let us integrate
(5.1.5) in s over the interval J¢, s1[

S1 t 81

(s1 — )W (t) = /ds/@tv(j)(-,r)dr—|—/v(j)(-,s)ds.
t s t

After integration by parts in s in the first term of the right-hand side, we
find

v (1) = aD (1) + b9 (- 1),

where

S1

a9 (1) = L /U(j)(,75)d5

Sl—t
t

and

S1

[ = 50000, 5)is.

Now, take any € > 0 and fix it. Then

s1
A 1 N
Ol < ([ o = slhas)
t

b(j)(-,t) —

Sl—t

=

1
/||8tv(]) |p1ds) z <clsy —t|" <e
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for any j and for s; sufficiently closed to t.
Next, we wish to show that for each fixed s (for given t)

a9 (-, t)||y, — 0. (5.1.6)
To this end, we first notice that
a(j)(-,t) 0

in V3. Then, if we would show boundedness of a¥) in Vp, (5.1.6) would

follows from compactness of imbedding V4 into V.

We have
s1
. 1 .
a0 < g [ I s
|51 — ]
t
1 4 . 21
< st =t [0 1, 0ive) < cls —H%6
|51 —1] °

So, given s1, (5.1.6) holds and we may find N(s1,t) such that
laP (- )llv, < e

for any j > Ni(s1,t). This proves (5.1.4) and completes the proof of Propo-
sition 1.1.

5.2 Auxiliary Problem

Assume that € is a bounded domain with sufficiently smooth boundary and
that

ac J(Q) (5.2.1)
and
f € Lo(0,T; (J3(Q))). (5.2.2)
Proposition 2.2. Let Qr = Qx]0,T[ and
w € Loo(Qr), divw =0 in Qr. (5.2.3)
There exists a unique solution v to the initial boundary value problem
Ov—Av+divew+Veg=f, dive=0 in Qr,
vlaax(o,r] = 0, (5.2.4)

V|t=0 = a
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in the following sense:
v e C(0,T); La(R) N La(0, T3 JH(Q)), v € La(0,T; (J5());
for a.a. t € [0,T)

/(8tv(x,t) () + Vo(z,t) : Vo(x))dz
9)

_ /(U(m,t) ©w(z,t) : Vi) + f(2, 1) - 5(x))da (5.2.5)
Q

for all T € JH(Q);
[v(-t) — a(*)[l2,0 — 0 (5.2.6)
as t — 0.

PROOF We are going to apply the Leray-Schauder principle, see Theorem
1.2 of Chapter III. We let

X = Ly(0,T; J()).
Given u € X, define v = A(u) as a solution to the following problem:
v e C[0,T); La()) N La(0,T5 J3(R), 0w € La(0,T5 (JHQ))); (5.2.7)
for a.a. t € [0,T]

/ (Opo(x, 1) - T(x) + Vo(a,t) : Vile))da
Q

_ /f(x, 1) - 5(z)de (5.2.8)
Q

for all & € J3(Q);
[v(-t) —a()]2.0 =0 (5.2.9)

as t — +0. Here, }’v: f—divu®w.
Such a function v exists and is unique (for given u) according to Theorem
2.3 of Chapter 4 since

F € La(0,T; (J5(Q)).

So, operator A is well defined. Let us check that it satisfies all the assump-
tions of Theorem 1.2 of Chapter 3.
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Continuity: Let v* = A(u') and v* = A(u?). Then

/(ﬁt(vl —0?) -0+ V(v —v?): Vo)dz = /(u1 —u?) ®@w : Vodr
Q Q

and letting 7 = v! — v2, we find

1
Ol = v*[50 + [Vo! = Vo[ o < c(w)llu’ —u?[l2,0] Vo' = Vo*[l2.0

and thus

sup o' —v?[l2.0 < c(w)l|u’ —u?
0<t<T

2,Qr-

The latter implies continuity.
Compactness: As in the previous case, we use the energy estimate

2 2 2 2 2
su v + ||V < c(w)l||lu +c o + ||la .
0<£T [ ||2Q | ||29 (w)]] ||2,QT (||f||L2(07T;(J%(Q)),) lallg)

The second estimate comes from (5.2.8) and has the form

||0zev||2L2(0 5 S IVollgy, + clw)llull3 o, + ¢l 112

T5(T3(9) La(0,T5(73 ()"

Combining the above estimates, we observe that sets which are bounded in
X remain to be bounded in

W = {w € Lo(0,T; J5(R),  dpw € Lo(0,T; (JH(Q)))}.

By Proposition 1.1 for Vj = 3%(9), V= j(Q), and V; = (3%(9))’, such a
set is precompact.

Now, we wish to verify the second condition in Theorem 1.2 of Chapter
3. For v = AA(v), after integration by parts, we find that, for a.a. t € [0, 7],

/(3tv~17+Vv:V5)dx:)\/(f~5—(w~Vv)-5)dx

Q Q

o
for any v € J1(Q). If we insert ¥(-) = v(,t) into the latter relation, then
the identity

/(w-Vv)-vdz:(),
Q

ensures the following estimate:

1 2 2
30 [1oPdet [1VoPde <1515, 0 19
Q Q

2,0



Non-linear Non-Stationary Problem 97

and thus

<T t)[2dx < cT 2 + a2 ) = R2.
Ivlig, <7 sup L/"h’m Wdw <UL s+ NlE)

Now, all the statements of Proposition 2.2 follow from the Leray-Schauder
principle. Proposition 2.2 is proved. U
We need a slightly stronger statement.
Proposition 2.3. Assume that
w € Loo 2(Q1), divw =0 in Qr. (5.2.10)

Then all statements of Proposition 2.2 remain to be true.

PROOF Let
T

<h>:(t):= /VE(t — s)h(s)ds
0

be a standard mollification of a function h with respect t. By assumption
(5.2.10), the function < w >, (z,t) belongs to Lo (Qr). Thanks to Propo-
sition 2.2, for each fixed € > 0, there exists a unique function v = v® such
that

v* € C(0, T); Lo(Q)) N La(0,T; JH(Q)),  dv° € La(0, T (J3(Q))');
for a.a. t € [0,

/ (0pv°( v(z) + Vot (z,t) : Vo(x))dzx
Q

= /(vs(x,t)® <w >¢ (x,t) : Vo(z) + f(z,t) - v(z))de  (5.2.11)
Q
for all v € 3%((2),

[0°(,8) — al-)ll2, (5.2.12)

ast — +40.
Since div < w >.= 0, we can get the energy estimate

su v + [|[Vo© 2
sup [ 30+ 190 Bar < eI o)

2.0)-

Moreover, the derivative in time has the upper bound

£112 € £
19012 saiayy < IV Ir Fell ol <0 > [ g,
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+c| £|I? . :
HfHLZ(o,T;(J;(Q))/)

On the other hand, the second term on the right-hand side of the latter
inequality can be estimated with the help of properties of mollifications.
As a result, we have

[o°]] <w >e ll2,r < [[0°ll200,0r | <w >c lloc2,0r <

< v ]l2,00,@r W]l 00,2,Q1-

Hence, the derivative in time is uniformly bounded (with respect to €) in
the above norm. Thus, without loss of generality, we may assume that, as
e —0,

€

v — v
in L2(Qr),
Vv — Vo
in La(Qr),
Ov® — O

in Lo(0, T; (JA(2))). So, since
<w >.—w
in Lo(Qr) at least, we deduce that
VR <w>—~vQuw

in L1(Qr). Taking a test function v € 3%(9)) in (5.2.11), multiplying the
corresponding idenity by a test function x € C§°(0,T'), and integrating the
product in ¢, we can pass to the limit as ¢ — 0 and easily demonstrate that
the function v satisfies (5.2.5). To show that initial condition (5.2.6) holds,
let us notice that, for any ¢ € 3%(9),
t

/(va(ac,t) —a(z)) - p(z)dx = //atvg(ac, s) - o(x)dxds.

Q 0 Q
Since v°(-,t) — v(-,t) in Ly(Q) for a.a. t and since v € C([0,T], L2(Q)),
we conclude that the latter identity holds for the limit function v as well.
Proposition 2.3 is proven.

Let w, be a usual mollifier and let

(0)o(m,t) = /wg(x — 2" w(x', t)dz.

Q
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It is easy to check that div(v),(-,t) = 0if ¢t — v(:,t) € j(Q) (Exercise).
Now, we wish to show that there exists at least one function v¢ such
that:

02 € C([0,T); La(Q)) N La(0,T; JA(RQ)), 8 € Lo(0,T; (JLQ))):

(5.2.13)
for a.a. t € [0,T
/(5,51}9(:17,15) -v(z) + Vol(x,t) : Vo(z))de
)
= /(vg(:r,t) ® (v9)o(x,t) : Vo(x) + f(z,t) - V(z))dx (5.2.14)
Q
for all 7 € J1(9);
[0¢(-,t) —a(-)[20 = 0 (5.2.15)

as t — +0.
We note that (5.2.13)-(5.2.15) can be regarded as a weak form of the

following initial boundary value problem

0w — Av? + (v9), - Vo2 +Vg? = f, dive’ =0 in Qr,
UQ|QQ><[O7T] = 0, (5216)

0?0 = a.

Proposition 2.4. There exists at least one function v@ satisfying (5.2.13)-
(5.2.15). In addition, it satisfies the energy estimate

023, = Osup lve(, )13 0 + 1Veel3 on

<c(IfI? 20) (5.2.17)

2(0,T; Jl(Q)) )

with a constant c independent of o.
PRrROOF To simplify our notation, let us drop upper index ¢. The idea is the
same as in Proposition 2.2: to use the Leray-Schauder principle. The space

X is the same as in Proposition 2.2. But the operator A will be defined in
the different way: given u € X, we are looking for v = A(u) so that

v € O([0,T]; La(Q)) N L2 (0, T; JA(RQ)), 9w € La(0,T; (JE(Q))); (5.2.18)
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for a.a. t € [0,T
/ ow(z,t) - v(z) + Vo(z,t) : Vu(z))de
Q

/( (@) @ (u)y (@, ) : V(@) + fla,0) - F(@))dz (5.2.19)

for all v € J%(Q);

[v(-t) —a()]2.0 =0 (5.2.20)
as t — +0. By Proposition 2.3, such a function exists and is unique. We
need to check that all the assumptions of Theorem 1.2 of Chapter 3 hold

for our operator A.
Continuity: Do the same as in Proposition 2.2:

1
OV = vl50 + [V(* = v)l5q

= / (vz ® (u?), —v' ® (ul)g) V(v —v')dz
= [02 =)o ), 6 - i
Q

+/v ® (u? —ul), : V(v —o')dz.

The first integral in the right-hand side of the above identity is zero whereas
the second one I can be bounded as follows

I'<sup |(w? = ul)g(z, )]0t |20V (0? = 0|20
xTE
So, by Holder inequality, we have
Orllv® —ot|3 0 + |V (0? = 0')
and thus

5.0 <clo)

[0? =030, < clo) sup [[0'( )5 allu’® —ulll3 o,
0<t<T

The latter gives us continuity.
Compactness: Now, we wish to write down the energy estimate for v

1
300l + Vol = [ £ovde— [ve (@), : Voda

Q Q

:/f~vd:r. (5.2.21)

Q



Non-linear Non-Stationary Problem 101

As in the proof of the previous proposition, (5.2.21) implies the required
energy estimate

2 < 2 2,)=cS, 5.2.22
oBar <clfI? s *lalBa) =c (5.2.22)

where a constant ¢ is independent of p.
Now, we need to evaluate the derivative in time. We have

2 < | Vol|2 o + ¢ 2, +c/v2u 2dx
10015y < ATl + el 10

2
<clVellq+ellfI?, o, + el [ lulde) ol

Q
After integration in time, the following estimate comes out:
ovl? S+S/ quz 5.2.23
001 gy < 0(5+5 [ (522
T

Making use of similar arguments as in the proof of Proposition 2.2, we
conclude that for each fixed ¢ > 0 the operator A is compact.

Let us check the second condition of Theorem 1.2 of Chapter 3. The
same idea used to prove (5.2.21) and (5.2.22) gives us:

2 < e TSP 2.) <28 = R>.
[v]2.0, < c( HfHL O.Th@)) +[lallz,q) < 2¢

So, the existence is established.
The energy estimate can be proved along the lines of the proof of
(5.2.22). Proposition 2.4 is proved.

5.3 Weak Leray-Hopf Solutions

Now, we consider the full non-stationary Navier-Stokes system in a bounded
domain Q C R" (n=2,3):

ow—Av+divv®uv+Vg=f, dive=0 in Qr,
'U|aQ><[0,T} =0, (5.3.1)

V]i=0 = a.
We always assume that
feL0,T;V) (5.3.2)
and

acH, (5.3.3)
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where V = J3(Q) and H = J(€).

Definition 5.1. A function v is called a weak Leray-Hopf solution to initial
boundary value problem (5.3.1)-(5.3.3) if it has the following properties:
(i) v € Loo(0,T; H) N Lo(0,T5 V);
(ii) function t — [v(z,t) - w(x)dx is continuous on [0, 7] for each w €
Q

(iii) [(—v-Qw —v®v: Vw+ Vo : Vw — f-w)dz = 0 for any test
Q
function w belonging to C§%(Q7) = {w € C§°(Qr) : divw =0 in Qr};

(iv) [ |v(z,t) — a(z)|?*dz — 0 as t — +0;
Q

t t
V) & [|o(z, t)2dx + [ [|Vv|?dzdt’ < % [|a(z)]?dz+ [ [ f - vdzdt
) 00 ) 00
for all ¢t € [0, T7.

Theorem 3.5. Under assumptions (5.5.2) and (5.3.3), there exists at least
one weak Leray-Hopf solution to (5.3.1).

PROOF By Proposition 2.4, for any positive g, there exists a function v¢
such that
v e C([0,T); HYN L2(0,T;V), 8w € La(0,T;V'); (5.3.4)
for a.a. t € [0,T)
/(8tv9(:r,t) -v(z) + Vol(x,t) : Vo(z))de
Q
= /(vg(x,t) ® (v9)o(x,t) : Vo(x) + f(z,t) - v(z))dx (5.3.5)
Q
forallv e V;

[0¢(-,t) —a(-)20 = 0 (5.3.6)
as t — +0. Moreover, v? has uniformly bounded energy
[0e3.o, = sup [[0°(,1)[50 + V23, < A, (5.3.7)
0<t<T
where a constant A depends only on T', || f|| z,(0,7;v7), and [|a]|2,q.
Now, let us see what happens if ¢ — 0. To apply Proposition 1.1 of this

section on compactness, we need to estimate the derivative of v in t. To
this end, we are going to use the following imbedding theorem

J3(Q) c C' (@),
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which is true provided n = 2,3. Then from (5.3.5) it follows

/ D - Tz < ||V / [08]|(09) |dz + | VT
Q Q

|2,0[| V?|2,0

I f v IVollz.0
for any v € 3;’(9) and thus

10000 350y < ) (I l202 0 olla + 190712 + 1 £llv)
< (@) (I 0%ll20 + [V0%ll20 + £V ).
Therefore
191, 0 530y C(Q)(W'Q’QT””QHZQT + v + ||f||Lz(0,T;V'>)'

Since HUQ”Q,QT < T% |vg|2,QT7 we get

[0w®]] Ay, (5.3.8)

o <
L2(0,T5(J3()") —
where a positive constant A; depends only on T', || f|| £, 0,7;v7), and ||al[2,q.

Now, we can apply Proposition 1.1 with the following choice of spaces
V CHC(J5Q),

where the space (:}%(Q))’ is the space dual to 33(9) relative to H, and state
that after selecting a subsequence

v25e in Loo(0,T; H), (5.3.9)
v? = in Lo(0,T;V), (5.3.10)
v? = v in Ly(0,T; H). (5.3.11)

To see that
Dg:/|vg®(vg)g—v®v|dz—>0

Qr
as o — 0, let us argue as follows:

D, < / (02 — v) ® (v0)ldz + / v ® ((v9), — v)|dz
Qr Qr
< 102 = vll2.00 | (1) ll2.0r + / v ® (02 — v),|dz
Qr

4 / v ® ((v)g — 0)]dz < [0° — vll2.0. T [0]2.0r
Qr

1 1
T2 |vl2,@qr [0 = vllz.0r + T2 [0l2,0: (V) — vll2.0r
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where the right-hand side tends to zero as ¢ — 0 by (5.3.11) and (5.3.7).

Setting w(z) = w(x,t) in (5.3.5), with w € Cg%(Qr), integrating in ¢
by parts in (5.3.5), and passing to the limit, we deduce that v satisfies (iii)
of Definition 5.1. So, (i) and (iii) of Definition 5.1 have been verified.

Now, let us take and fix an arbitrary function v € J3(€) and consider
functions

tes F2(t) = / v0(2, 1) - 3(w)da.
Q

Now, our goal is to show that for every fixed v, the set of functions f2 is
precompact in C([0,T]). Indeed, it is uniformly bounded since

sup [f3()] < [v°l2,Qr[1Tll2,0 < c|v®l2..[[0]] 5, () < ATl

0<t<T J3(@) @)’

Its equicontinuity follows from (5.3.8):

|f5(t+ At) — / /(’)tv x,T) )dde‘

t+AL
< [ 100l 5y IO 55
t

J3()
< VIBHIOWAI o 1 ss e P50y < VA,

Now, let 7*) be a countable set that is dense in 3%(0) Applying the
diagonal Cantor procedure, we can select a subsequence such that

v2(xz,t) - W) (2)de — [ v(x,t) - 0P (2)dx
/ /

Q
in C([0,T]). By boundedness of

sup sup |[[v¢(:,1)]|2,0,
>0 0<t<T

one can show (by density arguments)

/vg(x,t) -v(z)dr — /v(x,t) -0(x)dx
Q

Q

in C([0,T]) for any v € 5%(9) and then for any v € 3(9)
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Now, a given w from the space Ly(€2) can be decomposed as w = u+Vp,

where u € 5(9) and thus

Q/vg(x,t) w(z)de = Q/vg(x,t) -u(z)dz

— /v(x,t) cu(x)de = /v(w,t) -w(z)dx (5.3.12)

Q

in C([0,7T]) as ¢ — 0. So, (ii) of Definition 5.1 has been proved as well.

Next, we would like to justify (v) of Definition 5.1. To achieve this goal,
let us pick up v(x) as v2(x,t) in (5.3.5) and integrate the corresponding
equality in ¢. Since

1
/UQ® (v9), : Vvodz = /vf(vf)gvﬁjda: = 5/(vf)g|vg|,2j =0,

Q Q Q

t
%/|v9(x,t)\2dx+//|Vv9|2dxdt/:%/|a(m)|2dx
Q 0 Q Q
t
+//f-v9dxdt’ (5.3.13)
0 Q

we have

for all t € [0,7] and for all ¢ > 0.
By (5.3.12),

hmlnf/\vg x,t)|?dx >/\v x,t)|?dx (5.3.14)

for any ¢ € [0,T] and by (5.3.10)

t t
1i£r§gf//|Vv@|2dxdt’ 2//|Vv|2dxdt/ (5.3.15)
0 Q 0 Q
and
t
hmmf//f vedxdt’ = //f'vdxdt’ (5.3.16)
0 Q

for all t € [0,T]. So, (v) of Definition 5.1 follows from (5.3.13)-(5.3.16).
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It remains to prove validity of (iv) of Definition 5.1. To this end, notice
that by (5.3.12)

a’() = UQ('7O) - U('7O)

in L2(92). So, v(-,0) = a(-). Moreover, according to (ii) of Definition 5.1
v(,t) = v(,0) = a(")

in Ly(2) as t — +0. So,

liminf [[v(-,?)
However, from the energy inequality it follows that
limsup [lv(-,)[|2,0 < [lall2,q.
t—+40
The latter implies
Jim (o, 8)ll20 = flall2.

which together with week convergence gives (iv) of Definition 5.1. Theorem
3.5 is proved.

5.4 Multiplicative Inequalities and Related
Questions
Case 1: n=2
Lemma 5.2. (Ladyzhenskaya’s inequality)
lullie < 2[lullf ol Vull3 g
for any u € C§(£2).
PRrROOF. Obviously, it is enough to prove this inequality for Q = R2. We

have
T

lu(zq, z2)|> = 2 / u(t, zo)u 1 (t, x2)dt

/|utx2|dt /|u1ta:2|dt>
And then

oo oo oo o0

//|u(x1,x2)\4dx1dx2: / /|u(a:1,xg)\z\u(xl,xg)\zdxldxg

— 00 —O0 — 00 —O0
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<4 /d:z:ldzg /|utz2|dt /\ult:cg\dt>2
7 FA 1
x(/ \u(xl,s)\gds)Q(/|u¢2(z1,s)|2ds)2}
—0o0 — 00
7 i 7 1
_ / (/\u(t,xg)\th)2(/|u71(t,x2)|2dt)2dm2
— o0 — o0 — 00
7 1, 7 1
X / (/|u(x1,s)|2ds)2</|u,2(x1,s)|2ds)2dx1
< 2ful3(lfu.1]3 2

= 2[ul3Vul3. O
Corollary 4.6. Let u € Loo(0,T; H) N L2(0,T;V). Then
ulla,r < 27[ul2,Qq-

ProOOF We have

luC, )50 < 2lu(- )3 ()30 < 2lufl o IV, )30
After integration in ¢, we get the required inequality. [J

Case 2: n=3

Lemma 5.3. Let 2 < s <6 and a = 3(52—;2) Then, for any u € C§°(Q),

lulls.0 < e(s)llullzg I Vulls .
ProOOF The Gagliardo-Nirenberg inequality in dimension three reads
lulle.o <clVullao,  uweC5(Q),
with a constant ¢ independent of €. It remains to use interpolation in L
lulls.o < llullgllullg.o

with o = 2622 O

Corollary 4.7. Let u € Lo(0,T; H) N L2(0,T;V). Then

lulls..or < c(s)lul2.or
for 2 < s <6 andl satisfying

_|_

3
s

~I o

3
5

@)~
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Proor By Lemma 5.3,

||U('7t)||s,ﬂ < C(S)|u|%,QT” Y u('at)HQ,Q
and

1
1

%
/ luC- )l odt) " < e()lullg, / Vut 1) [3kdt)

If al = 2, then the required inequality follows and
3 2 3 3 32— 3
_+_:_+a:_+g:_' O
s 1l s S 2s 2

Corollary 4.8. Let u € Loo(0,T; H) N Lo(0,T; V). Then

lu- Vullsi.0r < c(s)lul3 g,

with s and | greater than one and subject to the identity
3 2
-4+ - =4.
s 1

Proor By Holder inequality,
/\u-Vude < (/|Vu|2dx)5(/|u|sldx>;
Q Q Q
2s

5= and, hence, after integration in ¢ and application of Hélder
inequality, one can derive a bound:

with s; =

T

s s1( )
- Fullsr < 19ular ( [ ( / o) ™ ar)

0

2—1

21

It is easy to verify that

3 2 3 )
2_3 o= = 5.4.1
s LT S ) (5-4.1)

The required inequality follows now from Corollary 4.7.
Let us discuss some consequences of (5.4.1):
3 2 3 2—-1 3(2- 2 3
— + — — g 4+ - —1= 5

S1 5722_58 I 2s l

Y

which implies
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5.5 Uniqueness of Weak Leray-Hopf Solutions. 2D Case

Theorem 5.9. (O. Ladyzhenskaya) Let n = 2. Then, under assumptions
(5.8.2), (5.8.3), a weak Leray-Hopf solution to initial boundary value prob-
lem (5.3.1) is unique.

PRrROOF We let f: —diveo ® v + f, where v is a weak Leray—HBpf solution
to initial boundary value problem (5.3.1). By Corollary 4.6, f belongs to
L2(0,T; V") (since v € L4(Q7)). By Theorem 2.3 of Chapter 4, we know
that there exists a unique function v having the following properties:

u e C([O,T];H)QLQ(O,T;V), 8tueL2(O,T;V’); (551)
for a.a. t € [0,T],

/ [atu(a:,t) cw(z) + Vu(z,t) : Vu(z) — f(z,t) - wlz)|de =0 (5.5.2)
Q
for all w € V;
u(z,0) = a(x), x € . (5.5.3)

Recalling Definition 5.1, part (iii), we get from (5.5.2) that 7 = v — u
satisfies the identity

/ [~ (1) - W(@)o (D) + VB, 0) : W x(D)]dz =0 (5.5.4)
Qr
for all W € C§%(Q2) and for any x € C§(0,T). It is not difficult to show
that (5.5.4) can be extended to all functions x that are Lipschitz continuous
in [0, 7] and satisfy the end conditions x(0) = x(T') = 0.
Now, our aim is to get rid of the assumption that y vanishes at ¢t = 0.
To this end, we are going to use the following fact:

(- D)ll2,0 = 0 (5.5.5)
as t — +0. Take any function y € C*([0,T]) so that x(7) = 0 and
a function . having the properties: @ (t) = 1 if t > g, p.(t) = 0 if
0<t<e/2 and p.(t) = (2t —¢)/e if ¢/2 < t < e. Then, by (5.5.4), with
PeX aS X,

[ o] =ttty W@ax(t) + Vil t): TW @)t d:
Qr

_ g ]/E(m,t) W (@)x(t)dz = L.
0
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For the right-hand side, we have

[Ic| < sup [W(z)| sup x(7)V/[Q] sup [[v(:,#)[l2,0 = 0
zeQ T€[0,T] 0<t<e

as ¢ — 0.
So,
/ [~ Bl 1) W(@)aux(t) + V(. 1) : VW (2)x(1)] dz = 0
Qr

for all W € C5% () and any x € C*([0,T]) with x(T') = 0. This means that
v =0 in @, see Theorem 5.6 of Chapter 4, and thus any weak Leray-Hopf
solution v has the following properties:

v e C([0,T); H) N Ly (0, T5 V), v € Lao(0,T;V'); (5.5.6)

for a.a. t € [0,T,

/ [@v(w,t) cw(z) + Vo(z,t) : Vw(x)] dx

Q
= / [v(x,t) @ v(z,t) : Vw(z) + flx,t) w(x)] dx (5.5.7)
Q
for all w € V;

v(z,0) = a(x), x € Q. (5.5.8)

Now, assume that we have two different solutions v' and 2.

u = v — v!, one deduce from (5.5.7) that:

Letting

/ {@u(az,t) ~w(z) + Vu(z,t) : Vw(x)} dox =
Q
= /(02(x,t) @ v2(z,t) — vl (2, t) @ v (2,1)) : Vw(z)ds
Q

for any w € V. Taking w(x) = u(z,t) in the above identity,
1
5OluC Ol50 + IVul, )lEa =

= /(u(x,t) ®v2(x,t) : Vu(z, t) + v (2, t) @ u(z,t) : Vu(z,t))de <
Q

< [IVu(, t)ll2.0 01 (-, 1)

u(-t)]|a,0 4,0
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By using Ladyzhenskaya’s inequality twice,
0" Dllig < 200 G2l Vo (150 < 21013 0, VO ()50 <
< efa, VO (1)l 0
and
[u(, )10 < 2lul O3 ol Vul, )3 0-

And thus
SO D0+ IVuC,)l3q <
< efa, NIVul I3 gllu- 1)
Applying Young’s inequality, we find
Aillu(- )30+ Va3 q < colluC, I3 ol Vo' (- 1)]130

and thus

1
Vol ()13 q-

1
Bl
2,0

Fellu-, )30 < coy(®llul- D)3 q.

where y(t) := [[Vv'(,t)[3 . From this differential inequality, it is not
difficult to derive

—co [y(T)dr
oie " u 03 a) <0

and

t
—co [y(T)dr
e 0

[u(-,1)

Therefore, [lu(-,t)||5o=0. O
Let us discuss further regularity of 2D weak Leray-Hopf solutions.

2.0 < llu(-,0)

2
2,0 — 0.

Theorem 5.10. Assume that a € V, and f € La(Qr). Let v be a unique
solution to initial boundary value problem (5.3.1). Then

ve W5 (Qr), Vv e O(0,T); La(9)).
Moreover, there exists q € W21’0(QT) such that
oww+v-Vv—Av=f—Vq, divo =0

a.e. i Qr. It is supposed that () is a bounded domain with smooth bound-
ary.
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PROOF Let us go back to problem (5.3.4)-(5.3.6), where a function v¢ de-
fined by the following relations:

ve € C([0,T); H) N La(0,T; V),  9,0° € Lo(0, T3 V'):; (5.5.9)
for a.a. t € [0,7]

/(&gv"(aﬁ, t)-v(x) + Vol(z,t) : Vo(z))de
Q

_ / Fla,t) - 5(2)da (5.5.10)

for all v € V, where

f=1—= e Vv? e La(Qr);
[0¢(-t) —a(-)]20 — 0 (5.5.11)

as t — 0.
According to Theorem 4.4 of Chapter 4, there exists a functions u? €
W3 (Qr) with Vue € C([0,T); Ly(€2)) and p? € W, "°(Qr) such that

Oul — Aul = f — Vpe, divu? =0

a.e. in Qr and u?(-,0) = a(-). Using the same arguments as in the proof of
the previous statement, we can claim that v¢ = w?¢. Multiplying then the
equation

v + (v3) v, — Ave = f = Vp*?

by Av? and integrating each term in the product with respect to x, we find
/Av" - Avldy = /|3v9|2dz,
Q Q

/Vpg - Avldz = 0,
Q

~ 1
/&:vg - Avldzr = /@:UQ -Avtdr = —§6t|\Vv@||§7Q
Q Q

since Ave € H and 8,v° € H for each fixed t. So, we derive the inequality

1 ~ ~
FlVeelsq + 1A0°I5 .0 < || fll2.0ll Ave 2.0+

+(@)ellal Vollsall Ave|lz0 <

< | fllz.ellAvella.0 + [[v8 ]| 40l Vo2 4,0l Ave]|.0.
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To estimate the first and the second factors in the last term of the right-
hand side of the above inequality, we are going to exploit Ladyzhenskaya’s
inequality one more time

[02] 1.0 < 2083 allVell3.q < cla, IV 0
and
IVoelliq < cIVeell3o([VZ0ell30 + [VV2ll3.0)-
We also need the Cattabriga-Solonnikov inequality
192620 < Q)| R0] 2.
So, combining the latter results, we find the basic estimate

1 ~ ~
FOVUl50 + [Ave50 < [I£ll20] Av?]20

1 1 ~ 1 1 ~
+ela, £, Q[ Volll3 oI Voe]l3 o ([Ave3 o + [Veell3 o) [Avel2.0

Now, if we apply Young’s inequalities in an appropriate way, we can derive
the following differential inequality

Oy + 180?130 < c(a, £, (If 5.0 +y + [Vo2l3.09);

where function y(t) = ||Vv9(~,t)||§7Q obeys the initial condition y(0) =

IVall3 o-
The latter, together with energy estimate (5.3.7), gives two estimates
sup ||va(~7t)||§79 + ||V21)9H§7QT < c(a, f,Q) < oo. (5.5.12)
0<t<T

To get all remaining estimates, we make use of Theorem 4.4 of Section
4, which reads

1008|207 + IV20%l2,0r + [VP2ll2,0r < C[HfHa,QT + [ Vall2,0|-
But

[fll2.r < [ fll2.@r +[1(2%)e - VVll2,0r <

<|f

2,Qr T ||(vg)g||47QTvagH4,QT <

< cla, )1+ j0*

4,Qr ||VUQ||47QT .

The right-hand side of the above inequality can be evaluated with the help
of Ladyzhenskaya’s inequality and (5.5.12).

Finally, we can pass to the limit as ¢ — 0 and get all the statements of
Theorem 5.10. Theorem 5.10 is proved.
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5.6 Further Properties of Weak Leray-Hopf
Solutions

Theorem 6.11. Let Q be a bounded domain with smooth boundary. As-
sume

f S LQ(QT), a€ H. (561)

1. Let v be an arbitrary weak Leray-Hopf solution in Qr for the right-
hand side f and initial data a satisfying (5.6.1). Then, for each 6 > 0 and
for any numbers s, > 1 subject to the condition

§ + g — 4’
s 1
we have

ve W52,7ll (Q(S,T))

where Qs = Qx]3, T[. Moreover, there exists a function q (pressure) which
belongs to the following spaces

g € W (Qsr) N Loy (Qsr) (5.6.2)
with the same §, s and | as above and
3s
"= I'=1
S T3y
so that
3 2
24l =3

The Navier-Stokes equations
Ow+dive®v—Av=f— Vg, dive =0

hold in the sense of distributions and a.e. in Q.

II. Given right-hand side f and initial data a satisfying (5.6.1), there
exists at least one weak Leray-Hopf solution v and a pressure q with the
properties mentioned in Part I such that, for any ty €]0,T], the local energy
inequality

to to
[ wPetatds+ [ [olvider< [ [ (1o @+ a0+
Q 0 Q 0 Q

v V(o] + 29) + 20f - v) dwdt (5.6.3)

holds for any non-negative function ¢ € C§°(R?x]0, 00l).
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PRrROOF I. Take x € C§°(0,00) (0 < x < 1) and let u = xv. Obviously,
u € Loo(0,T; H) N La(0,T5 V).
Next, insert yw with w € C§%(Qr) into identity (iii) of Definition 5.1 and

get for wu:

/(fu -Oww + Vu : Vw)dz = / f-wdz,
Qr Qr
where
J?Z Xf —xdivv®@v —0xv =xf — xv- Vv — Oxv.
By Corollary 4.8,
feLy@Qr)

for any s,1 > 1 satisfying 3/s + 2/l = 4. Moreover, v = 0 for sufficiently
small ¢. On the other hand, the linear theory ensures that, for such f, there
exist functions v and ¢ such that

vE W:’zl(QT), q€ Wsl,’lO(QT)
with finite numbers s,l > 1 satisfying 3/s+ 2/l = 4 and
OV —AV+Vi=f, divi=0

in Qr,
v(x,t) =0 x €09, /q~(w,t)dx =0
Q
for t € [0,T7,
5(,0)=0
in Q.

Using essentially the same arguments as in 2D-case, we can show that
forv=u—"7v
/(ﬁ'ﬁtw— Vv : Vw)dz =0
Qr
for w = YW with W € C§%(Q) and with X € C?([0,T]) and X(T') = 0.
Now, the uniqueness results for the linear theory imply that @ = 0.

Hence, yv € Wi’ll (Qr) and
X(Ov+v-Vo—Av— f)=-Vq.
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Next, take any 6 > 0 and assume that x(t) = xs(t) = 1if ¢t > 6. A
pressure ¢ corresponding to chosen ¢ is denoted by ¢s5. Obviously, ¢5 €
Wsl,’lo(Qg,T) with required s and . Assuming that §; > 5 then g5, = g5, in
Qs,, 7. This allows us to introduce the function ¢ so that

q('7 t) = q&(V t)
if t > § > 0. It is well defined and satisfies the required properties. So, the
first part of the theorem is proved.
Part II. Now, let us go back to the proof of Theorem 3.5 on the existence
of weak Leray-Hopf solutions and try to apply the procedure, described in

the proof of Part I, to regularized problem. Letting u? = yv?, where y is a
function of ¢ from CZ(0,00), we state that u? is a solution to the problem:

u? € C([0,T]; H)N Lo (0, T V), O € La(0,T;V'); (5.6.4)
for a.a. t € [0,T]

/ (Opul(x,t) - v(x) + Vul(x,t) : VU(z))dx
)

_ /f@(x,t) B(2)da (5.6.5)
Q

for all v € V;
[u(-,t)[|2,0 — O (5.6.6)
as t = +0.
Here,
fo=je4 e
with

F(a,t) = x() f(2,t) + px(t)v®(z, 1),

F3(@,1) = =x(O) 8o (x,1) - Vo (x,1).
Simply repeating the proof of Corollary 4.7 and Corollary 4.8, we estimate
the second part

1£2 05 .0r < e(8)|02f3 g, < e(s,a, f)

with s’,I’ > 1 and 3/s’ + 2/I" = 4. Moreover, we can claim that the whole
right-hand side f¢ is estimated similarly:

”fQ”S’J’,QT < C(S/a a, fa X Q)
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Now, according to Theorem 4.5 of Chapter 4, there exists functions u?
and ¢¢ satisfy the relations:

~ 2.1 1,0 ]
u? € WS’J’(QT)a Q)Lz € Ws/,l/(QT)a

Qu® — AU =fe Vg, diva®=0
in Qr;
Wlogr =0, gg(-t)]a =0.
By the same theorem, these functions have the bound
IV2@sr v, + 11850l v @1 + Va5, @1
< o', Q) s .ar < els',Qsa, f,x)

Applying Theorem 5.6 of Chapter 4 on uniqueness and similar arguments
to those that are used in 2D case, we can state

u? = ul.

Next, we consider the sequence of functions xs with 6 = T'/k, k € N.
And thus

IV 02 .5 + 1000° 0,50 + VG5 |7 17,05

<c(s,9Q,a, f,0). (5.6.7)

Let v¢ be a sequence constructed in the proof of Theorem 3.5, i.e.,

vy
in Loo(0,T; H),

V¢ = Vo

in Ly(0,T;V),

T X))
in Ly(Qr),

/v"(z,t) ~w(x)dr — Q/v(z,t) cw(x)dx

Q

in C([0,T]) for each w € La(2).
In addition, we know that

[08]|s,1.@r < cv?]2,0r < cla, f)
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with 3/s” + 2/1” = 3/2, see Corollary 4.7. In particular, we may assume
that (take s” =1" =10/3)

v¢ — v
in L10(Qr) and therefore

v? = v (5.6.8)
in L3(Qr) and

(v9)o - Ve —=v-Vu
in L1(Qr).
Given s,1 > 1 with 3/s+2/1=3, we find I’ = and s’ = 3s/(s + 3). It is

easy to check, 3/s' + 2/I" = 4. Using the diagonal Cantor procedure and
bounds (5.6.7), one can ensure that

Opv? — at’U, VQ’UQ — V2’l)

in Ly 11 (Qs,1) for each 6 > 0. As to the pressure, the diagonal Cantor
procedure can be used one more time to show that

Vg3 — Vs
in Le 11(Qs,1) and
a5 — qs

in Ls;(Qs 1) for each 6. Here [¢s(-,t)]q = 0.
It is worthy to note that ¢s, = g5, in Q,,, 7 if 61 < d2. Indeed, it follows
from two identities for § = §; and § = &>

Vgs=f—0w —v-Vo+ Av

in Qs and [gs5(-,t)]q = 0.
So, the function, defined as

q(z) = q5(2), z € Qsr,

belongs W:,:%(QT) and L, ;(Qr) for each 6 > 0.

The last thing is to check validity of the local energy inequality. It
is known that the regularised solution is smooth enough and, there-
fore, obeys the local energy identity. So, a given non-negative function
¢ € C5°(R3x]0, 00[), we choose § so small that sptp € R3x]d, 0o[. After
multiplication of the equation

v + (v9), - Vvl — Av? = f — Vg5
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by v¢ and integration of the product by parts (which is legal for the
regularized solution)

to to
/ v (z, o) P (2 to)dz + / / A|Ve Pdrdt = / / (2P (@ + Ag)+
Q 0 Q 0 Q

+(v9)g - Veo([0?]? +2¢5) + 2f - v)dmdt (5.6.9)
for any t € [0, T].
We also know that
a5 —q

in L3(Qs,r). (Indeed, ¢§ — ¢ in Ls(Qs,r) since 3/(5/3) +2/(5/3) = 3).
Taking into account (5.6.8) and using the same arguments as in the proof of
Theorem 3.5, one can pass to the limit in (5.6.9) as ¢ — 0 and get required
local energy inequality (5.6.3). O

5.7 Strong Solutions

Definition 5.2. A weak Leray-Hopf solution is called a strong solution, if
Vv € Loo(0,T; La(2)). (5.7.1)

Theorem 7.12. (Global existence of strong solutions for “small” data).
There exists a constant co(Q) such that if

71'
arctan([[Vall3,0) + co()(lall30 + I f15.0.) < 5

then there exists a strong solution to initial boundary value problem (5.3.1).

(5.7.2)

PROOF Let us go back to problem (5.3.4)-(5.3.6), see the proof of Theorem
3.5,

v? € C([0,T); H)N Ly(0,T5V), 0w? € Lo(0,T;V'); (5.7.3)
for a.a. t € [0,T]

/ (02 (2, ) - T(@) + Voo (1) : Vii(x))da =
Q

:/fg(x,t)"ﬁ(x)dx (5.7.4)
Q
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forall v e V;
[0¢(,t) = a()ll2.0 = 0 (5.7.5)
as t — +0. Here,
fe =1 =)o Vv € Lo(Qr).

Using the similar arguments as in the proof of Theorem 5.9 of this
section and Theorems 5.6, 4.5 of Section 4 on uniqueness and regularity for
non-stationary Stokes problem, we can conclude that

v e Wil(Qr), Ve e C([0,T]; Ly(Q)).

Moreover, there exists a pressure field p? € W21 ’O(QT) such that the regu-
larized Navier-Stokes equations

Ol — Av? = f2 — Vp°, dive? =0

hold a.e. in @Qr. This is the starting point for the proof of our theorem.
We know that sequence v? converges to a weak Leray-Hopf solution to
corresponding initial boundary value problem (5.3.1). So, what we need is
to get uniform estimates of Vv?. Let

y(t) ::/|V1}9(z,t)|2d$.
Q

We proceed as in the proof of Theorem 5.10, multiplying the equation by
Av? and arguing exactly as it has been done there. As a result, after
obvious applications of Cauchy and Hoélder inequalities, we find

v+ 302 [ |BuPdo < c [ |00), 190 Pdo + el I <
Q Q

< cl|[ve g ol Vo©

|§,Q + C||f||§9 (5.7.6)

The first term on the right-hand side of the above inequality can be eval-
uated with the help of the Gagliardo-Nirenberg inequality in dimension
three

[vellg 0 < ey,

and the multiplicative inequality

1

IVl o < c@yt ([ IV2oeds+y)°.
Q



Non-linear Non-Stationary Problem 121

In addition, the Cattabriga-Solonnikov inequality of the form
/|V21)9|2dz gc(Q)/|&ﬂ|2dx (5.7.7)
Q Q

is needed. So, from (5.7.6) and (5.7.7), it follows that:

v+ 5/ [1BuePde <@+ ) +elf B (579
Q

Recalling the properties of eigenvalues A\, and eigenfunctions ¢y, of the
Stokes operator, we observe that:

JESEE SRSt S I
a k=1 k=1

where
di(t) = /vg(x,t) - p(x)dx.
Q
So, (5.7.8) yields the final differential inequality
Y () + Ay(t) < (@) (1) + g(t), (5.7.9)
with

y(0) = IVal3q.  9t) =030
A weaker versions of (5.7.9) is
y'(t)
—— < 1(Q [ t) + t}
T+ 2@ = 1(€) |y (t) + 9(t)
so that after integration of it and application of the energy inequality, we

derive the bound
T

T
arctan(y(t)) < arctan(||Val|3.q) + c1(9) {/y(t)dt + /g(t)dt
0

—

0
m
< arctan(|Vall} o) + co(@)[lal o + /130, ] < 5
for any ¢ € [0, 7], which implies
y(t) < C, t€0,T],
with a constant ¢ independent of ¢ and ¢. [
Theorem 7.13. Assume that

ClEV7 fELQ(QT).

Then there exists T' €]0,T| such that initial boundary value problem (5.3.1)
has a strong solution in Q.
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PROOF Arguing as in the proof of Theorem 7.12, let us go back to inequality
(5.7.9). We need to show that there exists 7 < T, where y(t) has an upper
bound independent of ¢ and ¢ € [0,7”]. To achieve this goal, let us make a
substitution z(t) = y(t) — y(0) and, after application of Young’s inequality,
get the following modification of estimate (5.7.9)

2(t) + Aiz(t) < et ()5 (t) +4°(0) + g(t))-
An equivalent form of it is:

2'+ (1 — %22)2 < a(y®(0) + g(t))

with z(0) = 0. By continuity,

D) <1 (5.7.10)
A1

for small positive t. Without loss of generality, we may assume that there
exists po > 0 such that, for all 0 < ¢ < gg, there is 0 < ¢, < T with the
following properties: inequality (5.7.10) holds for 0 < t < ¢, and

a
A_lzz(tg) =1.

Next, we take the largest value 7”7 €]0, T so that

»
[ [ + ) + 2y < 3/

0
From inequality (5.7.10) and the definition of ¢,, it follows that:
c .
(1) = (1= 1-2)y(0) < e1(5(0) + 9(1))

for all 0 <t <t,. Therefore,

t

A0 < (' 0) + 9(5) + My (0))ds
0
for all 0 <t <t,. And thus for ¢t = ¢,, we have

(0 =\ 2 < [(@7(0) + 905 + A0
0

and, in a view of the definition of T”,

[ [0+ 90) + ()] e < / [e102(0) + 9(5)) + Ay ()] ds.
0 0
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The latter implies ¢, > T" for all ¢ > 0 and the required estimate

T/
1 /A
u(0) < [Vala+ [ [a?(0)+9) + MyO)]de < [Val3 o+ 51/ 2
0

for all 0 < ¢t < T’ and for all p > 0. O

Remark 5.1. If f =0, the lower bound for 7" can be improved

T > 04(94)
IVall3q

and this is the celebrated Leray estimate.

PROOF In this case, one can deduce from inequality (5.7.9) the following:

— < 2¢qt
O 20 -
and thus
y* ()1 — 2e1ty(0) < y*(0).
We let T = m. Then 1 — 2¢1ty%(0) > 1/2 and y(t) < v/2y(0) for

0 < t < T which implies 7" > Tj; and we get the required estimate with an
appropriated constant.

Remark 5.2. Solutions, constructed in Theorems 7.12 and 7.13, have the
following regularity properties: v € VV22 ’1(QT) and there exists a function
g such that Vq € Ly(Qr) and

ow+wv-Vu—Av=f— Vg, dive =0
a.e. in Q. (One should replace Qp with Q7 in the case of Theorem 7.13).

PROOF In fact, from (5.7.8) and from the Cattabriga-Solonnikov inequality
(5.7.7), it follows that:

IV202]l3 o, < c(IVa

2,8 ||f||27QT)

and, in a view of derivation (5.7.8), we get

/ |(0)oIVe?2dz < (| Vallz.0 | fl2.0x)-
Qr
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The linear theory, applied to the initial boundary value problem
Ol — Av? + V¢l = f — (v9), - Voo, dive? =0 in Qp
v®aaxo,7) = 0, v¢i=0 = a,
leads to all other statements of Remark 5.7.5.

The main result of this section is:

Theorem 7.14. (Uniqueness of strong solutions in the class of weak Leray-
Hopf solutions) Assume that u' and u? are weak Leray-Hopf solutions to
the initial boundary value problem

Ow~+v-Vo—Av=f—Vq, dive =0 in Qp
vlaaxo,r] = 0, v)t—0 = a
with a € V and f € La2(Qr). Let u? be a strong solution then u' = u?,

We start with several auxiliary propositions.

Proposition 7.15. (Uniqueness of strong solutions in the class of strong
solutions) Assume that u' and u? are strong solutions to the initial boundary
value problem

Ow+v-Vv—Av=f— Vg, dive =0 in Qr
U|6Qx[0,T] =0, v]t=0 = a,
with a € V and f € La(Q7). Then ul = u?.

PROOF First we notice that if u is a strong solution to the above initial
boundary value problem then

dwu € LQ(O,T,VI)
Indeed,
‘/(uVu) -wdw‘ = ‘/u@u s Vwdz| < |lulf ol Vwll2,0
Q

Q
< ()| Vull3 ol V2.0 < C(Q,u)||Vwlz20
for any w € V. So, f: f—u-Vu € Ly(0,T; V") and thus dyu € Lo(0,T; V).

Then, by the definition of weak solution, we have

/ X(®) [atu(x, £) - w(z) — (u® u)(z,t) : Vu(z)

Qr

+Vu(z,t) : Vw(m)} dz = / X&) f(z,t) - w(x)dz
Qr
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for any w € C§%(92) and for any x € C§°(0,7T). It is easy to see

/ [Btu(:v,t) cw(z) — (u@u)(z,t) : Vw(z)

Q

+Vu(z,t) : Vw(x)} de = /f(x,t) cw(z)dx
Q

for any w € V and for a.a. t € [0,T].
So, assume that u! and u? are two different strong solutions and let

v =u! —u?. Then, we have

1
32ola +[Vol3o = [ (! &~ 0 0?) s Vods

Q
:/(v®u1+u2®v):Vvdm:/u2®v:Vvdx
Q Q
=— /’U ®v: Vulde < ||[Vu?|20llv)|iq.  (5.7.11)

Q

Let us recall the following 3D multiplicative inequality
Iolag < ellvld g Tol o
So, after application of Young’s inequality
aellvll3. 0+ IVollo < cllVa?|2.all0l3 0
Since || Vu?||2,00,0 < C1,
aillvll.q < CHllv]3 0.

which implies
efclt/|v(x,t)|2da:§ /|v(x,0)|2dx:0.
Q Q

Proposition 7.15 is proved.

Proposition 7.16. (Smoothness of strong solutions) Let a vector field u
be a strong solution to the following initial boundary value problem:

dwu+u-Vu—Au= f—Vp, divu =0 in Qr
U|89x[O,T] =0, uli—0 = a,

with a € V and f € Ly(Qr). Then v € W (Qr) and p € W, °(Qr).
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PROOF Let us denote ||Vu|2,00,0r by A. Coming back to our proof of
Theorem 7.13, define a positive number T4 so that

1 /X
1| TAA® + / g(s)ds} < 5,/0—1 (5.7.12)
1

10, T[Nt t+Ta

for any t € [0,T].

By (5.7.12) and by Theorem 7.13, there exists a strong solution u! in
Qr, with initial data u'|;—¢ = a. This solution belongs to W3 (Qr,) and
the corresponding pressure ¢! belongs to Wzl’O(QTA), see Remark 5.2. By
Proposition 7.15, u' = u in Qr,. We know also Vu € C(0,T; L2(9)). So,
we can apply Theorem 7.13 one more time in @7, /237, /2 and find a strong
solution u? there with initial data u(-,74/2). By Proposition 7.15, u? = u
in Qr, /2,37, /2 and V¢' = V¢? in Qr, j2,7,. After a finite number of steps,
we find that u € W} (Qr) and can easily recover a function p € W,°(Qr)
such that Vp = V¢* on Q7 N QTak/2,Ta(k+1)/2, Where k=1,2,.... [J

PROOF OF THEOREM 7.14 Since u? is a strong solution, it satisfies the
identity

/ [6tu2(x,t) cw(z) + (u?(2,t) - Vu?(z,t)) - w(z)
Q
+Vu?(z,t) : Vw(x)} dx = /f(ac,t) ~w(z)dx (5.7.13)
Q
for any w € V and for a.a. t € [0,7]. Regarding to u!, we have a weaker
identity
/(—u1 SO —u' @ul Vo + Vel Vo — frw)dz =0 (5.7.14)
Qr

for any w € C5%(Q7)-
We would like to test (5.7.14) with u? but it should be justified. Indeed,
we know that

ut € Ly (Qr)
and, by density arguments, (5.7.14) must be true for w(x,t) = x(¢t)v(z) with
v € J5(Q) and x € Wi(0,T) = {x € W{(0,T) : x(0) =0, x(T) =0}.
Since u? € W;'(Qr), the series e ck(t)pr(x) converges to u? in

WQQ’I(QT). Here, ¢y, is the kth eigenfunction of the Stokes operator. This,
in turn, implies that the series Y .2, cx(t)Vir(x) converges to Vu? in
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L%(QT). To justify that, we need two inequalities. The first of them is
multiplicative one:

3
0 .

2»QT) !

e
IVolls,qp < e(Q.T) sup [[Vo]3%([V20ll20r + [IVo
0<t<T
The second inequality is

1
IVol3 c0r < F V0I5 Qr + 200wll2.r [Av]l2.0r-

This inequality can be easily derived from the identity

O / Vol (z,t)2de = —2/8tvN(x,t) - AN (x,t)de,
Q Q

where vV (z,t) = Zszl ek () ok ().

So, if x is a Lipschitz function on [0,7] with x(0) = x(T') = 0, then
identity (5.7.14) holds for x(t)ck(t)¢r(x) with any number k. Taking into
account what is mentioned above, it is not so difficult to show that (5.7.14)
can be tested with xo gu?, where ya,g(t) =t/aif 0 <t < «, xa,g(t) = 1if
a <t <ty Xaplt)= o+ L —1)/Bif to <t <to+ B, and xq,pg(t) =0 if
to+ B <t < T. Inserting w = Yq,pu? into (5.7.14), we find

/Xa,ﬂ(—ul O —u' @ul Ve 4+ Vul  Vu? — fu?)dz

QT
= /ul.ulea’ﬁdz:.fa—i—fg,
Qr
where
I, = é//u1 u?drdt = é//(ul —a) - (u? — a)dxdt
0 Q 0 Q
1] ) 17 .
+—//a (u —a)d:cdt—l——//a (u” — a)dzdt
34 00

Since |lul(-,t) —a(")
observe that

2.0 and [|[u?(-,t) — a(*)||2.0 go to zero as t — 0, we can

I, —>/|a|2dx
Q
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as a — 0.
The analogous result takes place at the right end point:

) to+p8
— — — 1 . 2

I 3 / Q/u u“dxdt
1 to+8

=— u(z,t) - (u?(x,t) — u?(x, to))dxdt

i

to+B

+% / /(ul(z,t) —ul(z,tg)) - u*(x, to)dadt

to Q
+/u1(z,t0) ~u?(x, to)da
Q

By strong continuity in L2(2) of the strong solution u?, the first term on
the right-hand side goes to zero and by weak continuity of weak solution
u! the second term there goes to zero as well. So,

Ipg — —/ul(m,to) u?(z,to)dx
Q
as 8 — 0. Finally, we have

to
//(—u1 SO —ut @u' Ve + Vul c Vi — fu?)dz
00

Jr/ul(:r,to) u?(z, to)dx — / la]*dz =0 (5.7.15)
Q Q
for any to € [0, T].

Now, we are going to test (5.7.13) with w(z) = u'(z,t) —u?(x,t), which,
after integration over |0, ¢o[, gives us:

to
//atUQ(x,t) ~ul(x, t)dxdt — %/|u2(1’,t0)|2dm + %/|a|2dz
0 Q Q Q
to
+//(—u2®u2:V(u1 —u?) +Vu?: V(u —u?)
00

—f(t - u2))dxdt = 0.
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So, adding the latter to (5.7.15), we find
1 1
/ [~ 5la@)? + u'(2,t0) - u*(w, t0) — Slu (@, to)|*] da

to
// [—u1®u1 VU —u? @u?: V(ut —u?) — | Vu?|?
+ovul - v - f - ul]dxdt 0. (5.7.16)

We also know that weak solution satisfies the energy inequality

to to
1 1
5/|u1(x,t0)|2dx+//|Vu1|2dxdtg §/|a|2d:v+//f.u1d:cdt.
0 Q Q 0 Q

Subtracting (5.7.16) from the energy inequality, we show
to

/|u (2, t0) — u2(z, to)| dx+//|Vu _ ) Pdudt

0
// ul VR +u? @u? V(u —u?))dedt = 1. (5.7.17)

The rest of the proof is similar to the proof of Theorem 7.12. Indeed,

to
—//(u1 —u?) ® (ut —u?) : Vuldrdt
00

to
< / V2 .0 — |2 ot

< sup ||VU2||2,Q/||U2—“1||421,th~
o<t<T

Since u? is a strong solution, the quantity supy.,.p [|[Vu?(-,t)]20 =

[ Vu?||2,00.05 is finite. Applying multiplicative inequality, we have

1 3
I<e|ViRlamear / ? — w12 |V (u? — u) 13 ot

to )
§c||Vu2H2,OO,QT<//|u2 |2dzdt * //|Vu —ut |2dmdt)
0 Q
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From here and from (5.7.17), it follows that:
to
(1) < eIV rntto) ulto) = [ / 0 (2, 1) — (1) Pt
0
for all to € [0, 7] with y(0) = 0. This immediately implies u! = u?. O
Theorem 7.17. (Ladyzhenskaya-Prodi-Serrin condition) Let a € V and

f € La(Q7). Assume that we have two weak Leray-Hopf solutions u*
u?. Assume that u® obeys the Ladyzhenskaya-Prodi-Serrin condition, i.e.,

u? € Le1(Qr)

and

with s,1 > 1, satisfying

Then u' = u2.

PROOF Just for simplicity let us assume f = 0. We also suppose that s > 3.
The case s = 3 and | = oo is much more complicated and will be discussed
later. Our aim is to show that a weak Leray-Hopf solution, satisfying the
Ladyzhenskaya-Prodi-Serrin condition, is in fact a strong one. Then, the
statement of the theorem follows from Theorem 7.14.

We know that, by Theorem 7.13, there exists a strong solution to our
initial-boundary value problem on a small time interval [0, T], which, by
Theorem 7.14, coincides with any weak solution and, in particular, with
u = u?. Let us denote by To(< T) the first instance of time, for which u
is not a strong solution on [0,7p]. By Proposition 7.16, we have for any
T < To,

we Wy (Qr),  VueC([0,1'; La(Qr))
and there exists a pressure field p € W;’O(QT/) so that
O+ u-Vu— Au = —Vp, divu =0

a.e. in Q7.
By Remark 5.1,
Cy4
To —
IIVU( )Iz.0
for all ¢t < Ty. So, we have
lim ||[Vu(t)] 2,0 = cc. (5.7.18)

t—To—0
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We proceed as in the proof of (5.7.6) simply replacing v¢ with u. As a
result,

y’+/|£u|2dx§0/|u\2\VU\2dm, (5.7.19)
) )

where y(s) = | Vul3 o.

Applying consequently Holder inequality, an appropriated multiplicative
inequality, and the Cattabriga-Solonnikov inequality to the right-hand side
of (5.7.19), we have

/|U|2|Vu|2da: < ||U||§,Q||v“||i2%279
!

2(1—2 6
< e(Q, 8)|[ul2[Vulls T (IV2ulls + | Vull2) ¢

4 ~
< e, 8)[[ullf ol Vull] ol Au

6
s
2

,Q

Using Young’s inequality, we arrive at the final inequality
y'(t) < e, 8)llul-t)ll5 ou(t)
for all ¢t < Tj. Integrating it, we find
(1) < y(O) P sar
for all ¢ < Tp. This contradicts (5.7.18). O

Remark 5.3. Unfortunately, we do not know whether any weak Leray-
Hopf solution u satisfies the Ladyzhenskaya-Prodi-Serrin condition. What
we know is that

uw € Ly 1 (Qr)
with ¢/,1’ <1 and
3,23
s U2

So, there is a finite gap.

The problem of uniqueness of weak solution is still open.

If we show that any weak (Leray-Hopf) solution is smooth (for example,
it is strong), then we have uniqueness in the class of weak solutions.

The problem of smoothness of weak solutions is one of seven Millennium
problems.



132 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

5.8 Comments

Chapter 5 contains an introduction to the theory of energy solutions de-
veloped in [Leray (1934)] and later on in [Hopf (1950-1951)]. Our proof
of the global well-posedness of the 2D dimensional problem is due to [La-
dyzhenskaya (1958)]. As to local in time well-posedness of the 3D problem,
we follow [Leray (1934)] and [Kiselev and Ladyzhenskaya (1957)]. We also
prove classical results related to the Ladyzhenskaya-Prodi-Serrin condition
and the uniqueness of strong solutions in the class of weak solutions, see
for example [Ladyzhenskaya (1967)], [Prodi (1959)], [Serrin (1962)].



Chapter 6

Local Regularity Theory for
Non-Stationary Navier-Stokes
Equations

6.1 e-Regularity Theory

The aim of this section is so-called suitable weak solutions to the Navier-
Stokes equations and their smoothness. Those solutions were introduced
in [Caffarelli et al. (1982)], see also [Scheffer (1976)]-[Scheffer (1982)], [Lin
(1998)], and [Ladyzhenskaya and Seregin (1999)]. Our version is due to
[Lin (1998)).

Definition 6.1. Let w be a domain in R3. We say that a pair  and p is a
suitable weak solution to the Navier-Stokes equations in wx |71, T[ if u and
p obey the conditions:

U € Lo oo (wx|T1, T) N La(Ty, T; W (w)); (6.1.1)
pE L%(wx]ThT[); (6.1.2)
Owu+u - Vu — Au = —Vp, divu =0 (6.1.3)

in the sense of distributions;
the local energy inequality

[z, t)u(z,t)Pde+2 [ @|Vul?dzdt!
w UJX]Tl,t[
(6.1.4)

< [ (uP(Ap+0p) +u- Vo(lul? + 2q)) dudt!
wX]Tl,t[

holds for a.a. t €]T1,T[ and all nonnegative functions ¢ € C§°(wx|T1, 0of).

One of the main results of the theory of suitable weak solutions reads:

133
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Lemma 6.1. There exist absolute positive constants €y and cor, k = 1,2, ...,
with the following property. Assume that a pair U and P is a suitable weak
solution to the Navier-Stokes equations in QQ and satisfies the condition

/ (0P +1P12) dz < &0, (6.1.5)
Q

Then, for any natural number k, V*=1U is Hélder continuous in @(%) and
the following bound is valid:

max |VF71U(2)| < cop. (6.1.6)
2€Q(3)

To formulate Lemma 6.1, we exploit the following notation and abbrevia-
tions:

z=(z,t), z0=(z0,%0); B(xo, R) = {|x — z0| < R};
Q(Zo, R) = B(Jﬁo7 R)X]to — R27t0[;

B(r) = B(0,7), Q(r) = Q(0,r), B= B(1), @ =Q(1).

Remark 6.1. For k£ = 1, Lemma 6.1 has been proven essentially in [Caf-
farelli et al. (1982)], see Corollary 1. For alternative approach, we refer the
reader to [Ladyzhenskaya and Seregin (1999)], see Lemma 3.1. The case
k > 1 was treated in [Necas et al. (1996)], see Proposition 2.1, with the
help of the case k£ = 1 and regularity results for linear Stokes type systems.

In turn, if £ = 1, Lemma 6.1 is a consequence of Proposition 1.1 below.
To state it, we need to introduce certain integral quantities that play an
important role in the regularity theory:

Y(ZOa R;U7Q) = Yl(ZOa va) + YQ(Z()v Rv Q)7

1 3
Vio o) = (g [ lo= @)
Q(z0,R)

1 3, \3
Vo ki) = R( o [ o= ldanltdz)",

Q(z0,R) B(zo,R)
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1 1 2 2
Yy (U) =Y (0,79;v), Yy (Q) =Y (0,19;(]),

Yﬁ(v7 Q) = Y(07 v, Q)7 (U)ﬂ9 = (U)O,ﬂ7 [Q],ﬁ = [Q]O,ﬁ'

Proposition 1.1. Given numbers ¥ €]0,1/2[ and M > 3, there are two
constants e1(¢, M) > 0 and c1(M) > 0 such that, for any suitable weak so-
lution v and q to the Navier-Stokes equations in Q, satisfying the additional
conditions

‘(’l})71‘ < Ma Yl(”v‘]) < €1, (617)
the following estimate is valid:

Yy(v,q) < c193Y3(v,q). (6.1.8)

PROOF OF PROPOSITION 1.1 Assume that the statement is false. This
means that a number 9 €]0, 1/2[ and a sequence of suitable weak solutions
v¥ and ¢* (in Q) exist such that:

Y1 (%, ¢") =i =0 (6.1.9)
as k — 400,
Yy(o®, ¢*) > crend? (6.1.10)

for all kK € N. A constant ¢; will be specified later.
Let us introduce functions

uf = (0 = (")) e, PP = (0"~ [d"]0) /e
They obey the following relations
Yi(uf, p*) =1, (6.1.11)
Yo (u¥, p*) > 193, (6.1.12)

and the system

opuk + ﬁdiv ((VF) 1 + enru®) @ (0F) 1 + ergu®) } in @

a1
—AuF = -VpF, divuF=0 (6.1.13)

in the sense of distributions.
Without loss of generality, one may assume that:

uf = in L3(Q)

pPP—=p in  Li(Q) (6.1.14)
(v*)1—=b in R?
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and

1.1
divu =0 (6.1.15)

c’)tu—i—dlvu@b—Au:—Vp} i Q
in the sense of distributions. By (6.1.11) and (6.1.14), we have
|b] < M, Yi(u,p) <1, p(-,t)]1 =0 forallte]—1,0[. (6.1.16)

Choosing a cut-off function ¢ in an appropriate way in the local energy
inequality, we find the energy estimate for u”

[

|2,00,03/4) + IV U ||2,0(3/4) < c2(M) (6.1.17)

that remains to be true for the limit function

ull2,00,03/2) + IV ull2,q(3/4) < c2(M).

It is easy to check that p is a harmonic function depending on t as a
parameter. After application of bootstrap arguments, we find

sup (|Vu(2)] + [ V2u(2))
z€Q(2/3)

0

2
+( sup / |atu(x,t)|%dt) < es(M).
z€B(2/3)
—(2/3)?
From the above estimate, a parabolic embedding theorem and scaling, it
follows that

1
3

(m / lu— (Vu) rz — (u)77|3dz)
Q(T)

2
3

1 3 3
S CTZ(WQ(/) (‘VQU‘ 2 + |8tu| 2 )dZ)

3 2

1
<er?(C() + 5C00n)" < Cnyr
for all 0 < 7 < 2/3. The latter estimates gives us:
Y (u) < & (M)95. (6.1.18)

Using the known multiplicative inequality, see the previous chapter, we
derive from (6.1.17) another estimate

||uk||%,Q(3/4) < ca(M). (6.1.19)
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Let us find a bound of the first derivative in time with the help of duality
arguments. Indeed, we have from (6.1.13) and (6.1.16)

< es(M). (6.1.20)

Ot o
1967l 000308/

Here, W3(B(3/4)) is the completion of C5°(B(2/3)) in W2(B(2/3)). By
the compactness arguments used in the previous section, a subsequence can
be selected so that

uF —u o in L3(Q(3/4)). (6.1.21)

Now, taking into account (6.1.21) and (6.1.18), we pass to the limit in
(6.1.12) and find

93 < G9¥5 4 limsup Y2 (p"). (6.1.22)
k—o0
In order to pass to the limit in the last term of the right-hand side in
(6.1.22), let us decompose the pressure p* as follows (see [Seregin (1999,
2001, 2002)]):

p* =pl + 5. (6.1.23)

Here, the first function p¥ is defined as a unique solution to the following
boundary value problem: find p}(-,t) € L3(B) such that

/p’f(m,t)Az/J(x) dx = —€1k/uk(x,t) @ uF(z,t) : V2(2) dz
B B
for all smooth test functions ¢ subjected to the boundary condition 9|95 =
0. It is easy to see that
Aps(,t)=0 inB (6.1.24)

and, by the coercive estimates for Laplace’s operator with the homogeneous
Dirichlet boundary condition, we get the bound for pk:

3 3 k
/|p’f(a:,t)|§dx < csfk/|u (2, ) da. (6.1.25)
B B
Passing to the limit in (6.1.22), we show with the help of (6.1.25) that:
935 < G953 4 limsup Y2 (ph). (6.1.26)
k—o0

By Poincare’s inequality, (6.1.26) can be reduced to the form

03 < @Yt + e lilrcnsup (Wlﬁﬂ / \Vp’2“|% dz) ° (6.1.27)
—00
Q%)
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We know that the function p%(-,t) is harmonic in B and, by the mean value
theorem, estimate

sup Ve, 0)]F < c/|p’5<x,t>|%dx
z€B(3/4) A

holds, which in turns implies

1 3 c 3
V5|2 dz < — [ |p5|2 dz
|Q(D)] Y
9 Q

1 1 3
Q

The latter inequality, together with (6.1.25), allows us to take the limit in
(6.1.27). As a result, we show that

03 < @9 + evh. (6.1.28)

If, from the very beginning, ¢; is chosen so that
c1 = 2(51 + C),

we arrive at the contradiction. Proposition 1.1 is proved.
Proposition 1.1 admits the following iterations.

Proposition 1.2. Given numbers M > 3 and B € [0,2/3], we choose
9 €]0,1/2] so that

(M9~ < 1. (6.1.29)
Let £1(9, M) = min{e (9, M), 9°M/2}. If
()il <M,  Yi(v,q) <, (6.1.30)

then, for any k=1,2, ...,

() ger| < M, Ygroa(v,q) <& < e,

6.1.31
Yﬂk (an) < ﬁ#yﬂk_l(qhq)' ( )

PRrROOF We use induction on k. For k = 1, this is nothing but Proposition
1.1.

Assume now that statements (6.1.31) are valid for s = 1,2,....k > 2.
Our goal is to prove that they are valid for s = k + 1 as well. Obviously,
by induction,

Yl?k (1)7 q) <& <ey,
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and

(") = 9*1(0) g | < OF[(0) gr = (v) i1 |+ OF[(v) o1

1 1 1

< %Yﬁk71 (’U,q) + §Q9k_1|(v)ﬂ9k71| < ﬁgl + M/2 < M.
Introducing scaled functions

Wy, s) = o0y, 0%s),  ¢"(y,s) = 9% q(9"y, 9% s)
for (y, s) € Q, we observe that v* and ¢* are a suitable weak solution in Q.
Since

Yl (’Uka qk) = ﬂkyﬁk (U7 q) <& <e¢e;

and

‘(,Uk),l = ﬁk‘(v),ﬂd < M7

we conclude
k k 2 k K 2438 k K
K9(’U ,q )§61ﬁ3Y1(U ,q )<19 6 5/1(1} »q )7

which is equivalent to the third relation in (6.1.31). Proposition 1.2 is
proved.
A direct consequence of Proposition 1.2 and the Navier-Stokes scaling

vfi(y,s) = Ru(wo + Ry, to + R*s), ¢ (y,s) = R*q(xo + Ry, to + R*s)
is the following statement.

Proposition 1.3. Let M, 3, 9, and g, be as in Proposition 1.2. Let a pair
v and q be an arbitrary suitable weak solution to the Navier-Stokes equations
in the parabolic cylinder Q(zo, R), satisfying the additional conditions

R|(v) .| < M, RY (29, R;v,q) < 1. (6.1.32)
Then, for any k = 1,2, ..., the estimates
Y (20,9%R;v,q) < ﬁ%kY(zo,R;v,q) (6.1.33)
hold.

PrROOF OF LEMMA 6.1 We start with the case k = 1. Define
A= / (|U|3 + |P|%) dz.
Q

Then, let M = 2002, § = 1/3, and let ¥ be chosen according to (6.1.29)
and fix.
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First, we observe that

Q(20,1/4) cQ if 2z €Q(3/4)

and
EY(ZO, 14U, P) < (A} + A3), i|(U)M| < cAb.
Selecting e so that
c(5§ + 5(%) < &, cs§ < 2002.

Then, by (6.1.5), we have

1
_|(U)zo,i| < Mv

1
ZY(ZQ,1/4;U,P)<§1, 1

and thus, by Proposition 1.3,
Y (20, 8" /4:U, P) < 92Y (20, 1/4U, P) < 972y
for all zg € Q(3/4) and for all k = 1,2, .... Holder continuity of v on the set
Q(2/3) follows from Campanato’s type condition. Moreover, the quantity
sup  |v(z)]
z€Q(2/3)
is bounded by an absolute constant.

The case k > 1 is treated with the help of the regularity theory for
the Stokes equations and bootstrap arguments, for details, see [Necas et al.
(1996)], Proposition 2.1. Lemma 6.1 is proved.

In what follows, the scaled energy quantities, i.e., the energy quantities
that are invariant with respect to the Navier-Stokes scaling,

1 1
A(v;z0,7) =  sup - / lo(z, t)|* dz, E(v;z0,7) = - / |V v dz,
to—r2<t<ty T r
B(xzo,r) Q(z0,7)
1 s 1 s
Clizor = [ WPds Dolgaor) =g [ lo—ldeosl?dz
Q(20,7) Q(z0,7)

will be exploited. We are also going to use abbreviations for them such as
A(r) = A(v; 0,7), etc.

Our aim is to prove a version of the Caffarelli-Kohn-Nireberg theorem
(Here, we follow F.-H. Lin’s arguments, see [Lin (1998)]).

Theorem 1.4. Let v and q be a suitable weak solution to the Navier-Stokes
equations in Q. There exists a positive universal constant € such that if
sup E(r) <e,
0<r<1
then z = 0 is reqular point of v, i.e., v is Holder continuous in the closure
of the parabolic cylinder Q(o) with some positive o < r.
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Let us start with the proof of auxiliary lemmata. In fact, the first statement

is a scaled version of a particular multiplicative inequality.
(6.1.34)

Lemma 6.2. For all0 <r < p<1,
T\3 s 0
Ho)+ (£

o@r) < c[<;) A )SA%(Q)E%(Q)].

PrROOF We have
[k az= [ (1oF = oPo) do+ [ (o) pde <
B(r)

B(r) B(r)
< 2 11,2 ’ r 2 qr.
< [ ok = oProfdo+ (5) [ 0P da
B(o)

B(o)
By the Poincaré-Sobolev inequality,
[ ol = 0efde <o [ 19 0l0laa
B(o)

B(o)
where c¢ is an absolute positive constant. So, we get

Ik |v|2dac§cg< Ik |VU|2dw)%< Ik |v|2dm>§+
B(r) B(g)3 B(e)
+(2) B{g) Ivlgd;’E< (6.1.35)
< ce%A%(@)(B(f) Vo) + (2) eAlo).
o

Using the known multiplicative inequality, one can find

/Idexgc[(/vadx)%(/|U|2dx)%+

B(r)

B(r)
( / \v\de)%} < (see (6.1.35)) <

B(r)
s
" B(r) ,
gc{g%A%(g)( / |Vv|2dm)% +
B(r)
+%[CQ%A%(9)( / |Vv|2daz:)5 n (—) QA(Q)F} <
B(o)
3 9
< c{(f)?’A%(Q) + ( / |W|2dgc)Z [94 + T—g}A%(Q }
B(o)
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Integrating the latter inequality in ¢ on ]ty — r?,¢[, we establish

oS- (&) + (¢ <29
and then complete the proof of Lemma 6.2.
Lemma 6.3. For any 0 < R <1,
A(R/2) + E(R/2) < ¢ [c (R) + C*(R)D§ (R)
+A*(R)C (R)E? (R)] . (6.1.36)

ProOOF Picking up a suitable cut-off function in energy inequality (6.1.4),
we get the following estimates

A(R/2) + E(R/2) < c{% / o2 dz +
Q(R)

1
g [ [P = (0P ol dz +
(R)

e [ ) ([ )’y
Q(R) Q(R)

Since

1
e / |v|2clz§cC’%(R)7
Q(z0,R)
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we find
2
A(R/2) + E(R/Z) < {CH(R) + CH(R) D§ (R)+
i [ |l = [o)r el dz ).
Q(Zo R)
Application of Holder inequality to the last term on the right-hand side of
(6.1.37) gives:

(6.1.37)

s= [ [P - [oPl.e] o]z <
Q(R)
9 3 2 1
< / at / Iof? — (1o ] ) ( / of*dz)”.
“R2  B(R) B(R)

By the Gagliardo-Nirenberg 1nequahty

(/ ’|U|2*Hv\ I.r ] dx)%<c / IV ol |v| da,

B(R) B(R)
we have
0 1 1 1
Sgc/ dt( / |Vv|2dx)2( / |v|2dx)2( / |U|3dx)3§
—R? B(R) B(R) B(R)
0
gcR%A%(R)/dt( / Vol dz)* ( / P dr)’ <
e B(R) B(R)
1 0 3 2
1 3 3 9, \1\3
SCRQA v dz dt |Vv| dx ) <
Q(R) —R?
gR%+%A%(R)c%(R)R%( / Vol?dz)? <
Q(R)

1

< cR?A3(R)C3(R)E*(R).
Now, (6.1.36) follows from the latter relation and from (6.1.37). Lemma

6.3 is proved.
Now, our goal is to work out an estimate for the pressure.

Lemma 6.4. Let 0 < p < 1. Then
Do) < e[ (5) Dote) + (2) 42 015 (0)] (6.1.38)

0 r
for all r €]0, g].
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ProOOF We split the pressure in two parts

q=p1+p2 (6.1.39)
in B(p) so that p; is a unique solution to the variational identity
/ p1Apdr = — / (1 —7,) : Viepdu, (6.1.40)
B(e) B(o)

in which ¢ is an arbitrary test function of W#(B(p)) satisfying the boundary
condition ¢|sp(,) = 0 and
Ti= (V=) ®(V—cp), To=[(V—1¢o) ®(V—0¢p)l0s Cor=[],
Here, time t is considered as a parameter. Clearly,
Aps =0 (6.1.41)

in B(p).
We can easily find the bound for p; (by a suitable choice of the test
function in (6.1.40))

/|p1|%dxgc/ IT — 7|3 dx.

B(e) B(eo)

The Gagliardo-Nirenberg inequality

3
/|p1|%dac§c(/|v—cg||Vv|dm)2
B(e) B(e)

and Holder inequality imply

3 3
/|p1|%dx§c(/|v—cg|2dx)4(/|Vv|2da:>4.
B(o) B(o) B(o)

On the other hand, Poincaré’s inequality

/ v — c,|?dx < co? / |Vo|?da

B(e) B(o)
and the minimality property of ¢,
/ |v — co|?dx < |v|2dx
B(o) B(o)

lead to the estimate

0
%/ /IpllgszcE(g)A%(g). (6.1.42)

—0? B(o)
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By the mean value theorem for harmonic function ps, we have for 0 <

r<o/2
sup [pa(@.t) — [pa] +(8)]* <cr®  sup  |Vpa(w,t)|?
z€B(r) z€B(0/2)
r
<e(Z [ Inatet) = lpalo(0)de) (6.1.43)

B(e)

c/r\3 3
<S(5)7 [ oatent) ~ Il o))
B(e)
Next, by (6.1.39) and (6.1.43),

C &
Do) <5 [ o= lnlolids+ 5 [ o el fEes
Q(r) Q(r)
1 3 7
c 3 c 2 3
<5 / mlta+ 5= (%) /7‘3 / P22 1) — [pa] o(t)) H
Q(r) —r2  B(e)
Yy 2 AL r g 1 3
<o(7) B@AR @ +e(3) = [ l2—[palolia
Q(e)
<C(g)QE(Q)A%(Q)JrC(f)g[i / 0 la].ol *d=
T\ o/ Lo N
Q(e)
1 :
t2 / |p1_[p1],g|2dz]

Q(e)

T3 02 1
<c|(5) Doo) + (5) 43 ().
So, inequality (6.1.38) is shown. Lemma 6.4 is proved.

PROOF OF THEOREM 1.4 It follows from (6.1.34), (6.1.38), and the
assumptions of Theorem 1.4 that:

o@) < c[(f)?’A%(g)s% + (5)3,4%(9)} (6.1.44)

%
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and
Do(r) < CK%) %Do(@) + (g)zA%(g)s}. (6.1.45)
Introducing the new quantity
£(r) = A% (r) + D(r),
we derive from local energy inequality (6.1.36) the following estimate

£(r) < e[c@r) + CH(2r)Do(2r) + A 2r)C (20)21] + DE(r)

< 0[0(27‘) + D2(2r) + A% (2r)CF (27«)5%} . (6.1.46)

Now, let us assume that 0 < r < p/2 < p < 1. Replacing r with 2r in
(6.1.44) and (6.1.45), we can reduce (6.1.46) to the form

ey <[(2) i@t + (5) At

Q T
walen((2) At + (5)'410) ]
<e[(2) 430+ (£) D30 + (£) At @14t o) ()

H(O) atr ettt 1 (2) a0 + (£) atoet].

Here, the obvious inequality A(2r) < cpA(p)/r has been used. Applying
Young inequality with an arbitrary positive constant §, we show that

e < o 1) + 180 + st

() < c[(f)%(e% £ 1) +0]e@) +e0)(2) (@ 4 et 1t (6147)
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Inequality (6.1.47) holds for r < p/2 and can be rewritten as follows:

3 3

£(00) < 0[191(51 Y1)+ 5]5(9) Fe(@)9T12(e8 + 63 +eB)  (6.1.48)

for any 0 < 9 < 1/2 and for any 0 < o < 1.
Now, assuming that ¢ < 1, let us fix ¥ and § to provide the conditions:

2097 < 1/2, 0<9<1/2, b <972 (6.1.49)
Obviously, ¥ and § are independent of . So,
E(Wo) < V2E(0) + G (6.1.50)

for any 0 < o < 1, where G = G(¢) - 0 as e — 0.
Iterations of (6.1.50) give us

EWFp) < VFE(0) + G
for any natural numbers k and for any 0 < ¢ < 1. Letting o = 1, we find
EWF) <92E) + G (6.1.51)
for the same values of k. It can be easily deduced from (6.1.51) that
E(r) < c(r?&(1) + G(e)) (6.1.52)
for all 0 < r <1/2. Now, (6.1.44) and (6.1.45) imply

C(r) + Do(r) < e[ At @r)et + a3 20)] + c(ried (1) + GH (o))

1

<clat@en +et] +eriet) + GHe)

-

< cle(@nte() + o) +=H] +erhed (1) + G e)).
Now we see that, for sufficiently small £ and sufficiently small rg,
C(To) + Do(’r‘o) < &g,

where g¢ is a number of Lemma 6.1. Since v and ¢ — [¢] », are a suitable
weak solution in @Q(rg), Lemma 6.1 and the Navier-Stokes scaling yields
required statement. Theorem 1.4 is proved.

Now, we are in a position to speculate about e-regularity theory. Quan-
tities that are invariant with respect to the Navier-Stokes scaling

v My, s) = Mv(xo + Ay, to + A2s),
My, s) = Nq(zo + Ay, to + A%s) (6.1.53)
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play the crucial role in this theory. By the definition, such quantities are
defined on parabolic balls Q(r) and have the property

F(v,q;r) = F(v*, ¢ r/A).

There are two types of statements in the e-regularity theory for suitable
weak solutions to the Navier-Stokes equations and the first one reads:

Suppose that v and q are a suitable weak solution to the Navier-Stokes
equations in Q. There exist universal positive constants € and {cp}?
such that if F(v,q;1) < ¢ then |VFv(0)| < cx, k= 0,1,2,.... Moreover, the
function z — V*v(2) is Hélder continuous (relative to the parabolic metric)
with any exponent less 1/3 in the closure of Q(1/2).

An important example of such kind of quantities appears in Lemma 6.1
and is as follows:

1 . 3
Fogir) =5 [ (1 +lal?)a.
Q(r)

In the other type of statements, it is supposed that our quantity F' is
independent of the pressure q:

Let v and q be a suitable weak solution in Q). There exists a universal
positive constant € with the property: if supgc,«1 F(v;r) < e then z =0 is
a regular point. Moreover, for any k = 0,1,2, ..., the function z — VFuv(z)
is Holder continuous with any exponent less 1/3 in the closure of Q(r) for
some positive 1.

Dependence on the pressure in the above statement is hidden. In fact,
the radius r is determined by the L 3-n0rm of the pressure over the whole
parabolic cylinder Q).

To illustrate the second statement, let us consider several examples. In
the first one, we deal with the Ladyzhenskaya-Prodi-Serrin type quantities

0

1
F(wsr) = Movin) = lolhag = [ lode) de
—r2  B(r)
provided
§ + 2 =1
s

and s > 3. Local regularity results connected with those quantities have
been proved partially by J. Serrin in [Serrin (1962)] and then by M. Struwe
in [Sruwe (1988)] for the velocity field v having finite energy even with no
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assumption on the pressure. However, in such a case, we might loose Holder
continuity.

Energy scale-invariant quantities present an important example of the
second kind of quantities. Some of them have been listed above. For more
examples of scaled energy quantities, we refer to the paper [Gustafson et al.
(2007)]. It is worthy to note that the second statement applied to the scaled
dissipation E is the famous Caffarelli-Kohn-Nirenberg theorem, which is
Theorem 1.4. It gives the best estimate for Hausdorff’s dimension of the
singular set for a class of weak Leray-Hopf solutions to the Cauchy problem.
A certain generalization of the Caffarelli-Kohn-Nirenberg theorem itself has
been proved in [Seregin (2007)] and is formulated as follows.

Proposition 1.5. Let v and q be a suitable weak solution to the Navier-
Stokes equations in Q. Given M > 0, there exists a positive number e(M)
having the property: if two inequalities lim sup,._,o E(r) < M and

llgl_g(l)lf E(r) <e(M)
hold, then z = 0 is a regular point of v.

Typical examples of the third group of quantities invariant to the Navier-
Stokes scaling are:

Gi(v;r) = sup |z||v(2)],
z=(z,t)€Q(r)

Ga(v;r) = sup  V—t|v(2)|.

z=(z,t)€Q(r)

A proof of the corresponding statements has been presented in [Seregin
and Zajaczkowski (2006)], see also [Takahashi (1990)], [Kim and Kozono
(2004)], and [Chen and Price (2001)] for similar results.

6.2 Bounded Ancient Solutions

Definition 6.2. A bounded divergence free field u € Lo (Q_;R™) is called
a weak bounded ancient solution (or simply bounded ancient solution) to
the Navier-Stokes equations if

/(u-@tw—i—u@u:Vw—i—u-Aw)dz:O
Q-
for any w € C5%(Q-).
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Without loss of generality, we may assume that |u(z)] < 1 a.e. in Q_.
If not, the function u*(x,t) = Au(Az, \2t) with A = 1/||u/|cc,0_ Will be a
bounded ancient solution satisfying the condition [u*(2)| < 1 a.e. in Q_.

Our aim is to analyze differentiability properties of an arbitrary bounded
ancient solution. Before stating and proving the main result, let us formu-
late several auxiliary lemmata.

Lemma 6.5. For any F = Lo(R™;M"*"), there exists a unique function
qr € BMO(R") that [qr]p1) = 0 and

Agp = —divdivF = —Fjj 45 in R3
in the sense of distributions. Moreover, the following estimate is valid
larll Bmo®ny < c(n)||F|loo,rn-

Here, the space BMO(R"™) consists of all functions f € L (R™) with

bounded mean oscillation, i.e.,

1,loc

1
— . R™ .

[f]a is the mean value of a function f over a spatial domain 2 € R™. The
mean value of a function g over a space-time domain @ is denoted by (g)¢.

Lemma 6.6. Assume that functions f € Ln,(B(2)) and q € L., (B(2))
satisfy the equation

Ag = —divf in  B(2).

Then

[ waras < cmn( [ ifmdass [l ldpe i)

B(1) B(2) B(2)

Lemma 6.7. Assume that functions f € Ly, (Q(2)) and u € WL°(Q(2))
satisfy the equation

Ou—Au=f in Q(2).

Then u € W21(Q(1)) and the following estimate is valid:

10sullm. @) + 1V*tllm, @y < e(m,n) || fllm.qe2) + HUHW;;D(Q(Q))]
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Lemma 6.5 is proved with the help of the singular integral theory, see

[Stein (1970)]. Proof of Lemmata 6.6 and 6.7 can be found, for example, in

[Ladyzhenskaya and Uraltseva (1973)] and [Ladyzhenskaya et al. (1967)].
If we let

F(,t) = u(-, 1) @ (- 1),
then, by Lemma 6.5, there exists a unique function
Pugu € Loo(—00,0; BMO(R™))
which satisfies the condition [pugu]p(1)(t) = 0 and the equation
Apugu(-,t) = —divdivF(-,t) in R"

for all t <0.
To state the main result of this section, we introduce the space

Ln(Q-) :=={ sup [[fllm.qez0.1) <00}
20€Q -
Theorem 2.6. Let u be an arbitrary bounded ancient solution. For any
number m > 1,
|vu| + |v2U| + |qu®u| € Em(Q*)

Moreover, for each to <0, there exists a function by, € Loo(to — 1,t0) with
the following property

sup ||btUHLoo(t0711t0) < C(?’L) < +o00.
to<0
If we let ut(z,t) = u(w,t) + by, (t) in Qo = R"x]tg — 1,t0[, then, for any
number m > 1 and for any point xoy € R™, the uniform estimate
||Ut0||W3,;1(Q(ZO,1)) < ¢(m,n) < +o0, 20 = (w0, o),

is valid and, for a.a. z = (z,t) € Q™, functions u and u' obey the system
of equations

Ou® +dive ® u — Au = —Vpugu, divu = 0.

Remark 6.2. The first equation of the above system can be rewritten in
the following way

Oru + divu @ u — Au = —=Vpugu — by, by, (t) = dby, (t)/dt,

in Q% in the sense of distributions. So, the real pressure field in Q% is the
following distribution pug. + b}, - .
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Remark 6.3. We can find a measurable vector-valued function b defined
on ] — 00, 0] and having the following property. For any to < 0, there exists
a constant vector ¢, such that

sup ”b - Ct0||Loc(tO_17t0) < +oo.
to<0

Moreover, the Navier-Stokes system takes the form
Oyu + divu @ u — Au = =V (pugu + V' - 1), divu =0
in Q_ in the sense of distributions.

Remark 6.4. In most of our applications, we shall have some additional
global information about the pressure field, which will make it possible to
conclude that b’ = 0. For example, it is true if the pressure field belongs to
Loo(—00,0; BMO(R™)), i.e., u is a mild bounded ancient solution, see the
next section for details and definitions.

We can exclude the pressure field completely by considering the equation
for vorticity w = V A u. Differentiability properties of w are described by
the following theorem.

Theorem 2.7. Let u be an arbitrary bounded ancient solution. For any
m > 1, we have the following statements. If n = 2, then

w=Vtu= U2,1 —UL2 € Wﬁil(Qf) = {Wa V%VQW,atw € ﬁm(Q,)}

and
Ow+1u-Vw—Aw=0 a.e. in Q_.
If n = 3, then
w=VAueWi(Q_;R?
and

Ow+u-Vw—Aw =w-Vu a.e. in Q_.

Remark 6.5. We could analyze smoothness of solutions to the vorticity
equations further and it would be a good exercise. However, regularity
results stated in Theorem 2.7 are sufficient for our purposes.

Remark 6.6. By the embedding theorems, see [Ladyzhenskaya et al.
(1967)], functions w and Vw are Holder continuous in @_ and uniformly
bounded there.
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PROOF OF THEOREM 2.6: STEP 1. ENERGY ESTIMATE. Fix an arbi-
trary number ¢y < 0. Let k-(z) be a standard smoothing kernel (mollifier).
We use the following notation for mollified functions:

Fe(z) = / ke(z — 2" F(2')d2', F=u®u,

Assume that w € 8*30(@’5_0), where Q™ = R" x] — 00, t[. For sufficiently
small € (0 < e < g(tg)), w® belongs to 8’80(@,) as well. Then using known
properties of smoothing kernel and Definition 6.2, we find

/ w - (Opu® + divF® — Au®)dz = 0, Yw € 8‘80(6220)
Q-

It is easy to see that in our case there exists a smooth function p. with the
following property

Ou® + divF® — Au® = —Vp, divu® =0 (6.2.1)
in Q™. Let us decompose p. so that
Pe = pre + Pe. (6.2.2)

It is not difficult to show that the function Vpp- is bounded in Q" (exer-
cise). So, it follows from (6.2.1) and (6.2.2) that

Ap.=0 in Q%,  Vp. € Lo(Q;R™).
By the Liouville theorem for harmonic functions, there exists a function
ac : [—00, to[— R™ such that
Vpe(z,t) = ae(t), zeR" —oo<t <At
So, we have
ou® + divF® — Au® = —Vppe — a,, divu® =0 (6.2.3)
in Q™.

Now, let us introduce new functions
t
beto (1) = / as(7)dr, to—1<1t<to,

to—1
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ve(x,t) = u (2, ) + bety (2), z = (x,t) € Q™.
Using them, we may rewrite system (6.2.3) so that
Ove — Ave. = —divF® — Vppe, divv. =0 (6.2.4)
in Q™.
Fix an arbitrary cut-off function ¢ so that
0<p<, p=1 in B(1), suppy C B(2).

And then let ., () = p(z — z0).
Now, we can derive the energy identity from (6.2.4), multiplying the
latter by gpiovg, and integrating the product by parts. As a result, we have

t
I(t):/gpio(gc)|vg(x,t)|2dx+2 / /apio|Vva|2dxdt’:

R to—1R"
t
:/apio(x)h)s(x,to —1)]2dz + / /Ag&io|v€\2dxdt/+

R to—1R"™

+ / /(pr — [PFe] B(wo,2) Ve - Voo, dadt'+
to—1 Rn

¢
+ / /(Fs — [F)B(xo,2) : "V (92, ve)dadt'.
to—l R”
Introducing the quantity

and taking into account that v. (-, tg—1) = u®(-,to—1) and |us(-, tp—1)| < 1,
we can estimate the right-hand side of the energy identity in the following
way

I(t) < ¢(n) + c(n) / ae(t)dt' +

to

1
2

+c(n)( / / |ngf[ng]B(wo,Qﬂdedt)%( / ag(t’)dt’> +

to—1 B(z0,2) to—1
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to . t
+e(n)( / / |F® = [F]pag 2t ) * / / 02, Vo *dadt’ +
to—1 B(x0,2) to—1R7

(6.2.5)
t
3
n / ag(t')dt'> . to—1<t<t.
to—1
Next, since |F*¢| < ¢(n), we find two estimates
to
|FS — [F] p(ag,2)[*dzdt < c(n)
to—1 B(xo,2)
and
to

pre = [Pre]Blag.2) | *dadt < c(n)lprll7 _(— oo to:BrO@E)
to—1 B(x0,2)

e FI2 _ g, < cln)

The latter estimates, together with (6.2.5), implies two inequalities:

t

a.(t) < e(n) (1 n / as(t’)dt’>, to—1<t<to

to—1
and
to to
sup / / \Vve\zdxdtgc(n)(l—&—/ozg(t)dt).
zo€R™
to—1 B(zo,1) to—1

Usual arguments allows us to conclude that:

sup  ag(t) + sup / / |Vuf|?dxdt < c(n). (6.2.6)

to—1<t<to roER™
to—1 B(zo,1)

It should be emphasized that the right-hand size in (6.2.6) is independent

of tg. In particular, estimate (6.2.6) gives:

sup  bet, () < e(n).
to—1<t<to
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Now, let us see what happens if ¢ — 0. Selecting a subsequence if
necessary and taking the limit as ¢ — 0, we get the following facts:

*

b&‘to_\bto in LOO(tO - 1?tO7Rn)7
the estimate
to
bt 210+ S0 / / VuPdedt < e(n) < +00  (6.2.7)
R B(z0,1)
is valid for all ty < 0;
the system
o' +divu @ u — Au= —Vp —u® u, divu =0

holds in Q% in the sense of distributions.
The case ty = 0 can be treated by passing to the limit as o — 0.
STEP 2. BOOTSTRAP ARGUMENTS. By (6.2.7),

f=divF =u-Vu € L2(Q_; R™).
Then Lemma 6.6 in combination with shifts shows that
Vougu € L2(Q—;R™).
Next, obviously, the function u'° satisfies the system of equations

Opu'® — Au' = —u - Vu — Vpugu € L2(Q_;R™).
Using the invariance with respect to shifts and Lemma 6.7, one can conclude
that

uto € W (Q(zo, 72); R™), 1)2<m<m =1,
and, moreover, the estimate

14 w21 (Qz0,m)) < €1 T2)

holds for any zo = (wo,tp), where g € R™ and t, < 0. A parabolic
embedding theorem, see [Ladyzhenskaya et al. (1967)], ensures that:

Vu' = Vu € WﬁL’S(Q(Z'O, T2); R™)

for

1 1 1
m_2:m_1_—n_|_2’ m1:2.
By Lemma 6.6, by shifts, and by scaling, for 1/2 < 74 < 72, we have the
following estimate

[ 19peatmde < e[ [ wutods ]
B(xo,75) B(xo,74)
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In turn, Lemma 6.7 implies two statements:
u' € W2(Q(z0,73); R™), 1/2<m3 <1

and

HUtOHW?n’;(Q(ZO-,TS)) < c(n,73,74).
Then, again, by the embedding theorem, we find
Vu' = Vu € W2 (Q(z0,73); R™)

provided
1 1 1

ms  ma n+2
Now, let us take an arbitrary large number m > 2 and fix it. Find « as
an unique solution to the equation
1 1 «

m 2 n+2
Next, we let kg = [a] + 1, where [o] is the entire part of the number . And
then we determine the number my, 41 satisfying the identity

1 1 ko

Mko+1 2 n+42
Obviously, mg,4+1 > m. Setting
11
42k
and repeating our previous arguments kg times, we conclude that:
u e Wil (Q(z0, Tho+1); R™)

Mg 41

Tk+1 = Tk 7—1:17 k:1a2777

and

t
[ °||W3;;0+1(Q(zo,rk0+1)) < ¢(n,m).

Thanks to the inequality 7, > 1/2 for any natural numbers k, we complete
the proof of Theorem 2.6. (1

PROOF OF THEOREM 2.7 Let us consider the case n = 3. The case
n = 2 is in fact easier. So, we have

Ow —Aw=w -Vu—u-Vw= f.

Take an arbitrary number m > 2 and fix it. By Theorem 2.6, the right-hand
side has the following property

I < e(m)(IV2ul + [Vul?) € Lin(Q(20,2))
and the norm of f in L,,(Q(20,2)) is dominated by a constant depending

only on m and being independent of zy. It remains to apply Lemma 6.7
and complete the proof of Theorem 2.7. [J
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6.3 Mild Bounded Ancient Solutions

In this section, we assume that z = 0 is a singular point. Making use of the
space-time shift and the Navier-Stokes scaling, we can reduce the general
problem of local regularity to a particular one that in a sense mimics the
first time singularity.

Proposition 3.8. Let v and q be a suitable weak solution to the Navier-
Stokes equations in QQ and z = 0 be a singular point of v. There exist two
functions v and q having the following properties:

(i) v € L3(Q) and q € L3(Q) obey the Navier-Stokes equations in Q in
the sense of distributions;

(ii) U € Loo(Bx] — 1,—a?]) for all a €]0,1];

(i) there exists a number 0 < r1 < 1 such that v € Loo({(z,t) : 11 <
|z] <1, =1 <t <0}).

Moreover, functions v and q are obtained from v and q with the help of
the space-times shift and the Navier-Stokes scaling and the origin remains
to be a singular point of v.

We recall z = 0 is a regular point of v if there exists a positive number
r such that v is Hélder continuous in the closure Q(r). A point z =0 is a
singular point if it is not a regular one.

PRrOOF Consider now an arbitrary suitable weak solution v and ¢ in
Q. Let S € Bx] —1,0] be a set of singular points of v. It is closed in
Q. As it was shown in [Caffarelli et al. (1982)], P1(S) = 0, where P! is
the one-dimensional parabolic Hausdorff measure. By assumptions, S # ().
We can choose number R; and R satisfying 0 < Rs < R; < 1 such that
SNQ(R1)\ Q(Ry) =0 and SN B(Ry)x] — RZ,0] # 0. We put

to =inf{t : (x,t) € SN B(R2)x] — R3,0]}.

Clearly, (z9,t0) € S for some zyp € B(Rg). In a sense, ty is the instant

of time when singularity of our suitable weak solution v and ¢ appears in
Q(R;). Next, the one-dimensional Hausdorff measure of the set

Sty = {z« € B(R2) : (z4,10) is a singular point}

is zero as well. Therefore, given xg € Si,, we can find sufficiently small
0 <7 < \/R%+1 such that B(zg,7) € B(R2) and dB(zo,7) N S, = 0.
Since the velocity field v is Holder continuous at regular points, we can
ensure that all statements of Proposition 3.8 hold in the parabolic ball
Q(zo0,7) with zg = (x0,t0). We may shift and re-scale our solution if zy # 0
and r # 1. O
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In what follows, it is always deemed that such a replacement of v and
g with v and ¢ has been already made. Coming back to the original nota-
tion, we assume that functions v and ¢ satisfy all the properties listed in
Proposition 3.8 and z = 0 is a singular point of v.

One of the most powerful methods to study possible singularities is a
blowup technique based on the Navier-Stokes scaling

uMy,s) = Mo, 1), pM(y,s) = Na(a,t)
with
z=2® 4 ALY, r=t;+ )\is,
where z(F) € R?, —1 < t;, < 0, and A, > 0 are parameters of the scaling
and Ay — 0 as k — +oo. It is supposed that functions v and q are extended
by zero to the whole R? x R. A particular selection of scaling parameters
) t;., and \;, depends upon a problem under consideration.

Now, our goal is to describe a universal method that makes it possible
to reformulate the local regularity problem as a classical Liouville type
problem for the Navier-Stokes equations. To see how things work, let us
introduce the function

M(t) = sup |lo(,7)llw 5
—1<7r<t
for some r €]ry, 1[. It tends to infinity as time ¢ goes to zero from the left
since the origin is a singular point of v. Thanks to the obvious properties
of the function M, one can choose parameters of the scaling in a particular
way letting A\ = 1/ M}, where a sequence My, is defined as

Mk? = ||v(7tk>‘|oo,§(r) = ‘U(x(k)7tk)‘

with z(®) € B(ry) for sufficiently large k. Before discussing what happens if
k tends to infinity, let us introduce a subclass of bounded ancient (backward)
solutions playing an important role in the regularity theory of the Navier-
Stokes equations.

Definition 6.3. A bounded vector field u, defined on R?x]—o0, 0, is called
a mild bounded ancient solution to the Navier-Stokes equation if there exists
a function p in Lo, (—00,0; BMO(R?)) such that u and p satisfy the Navier-
Stokes system

Ou+divu@u— Au+ Vp =0,
divu= 0

in R3x] — 00, 0] in the sense of distributions.
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The notion of mild bounded ancient solutions has been introduced in
[Koch et al. (2009)]. It has been proved there that u has continuous deriva-
tives of any order in both spatial and time variables. Actually, the definition
accepted here is different but equivalent to the one given in [Koch et al.
(2009)]. We follow [Seregin and Sverak (2009)].

Our first observation is that all mild bounded ancient solutions are very
smooth.

Proposition 3.9. Let u be an arbitrary mild bounded ancient solution. The
u is of class C*° and moreover

(wi;lein(lafVlU(w, 6 + 10y V" p(, )+
+||atkp||Loo(BMO) < C(k, L Ipll Lo (Bmo)) < 00
forany k,1=0,1,....
ProOF STEP 1 Let us show that
Vu € L2(Q-). (6.3.1)
Here, Q_ = R3x] — 00,0[ and

L2(Q-) = Louwnit(Q-) = {Ifl 220c(@) = Sug [ flL2(@(z0,1)) < 00}
20

Using a standard mollification kernel w,, let us introduce

folz) = /wg(z - 2" f(2)d7,
R'VL
where z = (x,t). Then from Definition 6.3, it follows that
Oy +div (u @ u), — Aup = —Vpy, divu, = 0. (6.3.2)

Let us test the first equation in (6.3.2) with pu,. Then after integration by
parts, we have

to
/cp(x,to)|ug(x,to)|2da?+2//<p|Vug|2dxdt:

R™ t1 Rn

to
- / (@, 1) g, 1) P + / / lugl?(Ap + Brip)ddi+

R™ t1 Rn
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to
12 [ [, Vg + (@ wy s 1, © Vo + (5, - al®)u, - Vil
t1 R»
with an arbitrary function @ = a(t). Choosing an appropriate non-negative

cut-off function ¢, we can deduce from the above identity

sup || Vugll2,0(z0,1) < ¢ < 00

zo€EQ =

with a constant ¢ independent of p. This certainly implies (6.3.1).

STEP 2 Let our non-negative function ¢ belong to the space C§°(R™ xR).
Then from the above identity, we can derive the local energy inequality by
passing to the limit as o — 0:

to
/cp(x,to)|u(z,to)|2dx+2 / /<p|Vu|2d1:dt <

R™ —oo R™
to to
< / / [ul? (A + Opp)dxdt + / /(|u|2 + 2p)u - Vpdzdt.
—oo R™ —oo R™

This makes it possible to apply e-regularity theory to the mild bounded
ancient solution u. Indeed, restricting ourselves to the case n = 3, we have

7 [ (P Bloenlds < o <
Q(z0,R)

where ¢ is an absolute constant and ¢ depends on ||p||__(Ba0) only. So, a

number R for which the above inequality is satisfied depends on the same

norm only. Then, there are positive constants c; with k£ = 1,2, ... such that

k Ck
IV¥u(z0)| < =7

for any zp € Q_.
Estimates for the pressure are coming from the pressure equation:

Ap = U4, Uj5-
Local regularity theory gives us:
/ |VEp|2de < c(k){ / V¥ (u @ u)>dz + / P = [P B(ao,2) Pdz
B(Cl)(),l) B(CE(),Q) B(:E(),Q)

for any k= 1,2, ..., and thus
[V¥p(20)| < C(k, |pll Lo (BMOY)
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for any 29 € Q- and for any k =1,2,....
STEP 3. Now, we wish to estimate derivative in time. Directly, from
the equations and the above estimates, we deduce that

[V*8eu(z0)| < Clk, Pl (ri0))

for any zp € @Q_ and for any kK = 0,1,.... To get higher derivatives of p
in t, we should estimate 0;p. To achieve this goal, let us use the pressure
equations

Aoyp = —divdiv (Oiu ® u + u ® dru).
This equation leads to the estimate

19epl 2. B0y < cllpllLo(BMO))-

Repeating the same arguments as in Step 2, we establish

IVFOp(20)| < C(k, 2l (BMOY)

for any zp € Q— and for any k£ = 1,2,.... In turn, from the equation, we
find that

|VEOFu(20)| < C(k, ||pll Lo (BMO)Y)

for any zgp € @_ and for any kK = 0,1, .... Then we again use the pressure
equation to estimate first Lo, (BMO)-norm of 7p and afterwards Lo,-norm
of V*¥0?%p with k =1,2,... And so on. 0

The statement below proved in [Seregin and Sverak (2009)] shows how
mild bounded ancient solutions occur in the regularity theory of the Navier-
Stokes equations.

Proposition 3.10. There exist a subsequence of u'®) (still denoted by u*))
and a mild bounded ancient solution u such that, for any a > 0, the sequence
u®) converges uniformly to u on the closure of the set Q(a) = B(a)x] —
a?,0[. The function u has the additional properties: |u| < 1 in R3x]— oo, 0]
and |u(0)] = 1.

PROOF OF PROPOSITION 3.10 Our solution v and ¢ has good properties
inside Q1 = By x] — 1,0[ with By = {r; < || < 1}. Let us list them. Let
Q2 = Bax] —72,0[, where 0 < 75 < 1, By = {r; < re < |7 < az < 1}.
Then, for any natural &,

z = (z,t) = V*v(2) is Holder continuous in Qs;

q € Lg(—73,0;C*(By)).
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The corresponding norms are estimated by constants depending on ||v||3,0,
||q||%7Q, |V]lco, @, and numbers k, r1, r2, az, T2. In particular, we have

0
max / [Vq(z,t)|3dt < ¢; < oo. (6.3.3)
r€B2

Proof of the first statement can be done by induction and found in [Escau-
riaza et al. (2003)], [Ladyzhenskaya and Seregin (1999)], and [Necas et al.
(1996)]. The second statement follows directly from the first one and the
pressure equation: Ag = —v; vj,;.

Now, let us decompose the pressure ¢ = g1 + ¢2. For g1, we have

Aqi(z,t) = —divdiv {XB(x)v(x,t) ®v(m,t)}, reR3 —-1<7<0,

where xp(z) = 1if x € B and xp(z) = 0if x ¢ B. Obviously, the estimate
0
//|q1(x,t)\%dxdt < c/ lv|>dz
~1R3 Q
holds and it is a starting point for local regularity of ¢;. Using differentia-
bility properties of v, we can show
0
max / Va1 (o, 0)|Fdt < 5 < o, (6.3.4)

x€B3g
2
where Bs = {ro < r3 < |z| < ag < az}. From (6.3.3) and (6.3.4), it follows
that
0
max / Vaa(, )| Fdt < e5 < oc. (6.3.5)
x€Bg
—72
However, ¢ is a harmonic function in B, and thus, by the maximum prin-
ciple, we have

0

max / [Vaa(z, t)|2dt < c3 < o0, (6.3.6)
z€B(rs) ,
72

where r4 = (r3 + as3)/2.
Let us re-scale each part of the pressure separately, i.e.,

pf(yvs) = )\%qi(fﬁ,t)7 i= ]-727
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so that p¥ = p¥ + p&. As it follows from (6.3.6), for p§, we have
0

: 5
sup / |V, 05 (y, 5)|%ds < e3Af. (6.3.7)
VEBEE AN s
The first component of the pressure satisfies the equation
Ayp]f(y, S) = _divydivy(XB(*I’“/)\;C,I/)\;C)(y)u(k) (yv 8)®u(k) (y? S))» Yy e R3>
for all possible values of s. For such a function, we have the standard
estimate
lelc('as)”BMO(Rl") <c (6.3.8)

for all s € — (1 — t)/)2,0[. It is valid since |u®)| < 1 in
B(—2* Ak, 1/A6)x] — (1 — t&) /A2, 0].

We slightly change p¥ and p§ setting

Piy,s) = Pi(y,s) — [pilsy(s)  P5(y.8) = p5(y, ) — [P5]m1) (9)

so that [pf]5(1)(s) = 0 and [p§]p1)(s) = 0.
Now, we pick up an arbitrary positive number a and fix it. Then from
(6.3.7) and (6.3.8) it follows that for sufficiently large k& we have

[ e [ Bhitde < cafencaa)
Q(a) Q(a)
Using the same bootstrap arguments, we can show that the following esti-
mate is valid:
||u(k)||ca@(a/2) < c5(c2, 03, 04,0)
for some positive number o < 1/3. Indeed, the norm H“(k)Hca@(a/z)) is
estimated with the help of norms ||u®(|;__ o(a))) and [[B¥|| 7, (@(a)), Where
2

p* = ﬁ’f + ]_)’2“ . Hence, using the diagonal Cantor procedure, we can select
subsequences such that for some positive « and for any positive a

u® =y in C*(Q(a)),
Py =D,  inLs(Qa),  [Bils(s) =0,

ph — D, in Lg(@(a))a [P2]B(1)(s) = 0.
So, |u| <1 in @Q_ and uw and p = p; + P, satisfy the Navier-Stokes system

in Q_ in the sense of distributions. Moreover, at it is follows from (6.3.8),
Py € Loo(—00,0; BMO(R?)).
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Next, for sufficiently large k, we get from (6.3.7) that

3 5
/ |Vph(y,s)|2ds < e\ .
Q(a)
Hence, Vps = 0 in Q(a) for any a > 0. So, Py (y, s) is identically zero. This
allows us to conclude that the pair u and p; is a solution to the Navier-
Stokes equations in the sense of distributions and thus u is a nontrivial
mild bounded ancient solution satisfying the condition |u(0,0)] = 1 and
the estimate |u| <1in Q_. O
It is worthy to notice that the trivial bounded ancient solution of the
form

u(zx, t) = c(t), p(x,t) = —c(t) - x,

with arbitrary bounded function ¢(¢), is going to be a mild bounded ancient
solution if and only if ¢(t) = constant. This allows us to make the following
plausible conjecture, see [Seregin and Sverdk (2009)].

Conjecture Any mild bounded ancient solution is a constant.

To explain what consequences of the conjecture could be for regularity
theory of the Navier-Stokes equations, let us formulate a question which
can be raised in connection with the e-regularity theory: what happens if
we drop the condition on smallness of scale-invariant quantities, assum-
ing their uniform boundedness only, i.e, supgc, .1 F(v,7) < +o0o.  For
Ladyzhenskaya-Prodi-Serrin type quantities with s > 3, the answer is still
positive, i.e., z = 0 is a regular point. It follows from scale-invariance and
the fact that the assumption M, ;(v;1) = supgc, 1 Ms,i(v;7) < 400 im-
plies My ;(v;r) — 0 as r — 0 if s > 3. Although in the marginal case
s = 3 and [ = 400, the answer remains positive, the known proof is more
complicated and will be outlined later.

Let us recall certain definitions and make some general remarks about
relationships between some scale-invariant quantities. Boundedness of

sup Ga(v;r) = Ga(v,1) = Gap < +0
0<r<1

can be rewritten in the form

G2

V-t

for all z = (z,t) € Q. If v satisfies the above inequality and z = 0 is still
a singular point of v, we say that a singularity of Type I or Type I blowup
takes place at t = 0. All other singularities are of Type II. The main

v(2)] <
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feature of Type I singularities is that they have the same rate as potential
self-similar solutions. The important properties connected with possible
singularities of Type I have been proved in [Seregin (2007)], [Seregin and
Zajaczkowski (2006)], and [Seregin and Sverdk (2009)] and are as follows.

Proposition 3.11. Let functions v and q be a suitable weak solution to the
Navier-Stokes equations in Q.
(i) If min{G1(v;1),G2(v;1)} < 400, then
g = sup {A(v;r) + C(v;ir) + D(g;r) + E(v;r)} < +oc.

0<r<1
(1) If
g =min{ sup A(v;r), sup C(v;r), sup E(v;r)} < +oo,
0<r<1 0<r<1 0<r<1
then g < +o0.

This proposition admits many obvious generalizations.

If we assume that v possesses uniformly bounded energy scale-invariant
quantities, then, by Proposition 3.10, the same type of quantities will be
bounded for the ancient solution, which is not trivial if z = 0 is a singular
point of v. However, by the conjecture, the above ancient solution must be
zero. So, the origin z = 0 cannot be a singular point of v. This would be
a positive answer to the question formulated above. In particular, accord-
ing to Proposition 3.11, validity of the conjecture would rule out Type I
blowups.

6.4 Liouville Type Theorems

6.4.1 LPS Quantities

Theorem 4.12. Let u be a mild bounded ancient solution to the Navier-
Stokes equations, i.e., u € Loo(Q-) is divergence free and satisfies the
identity

/(u~8tw+u®u:Vw+u~Aw)dz:O (6.4.9)
Q-

for any divergence free function w from C§°(Q-). Assume that
0

sup M (u;r) = / </|u(3c,t)|sclsv)é < 0o

0<r<oco
— 00 R3

with 3/s+2/l=1andl < co. Thenu=0 in Q_.
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PROOF Let us consider the simplest case of the regular LPS quantity Ms 5.
By the pressure equation, we may assume

0
//(|u|5 + |p|?)dzdt < +o00.
oo R3

Given € > 0, we can find T' < 0 such that

T
//(\u|5 + 1pl ) dadt < <.

oo R3
Then, by Holder inequality, we have

to
1
72 / / (Ju|® + |p|%)dxdt < et
to—R? B(zo,R)

for any o € R3, any R > 0, and any to < T with some universal constant
c. In turn, the e-regularity theory ensures the inequality

c

|u(m0,t0)| < E

with another universal constant c¢. Tending R — oo, we get u(-,t) = 0 as
t < T. One can repeat more or less the same arguments in order to show
that in fact u is identically zero on R3x] — oo, 0].

6.4.2 2D case

In two-dimensional case, we have the following Liouville type theorem.

Theorem 4.13. Assume that n = 2 and u is an arbitrary bounded ancient
solution. Then u(z,t) = b(t) for any v € R2.

To prove the above statement, we start with an auxiliary lemma.

Lemma 6.8. Let functions
weWANQ-)={ue ny{’lloc(Q—) 2osup ullypz g1y < 90}
20€Q—
with m >3, and u € Loo(Q-) satisfy the equation
Ow+u-Vw—Aw =0 in Q_
and the inequality
lul <1 in Q_.
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Then, for any positive numbers e and R, there exists a point zo = (xo,1o),
z0 € R? and to < 0, such that

(.AJ(Z)ZM*&“, ZGQ(Z()vR)a

where M = sup w(z).
ZEQ_—

Remark 6.7. By the embedding theorem, M < +o0.

In order to prove Lemma 6.8, we need a strong maximum principle.
Here, it is.

Theorem 4.14. STRONG MAXIMUM PRINCIPLE Let functions
w € WEHQ(20, R)) with m >n+ 1 and a € Loo(Q(20, R); R™) satisfy the
equation

Ow+a-Vw—Aw=0 in  Q(zo0, R).
Let, in addition,

w(zg) = sup  w(z).
ZGQ(ZQ,R)

Then
w(z) = w(zo) in  Qzo, R).

PrROOF OF LEMMA 6.8 ([Koch et al. (2009)]) In fact, we shall prove
even a stronger result. Let z; be a sequence of points in ()_ such that

w(zg) = M.
We state that

inf  w(z) > M.
z€Q(zk,R)

Indeed, assume that this statement is false. Then, we can find a number
€ > 0 and a sequence of points z; € Q(zx, R) such that

w(z) <M —e.
Now, let us consider shifted functions
Wh(z,t) = way + x,ty + 1), uF(x,t) = u(ay + 2, tp + 1),

for z = (z,t) € Q(R). By the definition of the space W21 (Q_), these new
functions are subject to the estimates

Hwk”vv,%;l(Q(R)) <g
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<1 i QR
with a constant ¢ that is independent of k. Moreover, we have

o +uf - Vwk — AWk =0 in Q(R),
Wwr(z) < M —e¢, zi € Q(R),

Wi(z) < M z € Q(R).
Using standard compactness arguments, we show

WP T in Wi’l(Q(R)),

uF 5T in Lo (Q(R):R?),

Wb =T in C(Q(R)),
w(z) <w(0)=M z € Q(R), (6.4.10)

W(z) < M —e¢, (6.4.11)
where z, € Q(R). Clearly, w € W2(Q(R)) and
Ow+u-Vwo—Aw =0 in Q(R).
By (6.4.10) and by the above strong maximum principle,
wz)=M  z€Q(R),

which is in a contradiction with (6.4.11). O
PROOF OF THEOREM 4.13 We are going to apply Lemma 6.8 to the
vorticity equation. Let us show first that

sup w(z) =M <0.
z€Q—

To this end, assume that the latter statement is wrong and in fact
M > 0.
Take a cut-off function ¢ € C§°(B(R)) with the following properties:
0<p<l, Vel <c¢/R in B(R),

p=1 in B(R/2).

By Lemma 6.8, for an arbitrary number R > 0, there exists a point zor =
(zor, tor) with tor < 0 such that

lw(z)] > M — M/2=DM/2>0, z € Q(zor, R).
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If we let @, () = @(x — zoR), then
M M,
A(R) = Oron (T)w(z)dz > 7R |B(zor, R)| = 77TR . (6.4.12)

Q(zor,R)
On the other hand, since w = w2 1 —u1 2, we have after integration by parts

AR = [ (Pt — pagpau)ds <
Q(z0r,R)
< cR?,
where ¢ is a universal constant. The latter inequality contradicts (6.4.12)
for sufficiently large R. So, M < 0. In the same way, one can show that
m > 0, where

—oo <m = inf w(z).
z€EQ -
So, w = 0 in Q_. Since u(-,t) is a divergence free function in R?, we
can state that u(-,t) is a bounded harmonic function in R2. Therefore,
u(z,t) = b(t), z € R% Theorem 4.13 is proved.

6.4.3 Awially Symmetric Case with No Swirl

In the case of axial symmetry, it is convenient to introduce the cylindrical
coordinates g, ¢, x3 so that 1 = pcosy, o3 = psingp, s = x3. The
velocity components are going to be u,, u,, us. By the definition of axial
syminetry,

Ugp = OUp/0p =0, up,=0, usz,=0, p,=0.
For the vorticity components, we have simple formulae
Wo = Up3, Wy =1Up3— U3 W3= Uyt Up/0
Now, assume that vector field u is an arbitrary axially symmetric

bounded ancient solution with zero swirl, i.e., u, = 0. This, in particu-
lar, leads to the representation

Vw = —Ewweg ® €y + Wy ey @ € + Wy 36, D 3.

We know that |Vw| is a bounded function, which implies boundedness of
functions wy, 4, Wy 3, and %wy,. Regarding V2w, we can state

0
m
2

[ [ ol +2bwp ol +letpaal+2 o/ 0) o 42100 0 ] * edad <
—T C(a)
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< ¢(a,T,p) < 400,
for any a > 0, for any 7" > 0, and for any m > 1. Here,
Cla)={r= (2 23) eR®: [2/| <a, |z3]<a}
and 2’ = (z1, 22) so that |2'| = o.
Theorem 4.15. Let u be an arbitrary axially symmetric bounded ancient
solution with zero swirl. Then u(x,t) = b(t) for any x € R3 and for any
t < 0. Moreover, uy(x,t) = 0 and uz(x,t) = 0 for the same x and t or,

equivalently, uy(o,xs,t) = 0 for any ¢ > 0, for any 3 € R, and for any
t <0.

PROOF We let n = w,/p. It is not difficult to verify that n satisfies the
equation

2
at77 + UpT], 0 + w33 — (An + E”],g) = 07 0> Oa —o0o <73 < +OO, t < 0)
where
1 1
A =2 (0m0).0F 33 = Moo + 133+ 7o
Let us make the change of variables

y=(ys) €ER®, ¥ = (y1,y2,¥3,%4),

Qzly’|=\/y%+y§+y§+yi Ys = 3.
Then after simple calculations, we see that a new function
f(y7 t) = f(yla Y2,Y3,Y4, Y5, t) = 77(97 2 t)
obeys the equation
Of+U-Vsf—Asf=0 (6413)

in Q> = R°x] — 00,0[. Here, V5 and Ajs are usual nabla and Laplacian
operators with respect to the Cartesian coordinates in R® and

U(ya t) = (Ul (ya t)a U2 (ya t)a Ud(ya t)a U4(y> t)a U5 (y> t))
with
3,1
Uz(yat): Mg,d,)y'w i:17273747 U5(y,t)=u;3(g,x3,).
Obviously, the function U is bounded in Q® . However, previous arguments
show that V5U is a bounded function as well. Indeed,we have

IVsU(y, )] < c(|Vu(z, )] + |ug(e, x3,)|/0) < | Vu(z,t)] < ¢ < +o0
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for any y € R® and any ¢ < 0. So,
U, [V5U] € Lo (Q2).
For bounded f, weak solution to (6.4.13) can be defined as follows

/ {fatg + fU . V5g + fg diV5U + ng,g dy dt =0

Q5
for any g € C§°(Q>). In the way, explained in the previous section, one
can show that, for any m > 1,

fewnt@Q)
and the norm can be dominated by a positive constant, depending on m,
supgs |f], and supgs (|U] + [V5U]) only.
We let

M = sup sup f(y,t) = sup supn(|z’|, z3,t).
y€ERS t<0 z€R3 £<0

Our goal is to show that M < 0. Assume it is not so, i.e., M > 0. Now, let
us apply Lemma 6.8 in our five-dimensional setting. Then, for any R > 0,
there exists a point yr in R® and a moment of time ¢z < 0 such that
f(ya t) 2> M/2a (ya t) € Q((yRa tR)a R) = B(yRa R)X}tR - R27 tR[a
where B(yr, R) = {|ly — yr| < R}.
By our assumptions,
0<My= sup wy(|z'],z3,t) < +oo.

z€R3,t<0
We may choose a number R so big as
R > 100220
M
and then let 2M
0
Yo = (Woysr), Y =507+ R,
where
e RY, =1, (I,yr) = liyir + layar + l3ysr + layar = 0.
It is not difficult to check that y. € B(yg, R) and, moreover,
.| > 50220
Yul Z M
Then we find o Mo u o
— < f(ys,tr — R?/2 o -
2_f(va /)—I/I 02Mo 100

This means that in fact M < 0. In the same way, one can show that m > 0
and then conclude that f = 0 in Q2 , which in turn implies
we(|2'], z3,t) =0, V(z,t) € Q—,
and therefore
w=0 in @Q-_.
The rest of the proof is the same as in Theorem 4.13.
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6.4.4 Awxially Symmetric Case

We are going to prove the following statement.

Theorem 4.16. Let u be an arbitrary axially symmetric bounded ancient
solution satisfying assumption

A
lu(z,t)| < — = (2',23) €ER® —o00 <t <0, (6.4.14)

2’|’
where A is a positive constant independent of x and t. Then u =0 in Q_.

PROOF Let us explain our strategy. First, we are going to show that, under
condition (6.4.14), the swirl is zero, i.e., u, = 0. Then we apply Theorem
4.15 and state that u(z,t) = b(¢). But condition (6.4.14) says b(t) = 0 for
all £ <0. So, our aim now is to show that u, =0in Q_.

Let us introduce the additional notation:

R=R, xR, Ri={0eR, 0>0}, Q_=Rx]—00,0]

(01, 02; h1,he) = {01 < 0 < 02, h1 < x3 < ha},

Q(o1, 025 ha, hast, ta) = (o1, 025 ha, ha) X]t1, tal.
Now, our aim is to show that

M = sup ou, < 0.
Q-

Assume that it is false, i.e., M > 0, and let
g = ou,/M.
The new scaled function g satisfies the equation
019 + Uog,o + usgs — (Ag —2g,/0) =0 in Q.

By the assumptions,

supg = 1, Vu+ui< Ao, lgl<A/M in Q- (6.4.15)
Q-
and
(0uo).o + (0u3) 3 =0 in Q_.

To formulate the lemma below, we abbreviate

II = 111, 02; h1, h2), Q = TIX]T — 1, 1.
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Lemma 6.9. For any € > 0, there exists a positive number
5 =06(IL ¢t t, A, M,e) < ¢
such that if

sup g(x,t) > 1 -0,
z€ell

then

inf g(z) >1—e.
z2€Q

PROOF If we assume that the statement of the lemma is false, then there
must exist a number €9 > 0 such that, for any natural k, one can find
sequences with the following properties:

Ok > Oks1, Ok — 0, supg®(z,T) >1-8;, inf g"(2) < 1—ep, (6.4.16)
z€ell z€Q

functions u* and ¢” satisfy the equations
(oug) e+ (0us)s =0, 99" +uygh, +ufgs — (Ag" —2¢%,/0) =0

in Cj, and the relations

sup g* =1, V0ukl2+ ub2 < Afo, [gF|<A/M in Q_.
Q

By (6.4.16), there are points (ok,zgs,t), with (og,xr3) € II, and
(0, Ths, ) € Q such that

9" (0k, T3, 1) > 1 =20k, g"(0h, Thgy th) <1 —e0/2. (6.4.17)
Weak form of the equations for u* and g¢* is as follows:
/ {gkatf + 9" (ub fo+ub f.3) + 9" (AF +2f.0/0) | ododusdt = 0
Q-

for any f € C§°(Q-). Routine arguments show
uk 27 in Loo(Q_;:R?),

gk - g in Wri’l(QQ%

where Qo = Iy x| —to, 7], Iy = T1(02, 02; h2, h3) S 11, t5 > t1, and m >> 1.
Then we have

¢ =37 i CQ2) (6.4.18)
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and

supg <1,  \/[W,]2+ [ws|2 < Afo, [g<A/M  in Qs (6.4.19)
Q2
and

0+ (W +1/0)7 , +WsF 5~ T oo~ 33 =0 in Qa
According to (6.4.17) and (6.4.18),
900, wo3, ) =1, g(h, x0s:t0) <1 —e0/2, 15 <1, (6.4.20)
where
(0w, Tk3,t) — (00,703, 1), (Ohs Thas t) — (00 03 t0)

and points (go, zo3,t) and (0, (3, t;,) belong to the closure of the set @
Clearly, by (6.4.19),

(00, o3, t) = sup g(z) = 1.
2€Q2

By the strong maximum principle, g = 1 in Q2. But this contradicts
(6.4.20). O

Now, we proceed with the proof of Theorem 4.16'. Take arbitrary
positive numbers R, L, T, and 0 < ¢ < 1/2. We can always assume that

l-e<g<1 on Qy=Ihx]—T,0] (6.4.21)
where Iy, = TII(1,R;—L,L). To explain this, we let 4§, =

0(Ilp,0,—T, A, M,e). Obviously, there exists a point (go,Zos3,%0) € @7
such that
1 —g(00,z03,t0) < 0x < e < 1/2.
It is easy to see
1/2 < 0ouy (00, 703, to) /M = g(00, To3,t0) < 00/M

and, therefore, g9 > M/2 > 0. Then one can scale our functions so that

gA(1, Y3, 8) = g(Ar, o3 + Ay, to + A%s), A = oo,
U;\(Ty Y3, S) = Au@()\ﬁ o3 + )\y37t0 + )‘28)7

A 2
uz (7, y3, 5) = Aug(Ar, xos + Ays, to + A°s).
IThe idea of the proof belongs to V. Sverak
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For scaled functions, we have

1- g)\(17070) < 5*7

Bsgr + urgonr +uigrs — (Agr —2gx,/r) =0 in Q_,

(rup) e+ (ruz) 3 =0 in Q,

sipgr =1, AP +[ud]> < Afr, || <A/M i Q-
Q

By Lemma 6.9,
1-e<g <1  on Qo

It is always deemed that this operation has been already made and script
A is dropped. It is important to notice two things. Numbers R, L, T, and
¢ are in our hands and we cannot use the fact |u| < 1 any more since after
scaling |u| < oo(R, T, L, A, M,e).

We choose a cut-off function

®(0,23,1) = p(e)n(xs)x (1),

where functions v, n, and x have the following properties:

Ylo)=1 0<o<R-1, (=0 o0>R,
W' (o) + 1" (o) < ¢ 0< o< 400
n(xs) =1 |zg|<L—-1,  nzs) =0 |as| =L,
' (zs)| + [n"(z3)| < ¢ |zs] < +oo;
x#)=1 —T+1<t<-1, x(t)=0 t<-T,
X&) =t+T —T<t<-T+1,

xt)=—t —1<t<0.

So, we have

Iy = / <8tg +Upg o+ usgs — Ag) dododzsdt = I =

Q-



Local Regularity Theory for Non-Stationary Navier-Stokes Equations 177

=2 / 92 § pdodwsdt. (6.4.22)
o
5.

We replace g with g—1 in the left-hand side of (6.4.22) and, after integration
by parts, have

1

fo= o / (0% 4, o+ s 5 + AB) (1 — ),
T
Q_

We know that 1 — g < e in Q. Then, by 6.4.15,

Iy > / / /(1 —9) (@@ +us® 3+ @733) ododxsdt + eCo(R, T, L, A, M)
—-T-L 0
—(L+T)C1(A, M) +eCo(R,T,L, A, M). (6.4.23)
Next, let us start with evaluation of the right-hand side in (6.4.22).
Integration by parts gives:

0 0 L R
= —2/ /g 0,z3,t)®(0,x3,t dxgdt—i—?/ // .0gdodzsdt.
i “T-L 0

The first term on the right-hand side of the above identity is equal to zero.

An upper bound of the second one is derived as follows:
0 L

10—2///<I> dgdxgdt+2// ® (g — 1)dodzsdt <
0

—-T —L —-T—-L 0

R
/@,ngdxgdt +eC)(R,T,L, A, M) =
0

D(0, x3, t)drsdt + SCé(R, T,L,A M) <

< 2(L —1)(T —2)+eCy(R,T,L, A, M).
The latter, together with identity (6.4.22) and (6.4.23), implies the following
inequality
20L-1)(T—-2)<(L+T)C:(A,M) +eCy(R,T,L, A, M).
This leads to contradiction for large L and T' and sufficiently small ¢.
So, the assumption M > 0 is wrong. In the same way, one shows that

inf pu, =m > 0.
Q

This means that the swirl is zero. [
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6.5 Axially Symmetric Suitable Weak Solutions

In this section, just for convenience, we replace balls B(r) with cylinders
C(r) ={x = (2/,23), 2’ = (z1,22), |2| <7, |x3| <7}, C =C(1), and then
Q(r) = C(r)x] — r%,0[. As usual, let us set

U = Vp€p + Vzes V= Vyply

for v = vye, + Vo€, + v3eE3.

Here, we follow paper [Seregin and Sverak (2009)], where results are
stated for the canonical domain @ = Q(1). The general case can be done
by re-scaling.

Theorem 5.17. Assume that functions v € L3(Q) and q € L3(Q) are an
axially symmetric weak solution to the Navier-Stokes equations in Q. Let,
in addition, a positive constant C' exists such that

B(z, )] < (6.5.1)

e

for almost all points z = (z,t) € Q. Then z =0 is a regular point of v.

Theorem 5.18. Assume that functions v € L3(Q) and ¢ € L3(Q) are an
axially symmetric weak solution to the Navier-Stokes equations in Q. Let,
in addition,

v € Loo(Cx] — 1, —a?)) (6.5.2)
for each 0 < a <1 and
5z, 1)| < % (6.5.3)

for almost all points z = (x,t) € Q with some positive constant C. Then
z =0 is a regular point of v.

According to the Caffarelli-Kohn-Nirenberg theorem if v and ¢ are an
axially symmetric suitable weak solution and z = (z,t) is a singular (i.e.,
not regular) point of v, then there must be ' = 0. In other words, all
singular points must seat on the axis of symmetry, which in our case is the
axis 3.

The following estimate is obtained with help of Mozer’s iterations. A
proof is not complicated, see, for example, [Seregin and Sverdk (2009)].
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Lemma 6.10. Assume that functions v € L3(Q) and q € L%(Q) are an
axially symmetric weak solution to the Navier-Stokes equations in Q. Let,
in addition, condition (6.5.2) hold. Then following estimate is valid:

3
ess sup Jou(:)| < COD( [ lev,l¥az) ", (6.5.4)
2€Q(1/2)
Q(3/4)
where
%
M= ( / o ¥ d2) " +1
Q(3/4)

Remark 6.8. Under the assumptions of Lemma 6.10, the pair v and ¢ is
a suitable weak solution to the Navier-Stokes equations in (). Hence, the
right-hand side of (6.5.4) is bounded from above.

With some additional notation

Clzo,R) ={z e R®: x = (2/,23), 2’ = (x1,22), |2’ —x{| < R, |z3—x03| < R},

Q(Zo, R) = C(xo,R)X]to — RQ,to[,

we recall the definition of certain scaled energy quantities:

1
A(zp,r;v) =ess  sup  — / lv(z, t)|?de,
to—r2<t<to T
C(zo,r)

1 1
Beorio) =1 [ [VPds Deoria) =z [ laftes
Q(zo0,7) Q(z0,7)

1 3 1 2
C(Zo,’l";'U) = 7'_2 / |U| dZ7 H(Zoﬂ";’()) = T_3 / |U| dZ,
Q(zo0,7) Q(z0,7)
1] L
M i(z0,7;0) = — / ( / |v|sda:> "dt,
TI‘&
to—r2  C(zo,r)

where k = (242 —1)and s > 1,1 > 1.

The following statement is proven in a similar way as Proposition 3.11,
see details in [Seregin and Sverdk (2009)].

Lemma 6.11. Under assumptions of Theorem 5.17, we have the estimate

A(zp,750) + E(20,730) + C(2p,730) + D(26,73q) < C1 < 00 (6.5.5)
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for all zy, and for all v satisfying conditions
1 1
zp = (bes,0), beR, b < T 0<r< 1 (6.5.6)

A constant Cy depends only on the constant C in (6.5.1), ||v|| 14, and
”(J”L%(Q)-

To prove Theorem 5.18, we need an analogue of Lemma 6.11. Here, it
is.

Lemma 6.12. Under assumptions of Theorem 5.18, estimate (6.5.5) is
valid as well with constant Cy depending only on the constant C' in (6.5.3),

lollze@)> and llallzy @)-

Lemma 6.12 is proved along the same lines as Lemma 6.11.

As it follows from conditions of Theorem 5.18 and the statement of
Lemma 6.10, the module of the velocity field grows not faster than C/|z/|
as |z'| — 0. Moreover, the corresponding estimate is uniform in time.
However, it turns out that the same is true under conditions of Theorem
5.17. More precisely, we have the following.

Proposition 5.19. Assume that all conditions of Theorem 5.17 hold. Then
[oa, )] < =4 (6.5.7)

for all z = (x,t) € Q(1/8). A constant Cy depends only on the constant C
in (6.5.1), ||v]l1,(q), and ||q||L%(Q).

PROOF In view of (6.11), we can argue essentially as in [Seregin and Za-
jaczkowski (2007)].

Let us fix a point zg € C(1/8) and put ro = |zj|, bo = xo3. So, we have
ro < % and |bg| < %. Further, we introduce the following cylinders:

737}0 = {ro < |2'| < 2ro, 23] <70}, 7330 = {ro/4 < |2'| < 3ro, |w3] < 210}

Pry(bo) = Py, +boes,  Pr(bo) = Pr + boes,

ro(bo) = Py, (bo) x] = 15,0[, @7, (bo) = Py, (bo)x] — (270)*, 0.
Now, let us scale our functions so that

T =10y + boesz, t= 7’857 u(y, 5) = rov(:v,t), p(ya 5) = qu(:lf,t).
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As it was shown in [Seregin and Zajaczkowski (2007)], there exists a con-
tinuous nondecreasing function ® : R, — R+, R4 = {s > 0}, such that

sup u(u,5)| + [Vu(y,s)| < @ sup /|uy, ) 2dy

(y,5)€Q1(0) —22<5<0

P2(0)
+ / Vul2dy ds + / lu3dy ds + / |p|%dyds). (6.5.8)
Q3(0) Q3(0) HO)

After making inverse scaling in (6.5.8), we find

sup  7rolu(x,t)| + rg\Vu(xJ)\ < q)(CA(me?)To; v) 4+ cE(zp,, 3r0;0)+
2€Q}, (b0)

+cC(2py, 3703 v) + ¢D(2p,, 370; q)) < <I>(4cC’1).

It remains to apply Lemma 6.11 and complete the proof of the proposition.
|

Now, we proceed with proof of Theorems 5.17 and 5.18. Using Lemmata
6.10, 6.11, 6.12, Remark 6.8, Proposition 5.19 and scaling arguments, we
may assume (without loss of generality) that our solution v and ¢ have the
following properties:

sup (A(O,r;v)+E(0,r;v)+C’(0,r;v)+D(0,r;q)) =A; < 400, (6.5.9)
0<r<1

ess sup |2||v(z,t)| = A2 < +o0. (6.5.10)
z=(z,t)eQ
We may also assume that the function v is Hélder continuous in the closure
of the set Cx| — 1, —a?[ for any 0 < a < 1.
Introducing functions
H(t) = sup|v(z,t)], h(t)= sup H(7),
zeC —1<7<t

let us suppose that our statement is wrong, i.e., z = 0 is a singular point.
Then there are sequences z € C and —1 < t;, < 0, having the following
properties:

h(ty) = H(ty) = My = |v(zg, tr)] = +o0 as k — +oo.
We scale our functions v and ¢ so that scaled functions keep axial symmetry:

1

uF(y, 8) = Mooy, T3k + My, ti + ALs), Ak = 7%
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P (Y, 8) = Aeq(Owys wsk + Aeys, tr + ALs).
These functions satisfy the Navier-Stokes equations in Q(Mj). Moreover,
[P (v, 0,0) =1,  yj = My}, (6.5.11)
According to (6.5.10),
Ykl < Az
for all k£ € N. Thus, without loss of generality, we may assume that
Y = Yo as k — +oo. (6.5.12)
Now, let us see what happens as kK — +o00. By the identity

sup lub(e)| =1 (6.5.13)
e=(y,s)€C(My)

and by (6.5.9), we can select subsequences (still denote as the entire se-
quence) such that

FAu in Leo(Q(a)), (6.5.14)

and
pP=p i L3(Q(a)

for any a > 0. Functions u and p are defined on Q_ = R3x] — 00, 0].
Obviously, they possess the following properties:

ess sup |u(e)] <1,
ecqQ—

sup (A(0,riw) + B(0,73) + C(0,r5) + D(0, 7)) < Ay,
0<r<+o0

ess sup  |y||u(y, s)| < As. (6.5.15)
e=(y,5)€EQ -

Now, our aim is to show that u and p satisfy the Navier-Stokes equations
@Q— and u is smooth enough to obey the identity

lu(ys,0,0)| = 1. (6.5.16)

To this end, we fix an arbitrary positive number a > 0 and consider numbers
k so big that a < My /4. We know that u* satisfies the non-homogeneous
heat equation of the form

ot — AuF = —div F* in Q(4a),
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where F* = v* @ v* + p*I and
17 )| 3.0(1a) < e1(a) < oo.
This implies the following fact, see [Ladyzhenskaya et al. (1967)],
V¥l q@a) < c2(a) < oo
Now, we can interpret the pair v* and p¥ as a solution to the non-
homogeneous Stokes system
ot — AuF +VpF = fE dive* =0  in Q(3a), (6.5.17)
where f* = —u* . Vu* is the right-hand side having the property
”fk”%,Q(Su) < c2(a).

Then, according to the local regularity theory for the Stokes system, see
Chapter 4, we can state that

10:u" |2 (20 + V20"

5000 T IVP* 5 0@ < cs(a).
The latter, together with the embedding theorem, implies
VU152

R

(Q@a) T 19" (15,3 (2a) < ca(a).

IR

In turn, this improves integrability of the right-hand side in (6.5.17)
1F53,3

19

(2a) < cala).
Therefore, by the local regularity theory,
| 0pu” (2a) T ||V2Uk||3,g,Q(2a) +IVp*
Applying the imbedding theorem once more, we find
IVu*|
The local regularity theory leads then to the estimate

3.3, 3,3,Q2) < ¢s(a).

6,2,Q(2a) T ||pk||c,g,Q(2a) < cs(a).

100 16 3 ae + 19°4 Nl 5.0 + V9" ll63. () < er(a):

¥ is uniformly bounded in a Holder

space, for example, in C' %(Q(a/ 2)). Hence, without loss of generality, one
may assume that

By the embedding theorem, sequence u

W su i C1(Q(a)2)).
This means that the pair w and p obeys the Navier-Stokes system and
(6.5.16) holds. So, the function w is the so-called bounded ancient solution
to the Navier-Stokes system which is, in addition, axially symmetric and
satisfies the decay estimate (6.5.15). As it has been shown in Section 5 of

this chapter, such a solution must be identically zero. But this contradicts
(6.1.43). Theorems (5.17) and (5.18) are proved.
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6.6 Backward Uniqueness for Navier-Stokes
Equations

In this section, we deal with another subclass of ancient solutions u possess-
ing the following property: there exists a function p defined on R3x]— o0, 0]
such that functions u and p are a suitable weak solution to the Navier-Stokes
equations in R3x] — 00, 0], i.e., they are a suitable weak solution on each
parabolic ball of the form Q(a) = B(a)x]—a?,0[ with < a < +00. We call u
a local energy ancient solution. Certainly, mild bounded ancient solutions
belong to this subclass.

Local energy ancient solutions can be obtained from a given suitable
weak solution v and g defined in @ with the help of the scaling mentioned
in the previous section provided boundedness of g’ takes place, see the
definition of ¢’ in Proposition 3.11.

Proposition 6.20. Let v and q be a suitable weak solution to the Navier-
Stokes equations in Q with ¢’ < +oco and let uF(y,s) = AV ARy, A2 s)
and p™® (y, s) = A2q(Aky, Azs) with A, — 0 as k — +oc0. Then there exist
subsequences of u'®) and p'®) still denoted by u™® and p*) such that, for
each a > 0,

u® =

in L3(Q(a)) N C([—a?,0]; Ly (B(a))) and

wlo

p(k) —p

in L%(Q(a)), where w is a local energy ancient solution with the corre-
sponding pressure p. For them, the energy scale-invariant quantities are
uniformly bounded, i.e.,

sup {A(u;a) + C(u;a) + D(p;a) + E(u;a)} < 4o0.
0<a<+4o0

Moreover, if z =0 is a singular point of the velocity field v, then

/ lulPdz > ¢ (6.6.1)
Q(3/4)

with a positive universal constant c, i.e., u is not identically equal to zero.

A proof of this proposition and similar facts can be found in [Escauriaza
et al. (2003)], [Seregin (2007)], [Seregin and Sverdk (2009)], and [Seregin
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(2011)]. Let us comment the last statement of Proposition 6.20. Indeed, if
z =0 is a singular point of v, the e-regularity theory gives us

%2 / ([v]> + |q|?)dz > e > 0
Q(r)
for all 0 < r < 1 and for some universal constant . Making the inverse
change of variables, we find

w [ (PP 4 p®)2)dyds =

= Tl{ﬂ [ (] +q|?)dzds > e > 0
Q(Aka)

for each fixed radius @ > 0 and for sufficiently large natural number k.
We cannot simply pass to the limit in the latter identity since it is not
clear whether the pressure p(*) converges strongly. This is a typical issue
for those who work with sequences of weak solutions to the Navier-Stokes
equations. In order to treat this case, let us split the pressure p*) into
two parts. The first part is completely controlled by the velocity field u(*)
while the second one is a harmonic function with respect to the spatial
variables. This, together with a certain boundedness of the sequence p*),
implies (6.6.1). For more details, we recommend papers [Seregin (2007)]
and [Seregin (2011)].

We do not know whether local energy ancient solutions with bounded
scaled energy quantities are identically equal to zero. However, there are
some interesting cases for which the answer is positive. Let us describe
them.

Our additional standing assumption of this section can be interpreted
as a restriction on the blowup profile of v and has the form

/ |v(z,0) | dx — 0 (6.6.2)
B(r
as r — 0. The most important consequence of (6.6.2) is that
u(-,0) =0, (6.6.3)

where u is a local energy ancient solution that is generated by the scaling
described by Proposition 6. 20 Indeed, for any a > 0, we have

15 f |u y,0 deg

a8 B(a)

<es [ July,0) —u® (y,0)|Fdy + c—

pts) 15
a8 B(a) a8

[u®)(y,0)|Fdy =
)

J
B(a
= ak(a) +c—2L 5 f |U(£U, O)

|Sdz.
(Aka)s B(Ara)
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Now, by Proposition 6.20 and by (6.6.2), the right-hand side of the latter
inequality tends to zero and this completes the proof of (6.6.3).

In a view of (6.6.3), one could expect that our local energy ancient
solution is identically equal to zero. We call this phenomenon a backward
uniqueness for the Navier-Stokes equations. So, if the backward uniqueness
takes place or at least our ancient solution is zero on the time interval
] = 3/4,0[, then (6.6.1) cannot be true and thus, by Proposition 6.20, the
origin z = 0 is not a singular point of the velocity field v.

The crucial point for understanding the backward uniqueness for the
Navier-Stokes equations is a similar phenomenon for the heat operator with
lower order terms. The corresponding statement for the partial differential
inequality involving the backward heat operator with lower order terms has
been proved in [Escauriaza et al. (2003)] and reads:

Theorem 6.21. Assume that we are given a function w defined on
R% x]0,1[, where R} = {x = (z;) € R", z,, > 0}. Suppose further that
they have the properties:

w and the generalized derivatives Vw, Oyw, and V3w are square inte-
grable over any bounded subdomain of R’} x]0, 1[;

|Orw + Aw]| < ¢(Jw] + |Vw]) (6.6.4)
on R% x]0, 1] with a positive constant c;
|lw(z,t)] < exp{M|z|*} (6.6.5)
for allz € R, for all 0 <t <1, and for some M > 0;
w(z,0) =0 (6.6.6)

for all x € R}
Then w is identically zero in R’} x]0,1[.

The interesting feature of Theorem 6.21 is that there has been made no
assumption on w on the boundary z,, = 0. In order to prove the theorem,
two Carleman’s inequalities have been established, see details in [Escauriaza
et al. (2003)] and [Escauriaza et al. (2003)] and Appendix A. For the further
improvements of the above backward uniqueness result, we refer to the
interesting paper [Escauriaza et al. (2006)].

Theorem 6.21 clearly indicates what should be added to (6.6.3) in order
to get the backward uniqueness for ancient solutions to the Navier-Stokes
equations. Obviously, we need more regularity for sufficiently large x and a



Local Regularity Theory for Non-Stationary Navier-Stokes Equations 187

decay at infinity. One can hope then to apply Theorem 6.21 to the vorticity
equation
Ow —Aw =w-Vu—u-Vw, w=VAu,
which could be interpreted as a perturbation of the heat equation by lower
order terms. To make it possible, it is sufficient to show boundedness of
u and Vu outside of the Cartesian product of some spatial ball and some
time interval. The rest of the section will be devoted to a certain situation,
for which it is really true.
Let us assume that

lu(z,t)| + [Vu(z,t)] < c < +oo (6.6.7)
for all |x| > R, for all —1 < t < 0, and for some constant ¢ and try to figure
out what follows from (6.6.7). It is not difficult to see that (6.6.3) and
(6.6.7) implies (6.6.6) and (6.6.4), (6.6.5), respectively. At last, the linear
theory ensures the validity of first condition in Theorem 6.21, see details in
[Seregin (2007)]. So, Theorem 6.21 is applicable and by it, w(x,t) = 0 for
all |z| > R and for —1 < ¢ < 0. Using unique continuation across spatial
boundaries, see, for instance, [Escauriaza et al. (2003)] or Appendix A, we
deduce w(z,t) =V Au(x,t) =0 for all z € R? and, say, for —5/6 < t < 0.
Since u is divergence free, it is a harmonic function in R3 depending on
t €] —5/6,0[ as a parameter. Therefore, for any a > \/% and for any
xo € R?, by the mean value theorem for harmonic functions, we have

1
sup  |u(zo,t)]? <c  sup — / lu(z,t)|>dx

—5/6<t<0 —5/6<t<0 @
B(zo,a)
1
<c sup — / lu(z,t)|2de < CLLQMA(U,a + |zo])-
—5/6<t<0 @ a
B(|zo|+a)

Thanks to boundedness of scaled energy quantities stated in Proposition
6.20, the right-hand side of the above inequality tends to zero as a goes to
infinity. By arbitrariness of xg, we conclude that u(z,t) = 0 for all x € R?
and for —5/6 < t < 0, which contradicts (6.6.1). Hence, the origin z = 0
cannot be a singular point of v.

Coming back to a marginal case of Ladyzhenskaya-Prodi-Serrin condi-
tion, which is called L3 -case, and show that it can be completely embed-
ded into the above scheme. So, we assume that functions v and ¢ are a
suitable weak solution to the Navier-Stokes equations in ) and satisfy the
additional condition

[0]13,00,@ < +o0. (6.6.8)
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With the help of Proposition 3.11, it is not so difficult to show that ¢’ <
+00. So, for v, all the assumptions of Proposition 6.20 hold and thus
our blowup procedure produces a local energy ancient solution u with the
properties listed in that proposition. Exploited the e-regularity theory once
more, we can show further that v(-,0) € L3(B(2/3)), which in turn implies
(6.6.2). Now, in order to prove regularity of the velocity v at the point
z = 0, it is sufficient to verify the validity of (6.6.7). Indeed, by scale-
invariance,

[[2113,00, k3 x] —o0,0f < +00.

Applying Proposition 6.20 again and taking into account properties of har-
monic functions, one can conclude that

12112 00,85 x] —00,00 < 00

Combining the latter estimates, we show that for any 7' > 0

0

/ /(\u|3 + pl})dadt < +oc. (6.6.9)

ST R3
Our further arguments rely upon the e-regularity theory. Indeed, letting,
say, T =4, one can find R > 4 so that

0

(lul? + |p|?)dadt < e.
Z4AR3\B(R/2)

The rest of the proof of (6.6.7) is easy.

6.7 Comments

The section is essentially the context of my lectures on the local regularity
theory given in Summer School, Cetraro, Italy, 2010, see [Seregin (2013)].
It contains an introduction to the so-called e-regularity theory in the spirit
of the paper [Escauriaza et al. (2003)], see also [Seregin (2007)] for some
generalizations. A big part of this section is an alternative approach to
derivation of mild bounded ancient solutions and Liouville type theorems for
them presented in [Koch et al. (2009)]. Here, we follow the paper [Seregin
and Sverak (2009)] although proofs of Liouville type theorems is essentially
the same as in [Koch et al. (2009)].



Chapter 7

Behavior of L3-Norm

7.1 Main Result

Let us consider the Cauchy problem for the classical Navier-Stokes system
Oww+v-Vu—Av =—Vg, dive =0 (7.1.1)
with the initial condition
U|t:0 = Vo (712)
in R3. For simplicity, assume
vo € CH(R?) = {v € C°(R?) : divv = 0}. (7.1.3)
In 1934, J. Leray proved certain necessary conditions for 7" to be a blow
up time. They can be stated as follows. Suppose that T is a blow up time,
then, for any 3 < m < oo, there exists a constant ¢,,, depending on m only,
such that

o) = 0D ms = / ol t)]" o)

forall 0 <t <T.
However, for the scale-invariant Ls-norm, a weaker statement

limsup ||v(-, )]s = o0 (7.1.5)
t—T—0

7_3 7.1.4
7( = (7.1.4)

has been proven in the previous chapter. The aim of this chapter is to
improve (7.1.5). At the moment, the best improvement of (7.1.5) is given
by the following theorem.

Theorem 1.1. Let v be an energy solution to the Cauchy problem (7.1.1)
and (7.1.2) with the initial data satisfying (7.1.3). Suppose that T > 0 is a
finite blow up time. Then

t_1>17g1_0\|11(~,t)||3 =00 (7.1.6)

holds true.

189
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Let us briefly outline our proof of Theorem 1.1 that relays upon ideas
developed in [Seregin (2007)]-[Seregin (2010)]. In particular, in [Seregin
(2007)], a certain type of scaling has been invented, which, after passing to
the limit, gives a special non-trivial solution to the Navier-Stokes equations
provided there is a finite time blow up. In [Seregin (2011)] and [Seregin
(2010)], it has been shown that the same type of scaling and blowing-up
can produce the so-called Lemarie-Rieusset local energy solutions, intro-
duced and carefully studied in the monograph [Lemarie-Riesset (2002)],
see Appendix B for details. It turns out to be that the backward unique-
ness technique is still applicable to those solutions. Although the theory
of backward uniqueness itself is relatively well understood, its realization
is not an easy task and based on delicate regularity results for the Navier-
Stokes equations. Actually, there are two main points to verify: solutions,
produced by scaling and blowing-up, vanish at the last moment of time and
have a certain spatial decay. The first property is easy for solutions with
bounded Ls-norm while the second one is harder. However, under certain
restrictions, the required decay is a consequence of the Lemarie-Rieusset
theory. So, the main technical part of the whole procedure is to show
that scaling and blowing-up lead to local energy solutions. On that way, a
lack of compactness of initial data of scaled solutions in Lg joc is the main
obstruction. This is why the same theorem for a stronger scale-invariant
norm of the space H % is easier. The reason for that is a compactness of
the corresponding embedding, see [Rusin and Sverak (2011)] and [Seregin
(2011)].

In this chapter, we are going to show that, despite of a lack of com-
pactness in Ls-case, the limit of the sequence of scaled solutions is still a
local energy solution, for which a spatial decay takes place. Technically,
this can be done by splitting each scaled solution into two parts. The first
one is a solution to a non-linear problem but with zero initial data while
the second one is a solution of a linear problem with weakly converging
non-homogeneous initial data.

We also prove (7.1.4) as a by-product of the proof of Theorem 1.1, see
Section 4.
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7.2 Estimates of Scaled Solutions

Assume that our statement is false and there exists an increasing sequence
ti converging to T' as k — oo such that

sup ||[v(-, tr)|ls = M < oc. (7.2.1)
keN

By the definition of a blow up time for energy solutions, there exists
at least one singular point at time 7. Without loss of generality, we may
assume that it is (0,7"). Moreover, the blow-up profile has the finite Ls-
norm, i.e.,

[v(-,T)|l3 < o0 (7.2.2)

Indeed, by the e-regularity theory, one-dimensional Hausdorff’s measure of
singular points at the blow up time T is equal to zero. Therefore, v(z,t) —
v(x,T) ast — T —0 for a.a. = and thus (7.2.2) follows from Fatou’s lemma.
Let us scale v and ¢ so that
for (y,s) € R3x] — A\, *T, 0], where
T = Ay, t:T—i—)\is,
T —t

S
and a positive parameter S < 10 will be defined later.

Ak =

By the scale invariance of Lz-norm, u(¥)(-, —S) is uniformly bounded in
3 .
L3(R?), i.e.,

sup [|u® (-, =8)||s = M < co. (7.2.4)
keN

Let us decompose our scaled solution u(*) into two parts: u(¥) = v(¥) 4
w®) . Here, w® is a solution to the Cauchy problem for the Stokes system:

ow® — Aw® = —vr®  divw® =0 in R?’x] - 5,0,
w® (-, —8) = uF) (., =8). (7.2.5)
Obviously, (7.2.5) can be reduced to the Cauchy problem for the heat equa-
tion so that the pressure (¥) = 0 and w® can be worked out with the help

of the heat potential. The estimate below is well-known, see, for example
[Kato (1984)],

Sl]ip{”w(k)HLs)(Rsx]fS,O[ + lw® |y o @ox)—so} < (M) <oo.  (7.2.6)
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It is worthy to note that, by the scale invariance, ¢(M) in (7.2.6) is inde-
pendent of S.

As to v®) it is a solution to the Cauchy problem for the following
perturbed Navier-Stokes system

™ + div(v® + w®) @ (v*) 4 wk) — Ay = —yp*),
divo® =0 in R3x]—S,0[, (7.2.7)
v® (., —8) = 0.

Now, our aim is to show that, for a suitable choice of —S, we can prove
uniform estimates of v*) and p(*) in certain spaces, pass to the limit as
k — oo, and conclude that the limit functions v and p are a local energy
solution to the Cauchy problem for the Navier-Stokes system in R?x]—S, 0[
associated with the initial data, generated by the weak Lj3-limit of the
sequence u(®) (-, —S).

Let us start with estimates of solution to (7.2.7). First of all, we know
the formula for the pressure:

1 1
P t) = =gl (@ + - / K(z —y) : ul(y,1) @ ul (y, t)dy,
R3

(7.2.8)
where K (z) = V2(1/|z]).
Next, we may decompose the pressure in the same way as it has been
done in [Kikuchi and Seregin (2007)], see Appendix B. For xo € R? and for
x € B(zog,3/2), we let

PP (,t) = p®) (2,1) — ) (1) = pi® (a, t) + p2F) (2, 1), (7.2.9)
where
1 1
POt = g0l + - [ K- a0 0 a0,
B(I0,2)

2O = - / (K(x —y) = K(@o —y)) : u® (y.1) © u (g, 1)y,

R3\ B(z0,2)
. 1
() = o K(zo —y) : u™(y,t) @ u™ (y, t)dy.
R3\ B(x0,2)

Using the similar arguments as in [Lemarie-Riesset (2002)], see also
Appendix B, one can derive estimates of pig’“) and piﬁk). Here, they are:

”palcgk)('at)HL%(B(wU,?)/Z)) < (M) ([0 Oy (Baoy + 1), (7:2.10)
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sup |p3 (z,1)] < e(M)([[o™ (-, 1)]17

(7 e + 1) (7.2.11)
B(z0,3/2)

where

||g||L2,unif = Ssup ||g||L2(B(I071))‘
roER3

We further let
Oé(S) = OL(S; ka S) = ||U(k)(" S)H;unifa

B(s) = p(s;k,S) = sup / / |Vv(k | dydr.
TR s B

From (7.2.10), (7.2.11), we find the estimate of the scaled pressure

5(0) < ¢(M) [’y(O) + /(1 +ad(s ))ds} (7.2.12)
s

with some positive constant ¢(M) independent of k and S. Here, v and 6
are defined as
1s) =1(sik,$) = sup [ [ 1o )P dyr
T 3
€r —S B(z,1)
and
) =d(sik.S) = swp [ [ 1p ) - D)y
xT 3
€y B(z,3/2)
respectively. It is known that an upper bound for v can be given by the
known multiplicative inequality

(5 <c(/a3(7)d7)%(ﬁ(s)+ /a(T)dT)%. (7.2.13)
s s

Fix x9 € R? and a smooth non-negative function ¢ such that
=1 in B(1), spt C B(3/2)
and let g, (x) = p(x — x0).
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Since the function v*) is smooth on [~S,0[, we may write down the
following energy identity

/wio(x)w(’“) (:E,s)|2dx+2//¢i0|vv(k)|2dxd7. —

R3 —S R3

// WE2AR2 4+ 0™ V2 (v®) 2+ 20| dadr+
_SR3

+//[w(k) V2 [ 2 4 202 w® @ (wk) + o ®)) vy 4
_SR3
+2uw®) . ) (w®) 4 (R)) V(pio}dxdr =0+ L.

The first term I is estimated with the help of the Holder inequality,
multiplicative inequality (7.2.13), and bounds (7.2.10), (7.2.11). So, we find

S

I gc(M)[/(l-i—a(T)—i— 3 (r))dr+

s
—l—( / a?’(T)dT) : (ﬁ(s) + a(r)dr) %].
s s

Now, let us evaluate the second term
I, < C/ lo®)(, HLg(B(zO,3/2))Hw V()| L (B (wo3/2)) AT+

S
1 4
+C/( / 0 Paz) / 0 ® 37 ) drt
—S  B(z0,3/2) B(x0,3/2)

S

+c5%(s)( / / |w(k)|4dxd7)§d7+
—S B(z0,3/2)

+C/ ||U )L, B(zo,3/2))Hw (’T)||%3(B(w073/2))d7'
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Taking into account (7.2.6) and applying Holder inequality several times,
we find

I < o(M)y3(s)(s + S)5+

S

we[ () worw) ([ ).

—S  B(w0,3/2) B(x0,3/2)

=

x( / |v(k)|%dx) '

B(z0,3/2)

dr + ¢(M)B7(s)(s + S) T+

Fe(M)3 (s)(s + 5)3.
It remains to use another known multiplicative inequality

( / |v<k>(x,s)|%dx)%gc( / |v(k)(x7s)|2dx)%><

B(x0,3/2) B(0,3/2)

D‘m

([ (9P w0 )
B(z0,3/2)

and to conclude that

I < o(M)Y3(s)(s + S)F + c(M)B2(s)(s + )T + c(M)y3(s)(s + )3+

o

S S

+4M@+/@vMﬂfX(/@hmw“hﬂﬁwwmf

-8 -S

Finally, we find
als) + B(s) < (M) [(s +S)E+

S

+ [ (a4 w0 + a*() dr]. (72.14)
-5
which is valid for any s € [-S,0[ and for some positive constant c¢(M)
independent of k, s, and S.
It is not so difficult to show that there is a positive constant S(M) such
that

a(s) < (7.2.15)

1
10
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for any s €] — S(M),0[. In turn, the latter will also imply that
a(s) < e(M)(s+ 8)3 (7.2.16)
for any s €] — S(M),0[.
To see how this can be worked out, let us assume

as) <1 (7.2.17)
for —S < s < 59 <0. Then (7.2.14) yields
a(s) < e(M)((s+ 8)F +y(s)) (7.2.18)

for the same s. Here,
S

y(s) = /04(7)(2 +g(m)dr,  g(s) = [[w (517, e
=5
The function y(s) obeys the differential inequality
y'(s) < e(M)(2+ g(s)((s + 9)7 +y(s)) (7.2.19)
for —S < s < 59 < 0. After integrating (7.2.19), we find
o(s) <) [ ((r+ )8+ g exp {e) [+ g0 }av)ar
—S T
(7.2.20)
for —S5 < s < sp < 0. Taking into account estimate (7.2.6), we derive from
(7.2.20) the following bound

y(s) < c1(M)(s + S)* (7.2.21)
for —S < s < 59 < 0 and thus
y(s) < e1(M)S3 (7.2.22)

for the same s.
Now, let us pick up S(M) > 0 so small that
1 1

c(M)(14 1 (M))S5(M) = 20 (7.2.23)
We claim that, for such a choice of S(M), statement (7.2.15) holds true.
Indeed, assume that it is false. Then since «(s) is a continuous function on
[—S,0[ and a(0) = 0, there exists sy €] — S, 0] such that 0 < a(s) < 5 for
all s €] — S, 50 and a(s9) = . In this case, we may use first (7.2.22) and
then (7.2.18), (7.2.23) to get

1

as) < e(M)(1+ e (M)SF (M) =

for s €] — S, so[. This leads to a contradiction and, hence, (7.2.15) has been
proven. It remains to use (7.2.18) and (7.2.21) with s = 0 in order to
establish (7.2.16).
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7.3 Limiting Procedure

As to w® | it is defined by the solution formula

e v e =yl g,
(z,t) = (47r(s+5))%R/ p( 4(S+5)) (y, —S)dy.

Moreover, by standard localization arguments, the following estimate can
be derived:

(k) 2
sup sup ||lw .8 +
—85<5<0zeR3 I ( )HL2(B(IO,1))

0
+ sup / / [Vw® (y, s)[2dyds < (M) < oo

ro€ER3
—S B(zo,1)

Obviously, w® and all its derivatives converge to w and to its corre-
sponding derivatives uniformly in sets of the form B(R)x[6, 0] for any R > 0
and for any § €] — S, 0[. The limit function satisfies the same representation
formula

1 |z — y|?
w(z,t) = mﬂ!exp( 105 +yS)> wo (y)dy,

in which wq is the weak L3(R3)-limit of the sequence u® (-, —S). The
function w satisfies the uniform local energy estimate

2
sup sup ||lw(-, s +
—S<s5<0zp€ER3 H ( )HL’Z(B(QCOJ))

+ sup / / |Vw(y, s)|*dyds < c¢(M) <
To€ER3
-5 B(ZEQ,
The important fact, coming from the solution formula, is as follows:
w € C([-S,0]; L3(R*)) N Ls(R*x] — S, 0[). (7.3.1)

Next, the uniform local energy estimate for the sequence u(*) (with
respect to k) can be deduced from the estimates above. This allows us to
exploit the limiting procedure explained in [Kikuchi and Seregin (2007)],
see Appendix B, in details. As a result, one can select a subsequence, still
denoted by u® | with the following properties:

for any a > 0,

u® -y (7.3.2)
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weakly-star in Lo (—95,0; La(B(a))) and strongly in L3(B(a)x]—.5,0]) and

in C(]r, 0];L%(B(a))) for any —S < 7 < 0;
vu*) = Vu (7.3.3)
weakly in La(B(a)x] — S,0]);
t / ") (2,1) - w(x)de — t — / u(x,t) - w(z)de (7.3.4)
B(a)

strongly in C ([—S, 0]) for any w € La(B(a)). The corresponding sequences
¥) and w® converge to their limits v and w in the same sense and of
course © = v + w. For the pressure p, we have the following convergence:
for any n € N, there exists a sequences cSZ“) € L% (=5,0) such that

ol

P =pk) — )y (7.3.5)

in L%(—S,O;Lg(B(n))).
So, arguing in the same way as in [Kikuchi and Seregin (2007)], see
Appendix B, one can show that u and p satisfy the following conditions:

0

sup  sup Hu(~,5)||i2(3(x0,1))+ sup / / |Vu(y, s)|?dyds < oo;
—S5<5<0z9€R3 zo€ER3

—S B(zo,1)
(7.3.6)
p € Lg(=5,0; Ly 1.(R%); (7.3.7)
the function
5 /u(y7 s) - w(y)dy (7.3.8)
R3
is continuous on [—S, 0] for any compactly supported w € La(R3);
ou+u-Vu—Au=—-Vp, divu=0 (7.3.9)

in R®x] — S, 0[ in the sense of distributions;
for any z¢ € R3, there exists a function ¢,, € L3(=5,0) such that

p(x,t) — cay(t) = b (. 1) + P2, (2,) (7.3.10)
for all € B(xg,3/2), where

1 1
pi,o (z,t) = f§|u(x7t)|2 + e / K(z—y):u(y,t) ®@u(y,t)dy,
B(%0,2)
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47
R3\ B(z0,2)

for any s €] — S,0[ and for ¢ € C§°(R3x] — S, S]),

P2, (at) = = / (K(z— y) — K(zo — ) : uly, t) ® uly, 1)dy:

/ Py, )|uly, s)2dy + 2 / / P |Vul2dydr <

R3 —S R3

< / / (\u|2(A902 +0¢%) +u - V2 (Jul® + 2p))dyd7. (7.3.11)
—_SR3
Passing to the limit in (7.2.16), we find
1
sup [[v( $)I|7,(Bao.1)) < (M)(s +S)*
ro€ER3

for all s € [-S,0]. And thus
v(,5) =0 in Lajoc(R?)
as s | —S. Then, taking into account (7.3.1), we can conclude that
u(,8) = wo  in Lajec(R?). (7.3.12)

as s —S.

By definition accepted in [Kikuchi and Seregin (2007)], see Apendix B,
the pair u and p, satisfying (7.3.6)—(7.3.12), is a local energy solution to the
Cauchy problem for the Navier-Stokes equations in R3x] — S, 0] associated
with the initial velocity wy.

Now, our aim is to show that w is not identically zero. Using the inverse
scaling, we observe that the following identity takes place:

N
Q(a) Q(zr,a\)
for all 0 < a < a, = inf{1,/S/10,/T/10} and for all \; < 1. Here, 21 =
0,7), p¥) = [9{2]6), and b (t) = )\,;20(2]6)(5). Since the pair v and ¢ — b is
a suitable weak solution to the Navier-Stokes equations in Q(zr, A\pa.), we
find

(lv]? + |g — b®)|2)dw dt

1
p / (u® P+ [p0)3)dy ds > e (7.3.13)
Q(a)

for all 0 < a < a4 with a positive universal constant e.
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Now, by (7.3.2) and (7.3.5),

1 1
5 / 1w Pdy ds — = / ul*dy ds (7.3.14)
Q(a) Q(a)
for all 0 < a < a, and
1
sup— [ ([u® P+ [p0)]2)dy ds = My < . (7.3.15)
keN a*Q( )

To treat the pressure p(¥), we do the usual decomposition of it into two
parts, see similar arguments in [Seregin (2011)]. The first one is completely
controlled by the pressure while the second one is a harmonic function in
B(a,) for all admissible ¢. In other words, we have

k k
ﬁ(k) _pg ) pé )
where pgk) obeys the estimate

k
1P o912 B0y < elu®C5)13 By (7.3.16)

For the harmonic counterpart of the pressure, we have

k 3 k 3
sip o, 9)|F < efan) / 18 (v, )| Fdy
yEB(a«/2) Blas)

< c(ax) / (1B®) (5, )12 + [u®(y, 5)*)dy (7.3.17)
B(ax)
for all —a2 < s < 0.
For any 0 < a < a./2,
e < a—12 / (1™ |2 + [u® P)dy ds <
Q(a)

1 k)2 k)3
e [ P1+ 1+ Py ds <
Q(a)

1 3
ey [ U1+ P)dyds
Q(a)
0

1 P
+ca3—2 sup |pék) (y, s)|%ds.
a , Y€B(ax/2)
—a
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From (7.3.15)—(7.3.17), it follows that
0
c<e [ WOPaydsten [ds [ (5w + a0y <
Q(ax) “a®  Blax)

1 .
< ¢ / [u®3dy ds + ca / (PP + [u® ®)dy ds <
Q(ax) Q(ax)

<ec— / W 3dy ds + cMyaa®
a
Q(a+)

for all 0 < a < a./2. After passing to the limit and picking up sufficiently
small a, we find

0 < cea® < / lu|®dy ds (7.3.18)
Q(ax)

for some positive 0 < a < a./2. So, the limit function u is non-trivial.
PROOF THEOREM 1.1 The limit function wg € L3 and, hence,

lwoll2, 50,1 = 0

as |zo| — oo. The latter, together with Theorem 1.6 from Appendix B, and
e-regularity theory for the Navier-Stokes equations, gives a required decay
at infinity. To be more precise, there are positive numbers R, T' €]a., S|,
and ¢, with £k = 0,1, ... such that

\VFu(z, t)] < cx (7.3.19)

for any x € R\ B(R/2) and for any t €] — T, 0.
The second thing to be noticed is that the following important property
holds true:

u(-,0) = 0. (7.3.20)

This follows from (7.2.2) and (7.3.2), see the last statement in (7.3.2). Since
vorticity w = V A u vanishes at t = 0 as well, we can apply the backward
uniqueness result from Appendix A to the vorticity equation and conclude
that w = 0 in (R®\ B(R/2))x] — T,0[. Now, our aim is to show that in
fact w = 0 in R3x] — T,0[. If so, u(-,t) is going to be a bounded harmonic
function with the additional property [[u(:,t)||L,(B(z0,1)) — 0 as |zo| = o0
and thus we may conclude that u = 0 in (R*\ B(R/2))x]—T,0[. The latter
contradicts (7.3.18) and, hence, zr is not a singular point.
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The idea of the proof of the above claim is more or less the same as in
paper [Escauriaza et al. (2003)]. However, in the present case, we have less
regularity and no global finite norm for the pressure. The way out is to
use decomposition (7.3.10) in order to get better estimates for the pressure,
say, in the domain (R®\ B(R))x] — T,0[. Indeed, using estimates of type
(7.2.10) and (7.2.11) for the parts of the pressure pl and p2 in (7.3.10),
we show

[P(,t) = Cao (Ol s)a(B(0,3/2) <€

provided B(wg,2) € R\ B(R/2). Here, a constant ¢ is independent of
xo and t. Then, local regularity theory, applied to the pressure equation
Ap = —divdivu ® u, together with estimate (7.3.19), implies

IVEp(a,b)] < ¢
for any 2 € R3\ B(R), any t €]0,T[, and any k = 1,2,.... If we replace
the pressure p with p — [p] p(4r)\ B(r), then from Poincare’s inequality, from

previous estimates, and from the equation d;u + v - Vu — Au = —Vp, it
follows that

\VFu(z,t)| + |VFp(z, t)| 4+ |VFOu(x, )] < c2 (7.3.21)

for all x € B(4R) \ B(R), for all t €] — T, 0[, and for all k = 0,1, ....

Next, we pick up a smooth cut-off function ¢ such that ¢ = 0 out of
B(3R) and ¢ = 1 in B(2R) and introduce auxiliary functions w and 7
obeying the equations

Aw = Vr, divw = u - Vo
in B(4R) and the additional conditions
{D|BB(4R) = 0, / rdx = 0.
B(4R)

In a view of (7.3.19), the regularity theory for the stationary Stokes system
gives the estimates

V@ (x,t)| + V7 (2, t)] + [VFOuw (2, t)| < 3 (7.3.22)

being valid for all z € B(4R), for all ¢ €] — T,0[, and for all £ = 0,1, ....
Letting U = w — w and P = r — 7, where w = ¢pu and r = vp, we find

WU +diviU@U) - AU+ VP=F=—-dviU@u+wU)+G,

divU =0
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in Q. = B(4R)x] — T, 0],
Ulosryx)-T,0f = 0.
Here, G = —div(w ® w) + g — 0w and
g = (¢p? — @)div(u ® u) + uu - V2 + pVp — 2V¢ - Vu — ulgp.

Since u and p are a local energy solution, it follows from its definition
that there exists a set ¥ C] — T,0[ of full measure, i.e., |X| = T, such
that U is a weak Leray-Hopf solution to initial boundary problem for the
above system in B(4R)x]to,0[ for each tg € X. The rest of the proof is
based upon estimates (7.3.21) and (7.3.22) and unique continuation across
spatial boundaries for parabolic differential inequalities and goes along lines
of arguments in the last section of Chapter 6. Theorem 1.1 is proved.

Let us outline the proof of (7.1.4), which is much easier than the proof
of Theorem 1.1. Indeed, arguing as in the main case, we find a sequence
tr — T — 0 such that

tim [[o(-, t) |l (T — t4) = = 0.
k—oco
The scaling implies [[u®) (-, =)l — 0 and thus
14 (-, =)l ynir = 0- (7.3.23)

For solutions u(*), we may use local energy estimates proved in Appendix
B. In particular, they give the estimate

1™ CONS e < 2ela™ ¢ =915 i
for any ¢t €] — S,0[. And S should be chosen independently of k so that
In2
0<S< =

(1 + (2¢flu® (-, _S)Hz,unif)Q)

for all k € N. It is possible because of (7.3.23).
So, we can claim that

(k) (k)2
sup ||u + sup / / Vu dxdt — 0
s a3 it sup, | |

—S B(zo,1)

as k — oo. This means that the limit solution must be identically zero.
However, using the same arguments as in the previous section, we can show
that the limit solution is not a trivial one provided that the original solution
blows up at time 7.
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7.4 Comments

This section is essentially based on my paper [Seregin (2012)], which in turn
summarizes all previous attempts made in [Seregin (2007)]-[Seregin (2010)]
to solve the problem about behavior of Ls-norm of the velocity field as time
approaches possible blow up time.



Appendix A

Backward Uniqueness and Unique
Continuation

A.1 Carleman-Type Inequalities

We start with the first Carleman type inequality which has been already
used in [Escauriaza et al. (2002)] and [Escauriaza et al. (2003)] (see also
[Escauriaza (2000)], [Escauriaza and Vega (2001)], and [Tataru (2000)]).

Proposition 1.2. For any function u € C§°(R"x]0,2[; R™) and for any
positive number a, the inequality
z|2
Ik h=2a(t)e i (%|u|2 + |Vu|2) dxdt
R™ x]0,2[
(A.1.1)
z|2
<co [ h%(t)e 5O+ Aul? dadt
R™ x]0,2[
is valid with an absolute positive constant co and a function h(t) = te s
PROOF OF PROPOSITION 1.2 Our approach is based on the Ls-theory
of Carleman inequalities developed essentially in [Hormander (1963)], see
also [Tataru (2000)].
Let u be an arbitrary function from C§°(R™x]0,2[;R™). We let

||

¢(x,t) = =% — (a+ 1) Inh(t) and v = e®u. Then, we have
Lv = e?(Opu + Au) = 0w — div(v ® V¢) — VoV + Av + (Vo[> — 0:p)v.

The main step in the above approach is the decomposition of operator tL
into symmetric and skew symmetric parts, i.e.,

tL =5+ A, (A.1.2)
where

Sv 1= t(Av + (V|2 — Be)) — %v (A13)

205
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and
Av = L(@1(t0) +100) — Hdiv(v © V§) + VuVs). (A14)

Obviously,

[ 12e*?|0pu + Aul? dadt = [ t?|Lv|? dadt
(A.1.5)
= [|Sv]*dzdt + [ |Av|? dzdt + [[S, Alv - v dzdt,

where [S, A] = SA— AS is the commutator of S and A. Simple calculations
show that
I:= [[S, Alv-vdzdt =

= 4ft2 [(b,ijv,i “v+ ¢,ij¢,i¢,j|v|2} dxdt
(A.1.6)

+ [2v]?(0}¢ — 20,|V|* — A2¢) dzdt

+ [¢|Vo|? dzdt — [tlv]*(|Ve|* — 0,¢) dzdt.

Given choice of function ¢, we have

I=(a+ 1)/t2{— (h/(t))/ - h/(t))}|v|2d:cdt _atl /t|v|2d9cdt.

h(t) th(t) 3
(A.1.7)
By the simple identity
1
|Vo|? = §(é9t+A)|v|2 —v- (O + Av), (A.1.8)
we find
[ t2|Vo|* dedt = — [ t|v|? dedt — [ v - Lo dadt
(A.1.9)
+ [ 2|02 (|V¢|? — Or¢) dadt.
In our case,
W (t)
=9 =—|Vo|? 1 .
The latter relation (together with (A.1.7)) implies the bound
J2(|Vo]? + [v]2[V¢|?) dzdt
(A.1.10)

<3 — [t*v- Lvdzdt < by [¢*|Lv|? dzdt
with an absolute positive constant b;. Since

e?|Vu| < |Vl + |v||V), (A.1.11)
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it follows from (A.1.5)—(A.1.10) that
[ w2 (e v

< by / h_Q“(t)(th_l(t))2|8tu + Aulze 5 dadt.

12
[u | +|Vu |) — dudt

Here, by is an absolute positive constant. Inequality (A.1.1) is proved.
The second Carleman-type inequality is, in a sense, an anisotropic one.

Proposition 1.3. Let
¢ =o¢WM 4+ 3
where ¢V (x,t) = 7% and ¢ (x,t) = a(1— t) - = (21,82, ., Tpo1)
so that x = (2', ), and e, = (0,0,...,0,1). Then, for any function u €
Coo (R + €,)x]0,1[;R™) and for any number a > ag(c), the following
inequality is valid:
J t2e2¢(x:t) (a‘?—f + w) dxdt
(R +en)x]0,1]
(A.1.12)
< J t2e2¢(@|9,u + Aul? drdt.
(R +en) x]0,1]
Here, ¢, = c,(o) is a positive constant and o €]1/2,1] is fized.

PROOF Let u € C§°(QL;R™), where Q1 = (R + €,,)x]0, 1[. We are going
to use formulae (A.1.2)-(A.1.6) for new functions u, v, and ¢. All integrals
in those formulae are taken now over Q1+.

First, we observe that

Vo = Vo) + Vo

(A.1.13)
Vo) (z,t) = —Z—;, Vo (z,t) = 2aaizta2o" e,
Therefore,
Vo) -V =0, Vo] = Vo P + |V, (A1.14)
Moreover,
V2¢ = V2o + V202,
54 . ..
0 -4 if 1<4,j<n-1
¢,ij = s
0 if i=n or j=n (A.1.15)

0 if i#n or j#n

20200 — 1)alzta20=2  if i=n and j=n
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In particular, (A.1.15) implies
bt = 6DOVD 606D (ara

Using (A.1.14)—(A.1.16), we present integral I in (A.1.6) in the following
way:

I=hL+1+ /t|Vv|2 dadt, (A.1.17)
where
I, =4[t [qﬁff;vl v+ ¢§f])¢§f)¢f;)|v|2} dxdt

+ [ 210 (32619 — 20,/ Vo2 — A%

—LVOOP + Lo ) dadt, s =1,2.
Direct calculations give us
L= —/t(|Vv|2 ~ Ju[?) dedt
and, therefore,
I= /t|v,n|2dxdt+ I. (A.1.18)

Now, our aim is to estimate Iy from below. Since o €]1/2,1[, we can
drop the first integral in the expression for I5. As a result, we have

IQ Z /t2|’l)|2(141 + A2 + Ag) dl‘dt, (Allg)
where

Ay = =0 |VoP 2,

1
Ay = Ay = A% — |V,

1
A =076 + 20,0

For A,, we find

1 —t 4 2 200+2
Ao > ——a2 a2 - 1) [% ~20(2a —2)(20 - 3)] .
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Since z,, > 1 and 0 < t < 1, we see that Ay > 0 for all a > 2. Hence, it
follows from (A.1.18) and (A.1.19) that

I> /t2|v|2(A1 + A3) dxdt. (A.1.20)
It is not difficult to check the following inequality
2a
zn
As > a2a — 1)ta+2. (A.1.21)

On the other hand,
1
—OVo | = —[VoI? > (20— 1)
and thus

1-t¢

2 2 _2(2a—1)
t20‘+14a a“z;, >0

A > %|V¢(2)|2. (A.1.22)
Combining (A.1.20)—(A.1.22), we deduce from (A.1.5) the estimate
J | Lo|? dedt > T
2a

>a2a—1) [ 2

I

v dedt + [ o2V |2 dadt (A.1.23)

> a(2a — 1) [|v]? dzdt + [ t|v]?|Ve@)|? dudt.
Using (A.1.8), we can find the following analog of (A.1.9)
[t|Vv|? dzdt = —3 [|v|? dedt — [ tv- Lo dzdt
(A.1.24)
+ [tv2(|V¢|* — Oro) dadt.
Due to special structure of ¢, we have
VoI — 016 = VOO — 016" + V)2 — 5,6
= —[Vo P + V@ — 061
and, therefore, (A.1.24) can be reduced to the form
J (190 + tloP(VOO + [V6P2)) dadt

- ft(\VvP + \U\Z‘\w?) drdt = —1L [ |v]? dudt (A.1.25)

— [tv- Ludzdt + 2 [ t|v]?|V?) |2 dodt — [ t|v]?0,0?) dzdt.
But
2a
—tdp'? < a%
and, by (A.1.11) and (A.1.25),
2 [te**|Vul? < — [v - (tLv) dudt
(A.1.26)
+2 [ ]o[2| VP2 dadt + a [ Zi|v]? dd.
The classical Cauchy-Schwarz inequality, (A.1.23), and (A.1.26) yield re-
quired inequality (A.1.12). O
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A.2 Unique Continuation Across Spatial Boundaries

We will work with the backward heat operator 0; + A rather than the more
usual heat operator 9; — A since this will save us writing some minus signs
in many formulae. In the space-time cylinder Q(R,T) = B(R)x]0,T[C
R"™ x R, we consider a vector-valued function u = (u;) = (uy, Uz, ..., Unm),
satisfying three conditions:

ue W (Q(R,T);R™); (A.2.1)

|0su + Aul < e1(Ju] + |Vul) a.e. in Q(R,T) (A.2.2)
for some positive constant cy;
lu(z,t)] < Cr(|z| + V1)* (A.2.3)
for all £ =0,1,..., for all (z,t) € Q(R,T), and for some positive constants
Ck. Here,
Wy (Q(R, T);R™) = {Jul + |V ul + |V?u| + |0pul € L2(Q(R, T))}.
Condition (A.2.3) means that the origin is zero of infinite order for the

function u.

Theorem 2.4. Assume that a function u obeys conditions (A.2.1)-(A.2.3).
Then, u(z,0) =0 for all x € B(R).

Without loss of generality, we may assume that T' < 1. Theorem 2.4 is
an easy consequence of the following lemma.

Lemma A.1. Suppose that all conditions of Theorem 2.4 hold. Then, there
exist a constant v = y(c1) €]0,3/16[ and absolute constants p1 and P2 such
that

Ju(z, )] < ealer) Ap(R, T)e 5 (A.2.4)
for all (z,t) € Q(R,T) satisfying the following restrictions:
0<t<AT,  |g]<AR, ot < o]
Here,
Ag = max lu(z, t)| + VT |Vu(z,t)].

(z,t)€Q(FR,3T)

Remark A.1l. According to the statement of Lemma A.1, u(z,0) = 0 if
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Remark A.2. From the regularity theory for parabolic equations (see [La-
dyzhenskaya et al. (1967)]), it follows that

1

A0§C3(61,R7T)( / |u|2dz)§.
Q(R,T)

PROOF OF LEMMA A.1 We let A = /2t and ¢ = 2|z|/\. Suppose that
t<AT <~,|z| < %R, and 8t < |z|?. Then, as it is easy to verify, we have
o0 >4 and

\y € B(3R/4) if y € B(o); M5 €]0,3/4] if s €]0,2]

under the condition 0 < v < 3/16. Thus the function v(y, s) = u(Ay, A\?s) is
well defined on Q(p,2) = B(p)x]0,2[. This function satisfies the conditions:

|0sv + Av| < ci A(Jv] + |V v]) (A.2.5)
in Q(,2);
[o(y, 5) < Ci(lyl + V/s)" (A.2.6)

for all k = 0,1,... and for all (y, s) € Q(o,2). Here, C} = CpAF.
Given € > 0, we introduce two smooth cut-off functions such that:

— 17 (yvs) € Q(Q - 173/2)
020 ={ 0" (g Barel - a o <
1, s €]2e,2]
0= ¢=(s) = { 0, s €]0,e[ ~

We let w = v and w, = @.w. Obviously, (A.2.5) implies the following
inequality:
|0swe + Awe| < cr A(Jwe| + |V we|)
(A.2.7)
+ea(|VellV ol + [Vl |v] 4+ [A ello] + [8sel[v]) + caleL||v]-
The crucial point is the application of the following Carleman-type inequal-
ity, see Proposition 1.2, to the function w,

[ h72(s)e”
(0,2)

lyl2
4s

(|V we| + |we|)? dyds
Q
(A.2.8)

ly?

<cs [ hT(s)e 4
Q(0,2)

Oswe + A w,|? dyds.
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Here, ¢35 is an absolute positive constant, a is an arbitrary positive number,
1—t
and h(t) = te s . We let

A= max_ [u(y, s)| + |V u(y,s)]|
(v,5)€Q(0,2)\Q(0—1,%)

and choose ~ sufficiently small in order to provide the condition
1
10c5c3A? < 20c5¢ty < 3 (A.2.9)

Condition (A.2.9) makes it possible to hide the strongest term in the right-
hand side of (A.2.8) into the left-hand side of (A.2.8). So, we derive from
(A.2.7)-(A.2.9) the following relation

lyl?

f h72a(s)ei = ([Vwe| + |w5|)2 dyds
Q(e:2)
ly|2
<cgA? [ hT(s)e” i x(y, s) dyds (A.2.10)

Q(e:2)
1 _2q _lwi?
+ee [ hT?(s)e”
Q(e,2¢)
Here, x is the characteristic function of the set Q(o,2)\ Q(0 — 1,3/2). We
fix a and take into account (A.2.6). As a result of the passage to the limit
as € = 0, we find from (A.2.10)

v|? dyds.

D= [ h=2a(s)e= " (|V v] + |v])? dyds
Q(e—1,3/2)
_9a _lw?
<cgA? [ hT(s)e” 5 x(y, s) dyds (A.2.11)
Q(e:2)

2 (e=1)?
< cpA? (h_Qa(3/2) +p" 7 [T (s)e w5 ds).
0

Since g > 4, it follows from (A.2.11) that:
2
2
D< C7A2(h‘2“(3/2) +pn / h=2a(s)e~ & ds). (A.2.12)
0

In (A.2.12), the constant ¢; depends on n and ¢; only.
Given positive number 5, we can take a number a in the following way
Bo?

= TRAGTD (A.2.13)
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This is legal, since h(3/2) > 1. Hence, by (A.2.13), inequality (A.2.12) can

be reduced to the form
2

2 2 2 92
D < ¢ A%ePr (1 + pnTlePe /h72a(5)6259 T8 ds).
0
We fix 8 €]0,1/64[, say, § = 1/100. Then, the latter relation implies the

estimate
2

D < d(eq, n)AQe*BQ2 (1 + / h72“(5)671%28 ds). (A.2.14)
0
It is easy to check that 8 < * 3/2) and therefore ¢'(s) > 0 if s €]0, 2[, where
g(s) = h*2“(s)6*ﬁ and a and o satisfy condition (A.2.13). So, we have
D < cs(cl,n)AQe_ﬂ92, (A.2.15)
where § is an absolute positive constant.
By the choice of ¢ and A, we have B(u¥,1) C B(o—1) for any p €]0, 1].
Then, setting Q = B(u¥,1)x]1/2,1[, we find

DZ/ by [v|? dyds. (A.2.16)

Q
Observing that |y|? < 2u2|i—|22 +2if y € B(u%,1) and letting pu = /203, we
derive from (A.2.15) and (A.2.16) the following bound

/ lv|? dyds < chQe(*QBPT)% = chzefﬁl a (A.2.17)
Q
On the other hand, the regularity theory for linear parabolic equations give
us:
lo(px/X, 1/2)]? < co(c1,n) / [v|* dyds. (A.2.18)
Q

Combining (A.2.17) and (A.2.18), we show

|2
[u(v/2B, DI = Julp, ) = lo(pa/2,1/2)” < oA
Changing variables © = /25, we have

T 2
u(F, 1)| < v/chAe™ 5w
for |#| < f1R and |Z|* > Bt with 31 = 3/8+/28 and (B2 = 163. It remains
to note that A < v2T and
A< max lu(z, t)| + AV u(zx, t)].
(z,t)EQ(3R,3T)
Lemma A.1 is proved.
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A.3 Backward Uniqueness for Heat Operator in Half Space

In this section, we deal with a backward uniqueness problem for the heat
operator. Our approach is due to [Escauriaza et al. (2003)], see also [Es-
cauriaza et al. (2002)].
Let R} = {z = (z;) € R" : x, >0} and Q4 = R x]0,1[. We consider
a vector-valued function u : @4+ — R™, which is “sufficiently regular” and
satisfies
|0 + Au| < e (|[Vu| + |u]) in Q4+ (A.3.1)
for some ¢; > 0 and
u(-,0) =0 in RY. (A.3.2)

Do (A.3.1) and (A.3.2) imply u = 0 in Q+? We prove that the answer is
positive if we impose natural restrictions on the growth of the function u
at infinity. For example, we can assume

lu(z, t)] < M (A.3.3)

for all (z,t) € Q4+ and for some M > 0. Natural regularity assumptions,
under which (A.3.1)—(A.3.3) may be considered are, for example, as follows:

wand weak derivatives 9;u, Vu,and V2uare square } (A.3.4)

integrable over bounded subdomains of @) .

We can formulate the main result of this section.

Theorem 3.5. Using the above notation introduced, assume that u satisfies

conditions (A.3.1)-(A.3.4). Then u=0 in Q4.

We start with proofs of several lemmas. The first of them plays the
crucial role in our approach. It enables us to apply powerful technique of
Carleman’s inequalities.

Lemma A.2. Suppose that conditions (A.53.1), (A.3.2), and (A.3.4) hold.
There exists an absolute positive constant Ag < 1/32 with the following
properties. If

lu(z,t)| < eAlel” (A.3.5)
for all (z,t) € Q4+ and for some A € [0,Ao], then there are constants
B(A) >0, v(e1) €]0,1/12], and ca(c1, A) > 0 such that

2
‘171

lu(z,t)| < coet Al =B (A.3.6)
for all (z,t) € (R} + 2e,)x]0,7[.
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PROOF In what follows, we always assume that the function u is extended
by zero to negative values of ¢.

According to the regularity theory of solutions to parabolic equations,
see [Ladyzhenskaya et al. (1967)], we may assume

u(z, t)] + |Vu(z, t)] < cze?Al* (A.3.7)

for all (z,t) € (R} +ey,)x]0,1/2[.
We fix x,, > 2 and t €]0, [ and introduce the new function v by usual
parabolic scaling

v(y, s) = u(x + Ay, \>s — t/2).

The function v is well defined on the set Q, = B(p)x]0,2[, where p =
(z, —1)/X and A = /3t €]0,1/2[. Then, relations (A.3.1), (A.3.2), and
(A.3.7) take the form:

|0sv + Av| < et A([Vu| + |v]) ae in Qp; (A.3.8)
[v(y, s)| + |Vou(y, s)| < czetdlol A AN Iyl (A.3.9)

for (y,s) € Qp;
v(y,s) =0 (A.3.10)

for y € B(p) and for s €]0,1/6].
To apply inequality (A.1.1), we pick up two smooth cut-off functions:

_ o fyl>p-1/2
¢P(y)_{ 1 |y‘<p_1 )

_]0 T/4<s<2
@(3)_{1 0<s<3/2
These functions take values in [0,1]. In addition, function ¢, obeys the
inequalities: |[V*¢,| < Cy, k =1,2. Welet (y, s) = ¢,(y)¢:(s) and w = nu.
It follows from (A.3.8) that

|0sw + Aw| < e1 A(|Vw| + |w|) + xea(| V| + |v]).

Here, ¢4 is a positive constant depending on ¢; and Cj only, x(y,s) = 1 if
(yys) ew={p—1<|yl<p, 0<s<2U{ly| <p—1, 3/2<s <2} and
x(y,s) = 0if (y,s) ¢ w. Obviously, function w has the compact support
in R"x]0,2[ and we may use inequality (A.1.1), see Proposition 1.2. As a
result, we have

I= [ h=29(s)e”
Qp

lyl?
4s

(lw]? + [Vw[?) dyds < col0(cIN*T + c§11), (A.3.11)
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where

lyl?
4s

b= [ s> s (f? + [Vol?) dyds.
Qp
Choosing v = v(c1) sufficiently small, we may assume that the inequality
c010c¢2A? < 1/2 holds and then (A.3.11) implies
I <es(e)hh.

On the other hand, if A < 1/32, then
1 1
BAN — — < —— A3.12
4s 8s ( )

for s €]0,2]. By (A.3.9) and (A.3.12), we have

2 2
L <3S [ [ Xy, s)h=2(s)e 55 dyds
0 B(p)
(A.3.13)

2 2 (p—1)?
< cgeBAlel {h_Qa(3/2) + [h2%(s)e” s ds}.
0
Now, taking into account (A.3.13), we deduce the bound

1 1
DE//|w|2dyds://\v\2dyds

(1) 51 3

2
< 07/h’2“(s)e"z‘s (jw* + |[Vw|?) dyds
Qp

2
< eslen)et e [n72(3/2) + / h2(s)e b ds]
0

2
_ 8A|x|>—28p% |1, —2a 28p°2 —2a Zﬁpzfi
= cge h™=%(3/2)e + [ h7=%(s)e 325 ds|.
0
We can take 8 = 8A4 < 1/256 and then choose
a=Bp*/Inh(3/2).
Since p > z,, such a choice leads to the estimate
2

D < cgeBAle'l* =80 [1 + /g(s) ds],
0
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2
where g(s) = h=2%(s)e~ 5. It is easy to check that ¢/(s) > 0 for s €]0,2]
if 3 < g5 Inh(3/2). So, we have

D < 258417 0007 < 90y 8Al 1P o~ T (A.3.14)
On the other hand, the regularity theory implies
[v(0,1/2)|* = |u(x,t)|* < c4D. (A.3.15)

Combining (A.3.14) and (A.3.15), we complete the proof of the lemma. [
Next lemma is a consequence of Lemma A.2 and the second Carleman
inequality (see (A.1.12)).

Lemma A.3. Suppose that the function u obeys conditions (A.3.1),
(A.8.2), (A.3.4), and (A.8.5). There exists a number v1(c1,cx) €]0,7/2]
such that uw(x,t) = 0 for all x € R} and for all t €]0,v1[.

PROOF As usual, by Lemma A.2 and by the regularity theory, we may
assume

2
Tn

lu(z, t)] + |Vu(z, )] < colcr, A)e3A P e=F5t (A.3.16)

for all 2 € R} + 3e,, and for all ¢ €]0,~v/2].
By scaling, we define function v(y, s) = u(\y, A%s — v1) for (y,s) € Q4
with A = v/2v,. This function satisfies the relations:

|0sv + Av| < e A(|Vo] +|v]) ae. in Qi (A.3.17)

v(y,s) =0 (A.3.18)
for all y € R’} and for all s €]0,1/2(;

2242 2
Vo(y, s)| + [0(y, s)| < cge®AN WP eTT0T00 < B AN T =03
(A.3.19)

for all 1/2 < s < 1 and for all y € R} + $e,. Since A < 1/32 and
A <7 < 1/V12, (A.3.19) can be reduced to the form

2
lv'12 Vi

[Vou(y, s)| + vy, s)| < cle ™ e Pt (A.3.20)
for the same y and s as in (A.3.19).
Let us fix two smooth cut-off functions:

0 oy <341
%(yn){l yn>§+%’
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and

1 r>-1/2
¥a(r) = {0 r< —3/4°

We set (see Proposition 1.3 for the definition of ¢(!) and ¢(?))

1
65(W0r8) = 26Dy, 5) - B= (1 - )% B,
where o €]1/2,1[ is fixed, B = 262 (2 4+ 2,1/2), and

n(yna 5) =1 (yn)'l/JQ(d)B(ynv 5)/B)a w(ya 5) = n(yna S)U(yv S)

Although function w is not compactly supported in Q% = (R% +e,)x]0, 1[,
but, by the statement of Lemma A.2 and by the special structure of the
weight in (A.1.12), we can claim validity of (A.1.12) for w. As a result, we
have

/ 5262¢(1)62“¢B(\w\2 + |Vw|?) dyds
Q%

< ey / 3262‘1)(1)62“’3 |Osw + Aw|2 dyds.
Q%

Arguing as in the proof of Lemma A.2, we can select v1(c1,c,) so small
that

ay
I= /5262“@3(|w|2 + \Vw|2)e_ly4$| dyds
Q3

72
< erolen, ) / X(gn, ) (5yn) 2297 (o2 Vo)e™ " dyds,
RE+(5+1)en)x]1/2,1]
where X(yn,s) = 1 if (yn, s) € w, X(Yn,s) = 0 if (yn, s) ¢ w, and
W={(yn,8): yn>1, 1/2<s<1, ¢p(yn,s) < —D/2},

where D = —2¢B(% + %, %) > 0. Now, we wish to estimate the right-hand
side of the last inequality with the help of (A.3.20). We find
+oo 1

v2
I<cpePe / /(yns)ze—fBT dynds / (2a—a)lv'1” gy

3411/2 Rn—1



Backward Uniqueness and Unique Continuation 219

Passing to the limit as a — 400, we see that v(y,s) = 0if 1/2 < s < 1
and ¢p(yn,s) > 0. Using unique continuation across spatial boundaries,
we show that v(y,s) =0if y € R} and 0 < s < 1. O

Now, Theorem 3.5 follows from Lemmas A.2 and A.3 with the help
of more or less standard arguments. We shall demonstrate them just for
completeness.

Lemma A.4. Suppose that the function u meets all conditions of Lemma
A.3. Thenu =0 in Q4.

PRrOOF By Lemma A.3, u(z,t) = 0 for x € R} and for t €]0,v:[. By scaling,
we introduce the function u( (y, s) = u(ﬂy, (I—=71)s+71). It is easy
to check that function u(!) is well-defined in Q. and satisfies all conditions
of Lemma A.3 with the same constants ¢; and A. Therefore, v (y, s) = 0
for y, > 0 and for 0 < s < ;. The latter means that u(x,t) = 0 for z,, > 0
and for 0 <t < v =71 + (1 — v1)71. Then, we introduce the function

U(Q) (y7 S) = ’LL( 1- "2Y; (1 - '72)8 + 72)7 (ya 8) € Q—i—v

and apply Lemma A.3. After k steps we shall see that u(z,t) = 0 for z,, > 0
and for 0 < ¢ < Yg41, where Y41 = + (1 — )1 — 1. O

PROOF OF THEOREM 3.5 Assume that Ag < M. Then \? = ¢ < 1.
Introducing function v(y,s) = u(\y, A%s), (y,s) € Q4, we see that this
function satisfies all conditions of Lemma A.4 with constants ¢; and A =
1Ag. Therefore, u(z,t) = 0 for 2, > 0 and for 0 < ¢ < 2‘4]\9[
repeat arguments of Lemma A.4, replacing v to AO and A to M, and end

up with the proof of the theorem. O

Now, we

A.4 Comments

The whole chapter is essentially due to a part of the paper [Escauriaza et al.
(2003)]
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Appendix B

Lemarie-Riesset Local Energy
Solutions

B.1 Introduction

In this chapter, we are going to construct solutions to the Cauchy prob-
lem for 3D Navier-Stokes equations with slow decaying initial data. For
such initial data, we cannot expect the existence of energy solutions, i.e.,
weak Leray-Hopf solutions, but we can hope to construct solutions that
satisfy the energy inequality at least locally. e-regularity theory, includ-
ing the Caffarelli-Kohn-Nirenberg theorem, would work for them as well.
The right class of initial data is a certain subspace of the special Morrey
space Lo yunif. This class contains slow decaying functions, for example,
interesting homogeneous functions of order minus one.

The main difficulty is caused by the pressure field, which even does
not appear in the definition of weak Leray-Hopf solutions. In the case of
the Cauchy problem, one would hope to use a nice solution formula for the
pressure that is well-defined for weak Leray-Hopf solutions, but it should be
modified somehow in order to be useful for functions with very weak decay
at the spatial infinity. The problem of the existence of weak solutions with
the initial data from L s has been essentially solved by P. G. Lemarie-
Riesset [Lemarie-Riesset (2002)] and our aim is to give an interpretation of
his interesting and important results.

Let us consider the classical Cauchy problem for the Navier-Stokes equa-
tions:

Ov(x,t) + dive(z, t) @ v(z,t) — Av(z,t) = g(z,t) — Vp(z,t),
(B.1.1)
divo(z,t) =0

221
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for (x,t) € Qr = R3x]0, T[ together with the initial condition
v(z,0) = a(x), r € R3, (B.1.2)
It is supposed that
a 65727 g€ CO,*Q(O,T). (B.1.3)
Here, spaces E’m and ém(O, T) with m > 1 are defined as follows:

Em: {fueE,,: divu=0 in R?’},
Gm(0,T) = {u € G (0,T) : divu=0 in Qr=R*x]0,T[},

Bn = {0 € Loig s [ ful@)"ds 50 a5 [ao] - +oc),

B(:l)(),l)

0 B(Io 1

as |xo| = 400},

1/m
L unip = {u € Linjoc : |ullr,, vnif = sup ( / |u(9:)|md9:) < 400},
3

ro€ER
B(zo,1)

Lim,unif(0,T) = {u € Linioc(Qr) ¢ ||ullL,, ,0is0.7) =

T
1/m
— sup (/ / |u(a:,t)|mdxdt> < +o0}.
ro€ER3
0 B(zo,1)
As it has been shown in [Lemarie-Riesset (2002)] (see also references there),

the space onm is in fact the closure of the set
CER) = {ue CPR% : divu=0 in RS}

with respect to the norm of the space Ly, yni¢. For the readers’ convenience,
we give the proof of this fact in the last section of this chapter, see Lemma
B.10.

In monograph [Lemarie-Riesset (2002)], P. G. Lemarie-Riesset proved
that, for ¢ = 0, problem (B.1.1)-(B.1.3) has at least one weak solution
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v with the following properties (see Definition 32.1 in [Lemarie-Riesset
(2002))): for any T > 0,

T
UV € Loo(0,T; Lo unif), sup / / |V v|?dzdt < +o0;
xoER3
0 B(ﬂﬂo»l)
for any compact K,

[v(-;t) —a()Lyxy =0 as t— +0;
v s a suitable weak solution in the sense of Caffarelli-Kohn-Nirenberg
in Qr =R*x]0,TT.
This definition seems to be a bit weak and admits trivial non-uniqueness.
Indeed, let a smooth vector-valued function ¢(t) satisfy ¢(0) = 0. Then
v(z,t) = ¢(t) and p(z,t) = —/(t) - x is also a weak solution for zero initial
data. To avoid such type of uniqueness, one may add more restrictions on

the velocity or on the pressure. Our definition involves the pressure in more
explicit way and is follows.

Definition B.1. We call a pair of functions v and p defined in the space-
time cylinder Q7 = R3x]0,T[ a local energy weak Leray-Hopf solution or
just a local energy solution to the Cauchy problem (B.1.1)—(B.1.3) if they
satisfy the following conditions:
v E Loo(OaTv L2,unif)a Vv € L2,unif(OaT)a
p € L3(0,T; Ly 1.(R?)); (B.1.4)

v and p meet (B.1.1) in the sense of distributions; (B.1.5)

the function t — /U(sc,t) -w(zx)dxis continuous on [0,T]  (B.1.6)
R3

for any compactly supported function w € Lo(R?);
for any compact K,

lv(-,t) —a(-)||lL,xy =0 as t— +0; (B.1.7)
¢ ¢
/<p|v(x,t)|2dx+2//<p|Vv|2d:1cdtS//(|v|2(8tcp+Ag0)
RS 0 R3 0 R3

- Ve ([v]? + 2p) + 209 - v) ddt(B.1.8)
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for a.a. t €]0,T[ and for nonnegative smooth functions ¢ vanishing
in a neighborhood of the parabolic boundary of the space-time cylinder
R3]0, T[;

for any x¢ € R3, there exists a function ¢, € L3(0,T) such that

Do (,1) = p(@,1) = €29 (t) = Py, (,1) + D3, (2, 1), (B.1.9)
for (x,t) € B(sco,3/2) 10, T[ Where
pho(et) = gl + = [ Ko=) @ ot dy,
B(IO 2

Ruet= [ K@=y - Ko p): olt) @ ot dy
R3\ B(z0,2)

and K (z) = V2(1/|z]).

Remark B.3. It is easy to see that (B.1.4), (B.1.6)—(B.1.8) imply the
following inequality:

/(p(m)v(x,t)zdx+2/t/g0Vv|2dxdsS/<p(a:)v(x,t0)|2dx

R3 to R3 R3

t
—|—// [\v|2A</D +Vep- v(|v|2 + 2p> + 2¢g - v} dxds. (B.1.10)
io B3
It is valid for any ¢t € [0,T], for a.a. ty € [0,7T], including ¢, = 0, and for
any nonnegative function ¢ € C§°(R3?).

Remark B.4. In turn, from (B.1.4), (B.1.6), and (B.1.10), it follows that
if v and p are a local energy solution on the set R®x]0, 7], then they are
a local energy solution on the set R3x]ty, T[ for a.a. to € [0, 7], including
to = 0.

We are going to prove the following statements. The first of them shows
that our information about pressure is sufficient to prove decay for both
velocity v and p.

Theorem 1.6. Assume that conditions (B.1.3) hold. Let v and p be a
local energy solution to the Cauchy problem (B.1.1), (B.1.2). Then v and
p satisfy the following additional properties:

(-, t) €E2 (B.1.11)
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for allt €10,T);

v(t) €E3 (B.1.12)
for a.a. t €[0,T];
[|v(-,t) — a(~)||L2,umf =0 as t— +0; (B.1.13)

sup / / — Cay (t)|% dzdt < +o0,

ro€ER3
0 B(z0,3/2)
T

sup/ / L{ja)> ry [P(2, 1) — cog ()] 2 dzdt — 0 (B.1.14)

xrgER3
0 B(wo,3/2)

as R — +o0o, where lf| > gy 48 the characteristic function of the set {x €
R3: |z| > R}.
The main theorem of the chapter is Theorem 1.7 below.

Theorem 1.7. Assume that conditions (B.1.3) hold. There exists at least
one local energy solution to the Cauchy problem (B.1.1), (B.1.2).

The substantial counterpart of the proof of Theorem 1.7 is the statement
on the local in time existence of local energy weak solutions.

Proposition 1.8. (local in time solvability) Assume that conditions
(B.1.8) hold. There exist a number Ty €]0,T], depending on |a| L, ...,
and on ||g||L,. ..., (0,7) only, and two functions v and p, being a local energy
solution to the Cauchy problem:

ov(z,t) + divv(z,t) @ v(z,t) — Av(z,t) = g(z,t) — Vp(x,t),
(B.1.15)
divv(z,t) =0

forz € R3 and 0 < t < Ty,

v(z,0) = a(z), r € R3. (B.1.16)

B.2 Proof of Theorem 1.6

Let us introduce the following decomposition:

P2 (@,8) = Pag.r(@,0) + Pror(@,t)  (,1) € Blao,3/2)x]0,T], (B.2.1)
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where

Pronlet) = 3 [ (K@)~ Koo~ ) 0000 9 (w0 dy.

T
E3\B(x0,2R)

Lemma B.5. For any zo € R3, for any t €]0,T[, and for any R > 1, the

following estimate is valid:

C
sup  |puo.r(z, )] < =l O3, ..
Blzo.3/2) R Lounis

PROOF By our assumptions,

|z — o]
Kz —y) — K(zo — <cr————
| ( y) ( 0 y)| = |.Z'0—y|4
for x € B(zo,3/2) and for y € R?\ B(zo,2R). And then
_ 1 2
pan@l e [ gl

R3\B(z0,2R)

Nt 1
=c —v(y, t 24
Yo mwore

=0B(0,21+2 R)\ B(x0,2i+1 R)

oo

< X mmmr | ol

=0 B(z0,21+2R)

I LGN LG
=0

Lemma B.5 is proved.
We let

t

o) = oD sne B = sup [ [ (VP duds,

roER3
0 B(Zo,l)

= sup/ / |v|? dxds.
woeRs
10,1)

By the known multiplicative inequality, we have
¢ t

~y(t) < c(/a3(s) ds)%<ﬁ(t)+/a(s)ds>%.

0 0

(B.2.2)

(B.2.3)
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From our assumptions and from (B.2.3), it follows that:

ess sup a(t) 4+ B(T) +~3(T) < A < 0. (B.2.4)
0<t<T

Next, fix a smooth cut-off function x so that
x(z)=0, ze€B(1), x(@) =1 z¢B(2),
and then, for xr(z) = x(z/R), let

t
anlt) = IxroC Ol .. Ba® = swp [ [ vl duds
0

roER3
B(:E(),l)
t
= sup/ / Ixrv|? dzds, Gr= sup/ / Ixrg|? dads
zo€ER3 zo€ER3
0 B :E() 1 0 B ZEO 1

t

dr(t) = sup / / |XRp$O|%dxds.
roER3
0 B(x0,3/2)

An analogue of (B.2.3) is available with the form
¢ t ¢

() < o / o (s) ds)%(ﬁR(t)—i— / R(s )ds—i—% (s)ds)%. (B.2.5)
0 0

Lemma B.6. Assume that v and p are a local energy weak Leray-Hopf
solution to the Cauchy problem (B.1.1)-(B.1.3) in the space-time cylinder
Qr. Then we have the estimate

sup ag(t) + Fa(T) +14(1) + 64(T) < O, A)[[xral?, ., +
<t<

(B.2.6)

1
+Gr+ R2/3}

ProoF. To simplify our notation, we let p = py,.
We fix 29 € R? and a smooth nonnegative function ¢ such that
=1 in B(1), spt ¢ C B(3/2)

and let ¢,,(z) = @(z — z0). For ¥ = X%, we find from inequality
(B.1.10):

/1/) Yo(a, t \2dx+2//w\vu| dzds = ZI,, (B.2.7)

0 R3
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where
t
I :/1/1|a|2dx, I ://|v|2A1/)dxds,
R3 0 R3
t t
13://vw-v|v|2dxds, 14:2//vw-vpdxds,

0 R3 0 R3

t

15:2//wg-vdxds.
0 R3
Obviously,

I <cllxralli,.,..,

3=

L <c [ an(s)ds+C(T, 4)~
[

t

Is < c(/aR(s) ds—|—GR>.

0

(B.2.8)

(B.2.9)

(B.2.10)

The term I3 is evaluated with the help of Holder inequality in the following

way:

Iy < oy 20 (i () + 2470,

So, by (B.2.4),

I; < C(T, A)( 23t )+%).

Next, we let
I4 — I/ + IN,

where

I":4/ / XR®zoV XR - vDdxds

0 B(z0,3/2)

(B.2.11)
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and, by Holder inequality,

I" < ‘% / / v® dacds / / |p\2 dxds °

0 B ZQ,3/2) 0 B CE() 3/2)
From Lemma B.5 and the theory of singular integrals, we find

t t

\p|2 dxds < c/ / lv|® dxds + c/ %( )ds.  (B.2.12)
0

0 B(xo.3/2) 0 B(xo.2)

Now, (B.2.4) and (B.2.12) give us

1
I" < (T, A)E (B.2.13)
I’ can be estimated with the help of Holder inequality as follows:
1
I' < cedvi(t), (B.2.14)
where
t
%
J = (/ / |XRP|2 dxds) .
0 B(x0,3/2)

Obviously, J < J; + Jo + J3 with

= / / |XRp10|2dmd8 , Ja= / / IXRPzo.p|2 dzds)g,

0 B :E() 3/2) 0 B 10,3/2

t

2
J3 = (/ / |XRﬁz0,p|% dxds) ?
0 B(z0,3/2)

for p = v/R. We start with evaluation of Ji. Letting

XRDy, = @1 + G2,

where
1
@@, 1) = ~sxr@o(a, DI
1

o / K(z —y)(xr(@) = xr()) : v(y,t) @ v(y,t) dy,
B(z0,2)
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T
B(z0,2)

et = 3= [ K@= gxnl) s om0 @ o) dy

we use the theory of singular integrals and find the estimate for gs:

/ / |g2|# dads < C/ / Ixz|?|v]® deds

0 B(z0,3/2) 0 B(zo,2)
<C(T, A*®).  (B.2.15)

Since

0 (#1) =~ xr(@)oe, O

/ K (x = y)(xr(x) = xr(z0)) : v(y, t) @ v(y, ) dy

B(Io,

| K@=y 6crtan) - xa) vl 0) 0 vly.t) do
B(m0,2)
the same arguments lead to the estimate
t

t
3 c
|q1\g dzds < C’yl/g(t)’y}%ﬂ(t) + T2 / / 0] dads
0

0 B(z0,3/2) B(z0,2)

te / / xR (@0) — xr ()|} [v(z, ) deds

B(’EQ 2)

<o, 4) (7 =75+ (D)
Combining the latter estimate with (B.2.15), we find
L<0@Am +#“u) (B.2.16)
Next, we let
XRPzo,p = 43 1+ qa,

where

wet =1 [ K@)~ K- n) )

B(20,2p)\B(x0,2)
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—xr(Y)) :v(y,t) @ v(y,t) dy,

wet) = - (K ()~ K (20 ~y))xr(v) : v(y. D) &v(y. 1) dy.

B(z0,2p)\B(x0,2)
For x € B(xg,3/2), we have

lgs(,1)] < ¢ / K (x—y) — K(zo — )| E=Ejo(y, )2 dy

B(z0,2p)\B(x0,2)

<cf [ K@y - K-l dy.
R3\ B(z0,2)
The same arguments as in the proof of Lemma B.5 work here and show
that

p 1 1
—=a(t) =c—=a(t) < C(T,A)—=,
eFa(t) = ealt) < O(T.4)
where we used p = v/R. Similar arguments work for g4:

lqa(z, 8)| < cajl?(t)a (1) < C(T, A)aj/?(t), = € B(x0,3/2).

lgs(z,t)| < (B.2.17)

(B.2.18)
From (B.2.17) and (B.2.18), it follows that
¢
1 3/4 2
Jgsc<T,A>[ﬁ+(o/ (s)ds)]
t 1
< O(T, A)[ + (/a?jz(s) as)"]. (B.2.19)
VR )
The term J3 can be estimated with the help of (B.2.2):
1 1
J3 <c-a(t) <C(T,A)——. B.2.20
3 = Cpa( ) = ( )\/R ( )
So, by (B.2.14), (B.2.16), (B.2.19), and (B.2.20), we have
t 1
L 1/3 3 6
J < O(T, A)[\/sz +H3 ) + (/aR(s) ds) ] (B.2.21)

0
and

Gil»—t

I < T AP [0+ =+ /a

wIH

0
< O(T, A)[ 2/3(4 ; /ta . (B.2.22)
0



232 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

Now, we can derive from (B.2.7)—(B.2.11), (B.2.13), and (B.2.22):

t

an(t) + Ba(t) < clixrall, ., +<Gn-+e [ an(s)ds
0

-

+O(T, A) [7;/3@) + % + ( / ad(s) ds) g}

and, by (B.2.3) and Young inequality, we find the main inequality

ar(t) + Br(t) < clxrall,,,., +cGr
+C(T,A) [% + /aR(s) ds + (/OéBR(S) ds) %}. (B.2.23)

0 0
The important consequence of (B.2.23) is as follows:

t

. 1
a(t) < c||XRa||%21umf +cGr3+C(T,A) {ﬁ + /a?}%(s) ds]
0

The latter implies

an(t) < OT, A)[lxnall, ..., +Gn+ ).
which, together with (B.2.23), (B.2.21), and (B.2.3), proves (B.2.6). Lemma
B.6 is proved.

PRrOOF OF THEOREM 1.6 Now, the proof of Theorem 1.6 is easy. In par-
ticular, (B.1.11) follows from (B.1.4) and (B.1.6), while (B.1.12) is deduced
from (B.2.4) and (B.2.6). In turn, (B.1.7) and (B.2.6) imply (B.1.13).

Regarding the pressure, we observe, by known results for singular inte-
grals, that

pheofde<e [P
B(x0,3/2) B(x0,2)
So, the first estimate in (B.1.14) follows from (B.2.2) and from (B.2.6).

Finally, the second estimate in (B.1.14) is one of the statements of Lemma
B.6, see (B.2.6). Theorem 1.6 is proved.
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B.3 Regularized Problem

Assume that condition (B.1.3) holds. Then according to Lemma B.1.3, we
can consider the following regularized problem:

Opv® + Fe(v®) - V& — Av® = g° — V&,

B.3.1
dive® =0 (B.3.1)
in R3x]0, +oo[ with
g° € LQ(QT)7 divg® =0, (B32)
V¥limo = a° € C°(RY) (B.3.3)
in R3. Here,
F.(u)(z,t) = /Qg(a? — Z)u(Z,t) dz,
R3
oc is a standard smoothing kernel,
J° = allansy =00 197 = 9l mmsstom) 0 (B.3.4)
as ¢ — 0. And, we may assume that
0 Larinis < 2Nl Loiniss 197020 wnis01) < 2009025 nis0r)  (B.3.5)

for all . Moreover, we may assume also that g° is a function of class C'*°
in Qr and, for each ¢ > 0, there exists R. > 0 such that the support of
g°(-,t) lies in B(R,) for all t €]0,T7.

It is known that problem (B.3.1)—(B.3.3) has a unique smooth solution
v® with finite energy. Moreover, we can define the pressure in the following
way:

(2, t) = i/ - L i div(v*(2.0) ® F.(v%)(2.1)) di
Fs
_ —%ve(x,t) F(o)(x,t) (B.3.6)
+i /K(x —z):0°(Z,t) ® F.(v°)(2,1) dz,
2
where K (z) = V2(1/|z|).

Our aim is to find estimates of v® and p® that are uniform with respect
to e.
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In what follows, we shall use the following decomposition of the pressure.
For any xp € R3 and for any 0 < r < R, we let

ﬁio,r(xvt) = pe(xvt) 7pio,r(t) = palgi,r(xvt) +pii,r,R(xvt) +pii,R(x7t)v

(B.3.7)
where
1
Do, (L) = y K(xg — @) : v°(Z,t) @ F:(v°)(Z,t) dZ,
' T
R3\ B(zo,r)
le — 1 € £
pwo,r(x7t) = —§’U ($,t) : FE(U )(I,t)+
1 _ _ _ _
+4— / K(x— ) :v°(z,t) @ F.(v°)(z,t) dz,
T
B(zo,r)
pii,r,R(mat) =
-1 Kz —2) — K(zo — 7)) : v°(3,£) @ F.(v°)(, 1) d,
4

B(x0,2R)\B(zo,r)

pii,R(xv t) =

™
R3\B(z0,2R)

_ 4i / (Ko —2) ~ K(zo— 7)) :0°(2.0) @ F.(o7) (&, 1)d.

Using the same arguments as in the proof of Lemma B.5, we prove

Lemma B.7. For any z¢o € R® and for any R > 1, we have the following
estimate

cr
sup |pii,R($,t)|SEllvs(wt)lle,uWIIFs(UE)(wt)IILg,Wf~ (B.3.8)
z€B(zo,r)

Assuming that 0 < ¢ < 1, we observe that
IE (%) (o | 2 iy < €l (o )l L - (B.3.9)

Taking into account the standard estimates for singular integrals, Lemma
B.7, and inequality (B.3.9), we find:

||p;i,r('7 t)”L% (B(zo0,7)) < cflv°(, t)“%z((B(mgQ))v (B.3.10)
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sup |p§i7T,R(1‘,t)| < 01(7“, R)||UE(.7t)||%2'unif7 (B'?"ll)
z€B(xo,3r/4)
T
sup  |pge g(, 1) < CE\\UE(-J)H%Q,W,w (B.3.12)
z€B(xo,r)

We let

t
ac(t) = [ (03, Belt) = sup / / IV o2 dads,

zo€R3
0 B(zo,1)
= sup / / |v¢ |3 dads, = sup / / g(x, )] dadt.
ToER3 ToER3
B(aio, B(a:O;

By the known multiplicative inequality, we have
t t

Ye(t) < c(/ag(s) ds)é(ﬁg(t) +/a5(s)ds)i. (B.3.13)

0 0

Now, we can derive the energy estimate.

Lemma B.8. For any t > 0, the following energy estimate is valid:
¢

ac(t) + B(t) < cllall?, ., + G+ / (ac(s) + a(s))ds|.  (B3.14)

0
PROOF We fix 2y € R3 and a smooth nonnegative function ¢ such that
p=1 in B(1), spty C B(3/2)

and let @, (x) = ¢(x — xp).
From system (B.3.1) and (B.3.2), it is easy to derive the identity

E= /goxo )|v® (2, t)] da:+2//g0xo|Vv5| dxds+

0 R3

/<Pxo|a +// v PA g, +V el Fe(v 5)(|v5|2+2ﬁ§072>+ (B.3.15)

R3

+2¢2 g - vs} dzds.
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By Holder inequality and by (B.3.5), we show
t ¢
B < cflalt, ., + G+ [ads)ds+ule) + 5 0| Fdds].
0 0 B(x0,3/2)
(B.3.16)

On the other hand, (B.3.10)—(B.3.12) imply
¢

(B.3.17)

j / 155, ol dads < c(7:(6) + / ol (s)ds).
0 0

B(z0,3/2)
Taking into account (B.3.13), we derive from (B.3.16) and (B.3.17) the

following estimate
t t
3
%@+@mg4mﬁmw+G+/%@m+/@@ms
0 0

t t

+(/a§(s)ds)%(ﬁg(t)+/a5(s)ds)%}.
0 0

Applying Young’s inequality twice, we complete the proof of the lemma.
Lemma B.8 is proved.
A simple consequence of Lemma B.8 is the following statement.

Lemma B.9. There exist positive constants A and Ty < T depending on

lallzy o, and G only such that
2 4
sup e (t) + B:(To) + v& (To) + 62 (Tp) < A (B.3.18)
0<t<To
where
¢
d:(t) = sup / / |ﬁ§072|%dasd$.
xoER3
0 B(z0,3/2)
Indeed, let
In2
- } (B.3.19)

To := min {T,
eI+ (2c(llall?,,,., +G))?)
We claim that if 0 < ¢ < Tp, then ac(t) < 2¢(||al|Z, wniy T G). Otherwise,

there should exist 7" < Ty such that
ac(t) < 2¢(|lalZ, ..., +G)
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for 0 <t < T’ and
ac(T") = 2¢(|lal?, .., + G

The main inequality implies the following estimate

aclt) < c(Jall, ..., + G + L+ Cellalf,..., +6)P) [ ac(rir)
0

for 0 <t < T’. In turn, this inequality implies
ac(t) < clalz,..., + G exple(t + (2¢(lalZ, .., +G)*)t}
for the same ¢t. And thus we find
2¢(|lalg, ., +G) < cllalli,,,., +G)exple(t+ (2c(lalli, ., +G))T'}.

But this is possible only if 7" > T and contradicts the above assumption.

B.4 Passing to Limit and Proof of Proposition 1.8

First, we fix n € N. From Lemma B.9, it follows that the following estimate

is valid:
To
sup / |v¢ (z,t)|* da Jr/ / |V |? dadt < en®A. (B.4.1)
0<t<To
B(n) 0 B(n)

Using the known multiplicative inequality, we find from (B.4.1)

Ty
| % dadt <
0 B(n)
2 % ez, Ly e
sup |v®(x,t)] dx) (|Vv ¥ + = [v°] )d:ﬂdt
0<t<To n
B(n) 0 B(n)
and thus

To
/ / \ve\? dadt < en®As . (B.4.2)
0 B(n)

To estimate the pressure, we use (B.3.10)-(B.3.12) with 29 = 0 and
r = R =2n. So, we have

pfr, (wv t) = ﬁ8,2n(xv t)v
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where ﬁagn(m, t) = p*(z,t) — paQn(t), and
To
/ / 15| % dadt < C(n, Ty, A). (B.4.3)
0 B(n)
The derivative in time can be estimated with the help of the Navier-
Stokes equations in the following way:
To

/ / 0yv° - wdxdt
0 B(n)
To
= / / (va ® F.(v°) : Vw — Vv° : Vw + pidivw + ¢° - w) dxdt
0 B(n)
1 1 TO 1
/ / o |2 daedt 3(/ / |F.(v )|3dxdt>3(/ / |Vw|3dxdt>3
0 B(n) 0 B(n) 0 B(n)
To 1 To 1
+(/ / |vuf|2dxdt)2(/ / [Vl dedt)”
0 B(n) 0 B(n)
To 5 To 1
+(/ / |p;|%da:dt)3(/ / |Vw|3dxdt)3
0 B(n) 0 B(n)
1 To 1
+c / / \gs|2dxdt>2 / / lw|? dedt)
0 B(n)

for any w € C§°(B(n)). Since

//|F |3dxdt</ / (o° P devdt,

0 B(n) 0 B(2n)

we have
To To

//8tvs~wdxdt§C(n,To,A,G)(/ / |Vw|3dxdt)g

0 B(n) 0 B(n)
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for any w € C§°(B(n)). The latter estimates implies

l0we || x, < C(n,Ty, A,G), (B.4.4)

where X, is the space dual to L3(0,To; W4 (B(n))) and W4 (B(n)) is the
closure of C§°(B(n)) in Wi (B(n)).
Now, we argue by induction in n. Let n = 1. Estimates (B.4.1)—(B.4.4)
make it possible to apply the known compactness arguments and to find
1,k 1k
sequences v—" and p;’" such that

bk At in  Luo(0,T0; L2(B(1))),
pbk Lt in Ly (0, To; W2 (B(1))),
kot in  L3(0,To; Lz(B(1))),
F1,k(v1’k) — ! in  Ls3(0,To; L3(B(9))), Vo <1,

p%>kép1 in LS(O To; L ( ( ))

)
as k — +00. We let v = v! and p = p; in B(1)x]0, Tp[. Obviously, the pair
v and p satisfies the Navier-Stokes equations in the sense of distributions
and the local energy inequality in B(1)x]0,Tp[. The latter means that

t

/gp(x,t)|v(x,t)|2dx+2/ / <,0|Vv|2dwdt<// [v|?(Orp + Ap)

B(1) 0 B(1) 0 B(1)

+v - V(Jv]* + 2p) + 29 - u) dxdt

for a.a. t €]0,Ty[ and for non-negative smooth functions ¢ vanishing in a

neighborhood of the parabolic boundary of space-time cylinder Bx]0, Tp|.
Now, let n = 2. By the same arguments as above, we assert that there

exists sequences v>*, which is a subsequence of v**, and p2"* such that

RN in  Lo(0,T0; L2(B(2))),
PP —~0?in Le(0,To; Wy (B(2))),
F—v®  in L3(0,To; L3(B(2))),
F27k(v2’k) — 2 in  Ls3(0,To; L3(B(9))), Vo <2,

py" —=ps in Lg(0,Tp; Ls(B(2))).

The functions v? and p, satisfy the Navier-Stokes equations and the lo-
cal energy inequality in the space-time cylinder B(2)x]0,Ty[. Obviously,

that v2 = v on Bx]0,Tp[. So, we may extend v by letting v = v? on
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B(2)x]0,Tp[. As to the function po, it follows from the Navier-Stokes equa-
tions that Vps = Vp on Bx]0,Ty[. This means that ps(x,t) — ha(t) =
p(z,t) for x € B and for ¢t €]0,Tp[. Since both py and p belong to
L%(O,TO;L%(B)), we conclude the hy € L%(O,TO). This allows to extend
the function p to B(2)x]0,Ty[ so that p = ps — hg on B(2)x]0,Tp[. Clearly,
p € L3(0,To; L3(B(2))) and the functions v and p satisfies the Navier-
Stokes equations and the local energy inequality on the space-time cylinder
B(2)x]0, Ty|.

In the case n = 3, we repeat the above arguments choosing a subse-
quence of the sequence v>* and replacing balls B and B(2) with balls B(2)
and B(3), respectively. Continuing this process, we arrive at the following
result. There exist two functions v and p defined on R3x]0, Ty[ such that

v € Loo(0, To; La,toc(R?)) N La(0, Tos Wy e (R?)),
p € L3(0,To; L 1. (R%)). (B.4.5)

Next, letting v{¥} = %% we observe that v{¥} is a subsequence of
the sequence {v”’k},;";n, i.e., there exists a sequence of natural numbers
{ri}72,, having the following properties:

vikl = ok k=nn+1,.., T =1, rE — 00
as k — oo. Then we may let
pift = prre
Obviously, p;{lk} is a subsequence of the sequence {pﬁ’k }22.,,. For these new
sequences and for any n € N, we have
oM 2y in Leo(0, To; La(B(n))),
o i Lo(0, Ty; Wi (B(n))),
o*t v in L3(0,Ty; Ls(B(n))), (B.4.6)
Fiy (0¥ o in L3(0,To; L3(B(9))), Y3 <n,
pi —=p,  in L3(0,To; Ls(B(n)))
and
| C(n,To, A, G), (B.4.7)
pn(x,t) = p(z,t) — cn(t)7 x € B(n), t€]0,Ty[ (B.4.8)
for some ¢;, € L3(0,Tp). From (B.3.18) and (B.4.6), it is easy to derive the
estimate

ess sup Hv(',t)||%27umf Sup/ / |Vo|? dedt < 2A. (B.4.9)

0<t<Ty zoER3



Lemarie-Riesset Local Energy Solutions 241

Now, by (B.4.7) and (B.4.9), we see that, for each n € N,

the function t — / v(x,t) - w(x)dris continuous on [0,Ty] (B.4.10)

B(n)

for any w € La(B(n)).
We notice further that for the solution of the regularized problem we
have the following identity:

¢
/gp(ac)|v{k}(ac,t)|2d$+2//@|Vv{k}|2dacds :/<p|a{k}|2dx+

R3 0 R3 R3

t

+ [ [[09Fag+ Vo P ) (0P +2f)+ @A)
0 R3

+2<pg{k} 'v{k}} dxds,

which is valid for any function ¢ € C§°(R3). Taking into account
(B.3.4), (B.4.6)—(B.4.8), and (B.4.10), we deduce from (B.4.11) the inequal-
ity

t
/(p(x)|v(m,t)|2dw+2//30|Vv|2dxds < /gp|a|2dx

R3 0 R3 R3

[ [loPae+vero(iP+2)  B1)

0 R3
+20f - v] dzds.
The latter holds for any t € [0,Tp] and for any nonnegative function ¢ €

Cs°(R?). On the other hand, from (B.4.10) and from (B.4.12) it follows
that

/go\v(x,t) —a(2))?de =0 as t— 40 (B.4.13)
R3

for all ¢ € C§°(R3). So, v meets (B.1.7). The validity of (B.1.8) follows
from (B.4.6). It remains to establish decomposition (B.1.9).
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Thanks to (B.3.18), we have
To
155, 2| dwdt < A. (B.4.14)
0 B(x0,3/2)

We would like to emphasize that the constant on the right-hand sides of
4. 1s independent of € and xg. Let p e the sequence generate
(B.4.14) is independent of ¢ and @o. Let pi*), be th g d
by v{¥} via (B.3.7). For each zy € R?, we can find subsequences ﬁi];’}g’zo

and v{¥}%0 such that
PULT = s, in Ly(B(xo,3/2)x]0, Ty]).
So, it follows from (B.4.14) that
To
Py |? dadt < A (B.4.15)

0 B(w0,3/2)
for each 2o € R®. Passing to the limit in the Navier-Stokes equations on
the set B(zg, 3/2)%]0, Tp[, we show that

V(p - pa:o) =0

on B(zg,3/2)x]0, Ty in the sense of distributions. So, we state that, for
any zo € R?, there exists a function c,, € L 3 (0,Tp) having the property

Pz, 1) — Pag (X, 1) = a0 (1) (B.4.16)
for x € B(zo,3/2) and t €]0,Ty[. Now, let us show the validity of (B.1.9).
Using decomposition (B.3.7) and the theory of singular integrals, we observe

p;gg}m — pglc0 mn L%(B(x0,3/2)><]0,T0[).

Obviously,
PR = Pln  in Ly(Blxo,3/2)x)0, Th)),
where )
Ponlet) = [ (Keop) - Ka-) s o) @ 0.0 de

B(z0,2R)\B(z0,2)
By (B.3.12), we also have
3{k}.x0 1
sup R e 1)] < O(A,Ty)

w€B(x0,3/2)
on ]0,Tp[. On the other hand, the integral in the definition of pimR con-
verges to pio as R — +oo. This follows from the Lemma B.7 and the
inequality

K (2 —y) = K(zo = y)llv(y, ) do < cllo(- 1), ..,

B(20,2R)\B(w0,2)

which is valid on B(xg,3/2)x]0,Tp[. Passing to the limit as R — +o0, we
show (B.1.11). Proposition 1.8 is proved.
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B.5 Proof of Theorem 1.7

The idea of the proof of the main theorem is the same in [Lemarie-Riesset
(2002)]. It is based on the theory of solvability of the Cauchy problems for
the Stokes and Navier-Stokes systems with initial data from 1023. A proof
of them can be done along standard lines and is omitted here.

We start with the most important part: the linear theory. Consider the
Cauchy problem for the Stokes system:

Oo(z,t) — Av(z,t) + Vp(z,t) = —div f(z,1) + g(x, 1),

(B.5.1)
divo(z,t) =0
forr e R3and 0 <t < T,
v(z,0) = a(x), r € R3. (B.5.2)
It is supposed that
a€ Es, g€ é3(0,T), feGs(0,7). (B.5.3)

Theorem 5.9. Assume that conditions (B.5.3) hold. There exists a unique
pair of functions v and p having the following properties:

(NS Loo(OaT;Lfi,unif)v (1 + v |U|)|V'U| S L2,unif(0aT)a
p € L3(0,T; Ly 1.(R?));

v and p satisfy (B.5.1) in the sense of distributions;

10l L (0,75 L i) < C[||f||L%,u,Lif(o,T) 19l g i 0,m) + ||a||L3,Wf];

the t — /v(x,t) ~u(x) dx is continuous on [0,T] for any compactly
R3

supported functions u € L% (R3);

CAS é5(07T)7 ’U(',t) €§37 vt e [OaT];

lv(-,t) —v(-,to)|lLsunis — O ast—ty+0, Vto € [0, T,
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for any o € R, there exists c,, € Ls(0,T) such that

p(:E,t) - Cxo(t) = p;g(xvt) +pio($,t)
for any x € B(xg,3/2) and for any t €]0,T|, where
1 1
Photet) = —gtrft)+ o [ K- fo)dy,

B(z0,2)

Ret =g [ (KG9 - K@) fo0)dy

™
R3\ B(x0,2)
and
T
sup / / p(2,t) — Cap (1)|? dwdt < +00,
zo€ER3
0 B(z0,3/2)
T
sup / / L jaf>ry [P(2, ) — €20 ()] % ddt — O
xoER3
0 B(z0,3/2)
as R — +oo.

Using Theorem 5.9 and successive approximations, see, for example, [Escau-
riaza et al. (2003)] and [Galdi (2000)], we can prove the following theorems
about solvability of the Cauchy problem:

Opv(z,t) + divo(z,t) @ v(z,t) — Av(z,t) + Vp(z,t) = gz, t),

(B.5.4)
divo(z,t) =0
forzeR?*and 0<t<T,
v(z,0) = a(x), r € R3, (B.5.5)
under assumptions that
acEs,  geGs(0,T). (B.5.6)

Theorem 5.10. Suppose that conditions (B.5.6) hold. There exists a num-
ber Ty €]0, T with the following property. Given a and g, there exists a pair

of functions v and p that is a local energy solution in the space-time cylinder
Qr, = R*x]0, Ty, such that

vE C([07T0];£073) N éf)(OaTO)V
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V |U||VU| € L2,unif(oa T0)7 pe L% (07 TO; L%,ZOC(RB));

To
sup / / 1D(2,1) — 0y (D)3 dindt < +00,
roER3

0 B(z0,3/2)

To

sup / / L{jz>ry (25 ) — Cag (t)| 2 ddt — 0
zoER3

0 B(z0,3/2)
as R — +oo.

Moreover, assume that a pair w and q is a local energy solution to the
Cauchy problem

Opu(z,t) + divu(x,t) @ u(z, t) — Au(z, t) + Vg(x, t) = g(a, t),

(B.5.7)
divu(z,t) =0

forx € R3 and 0 < t < Ty,

u(z,0) = a(x), r € R3. (B.5.8)
Then, u = wv.
Theorem 5.11. Suppose that conditions (B.5.6) hold. Given T > 0, there
exists a constant €(T) with the following property. If

HgHLs,unif(O,T) + HaHL:S,unif < 5(T)7

then there exists a pair of functions v and p that is a local energy solution
in the space-time cylinder Qr, such that:

v e C([0,T); Es) N Gs(0,T),
VIl[VU] € Lounig(0,T),  p € Ls(0,T; Ls 1.(R%));

||’UHL(X>(O7T§L3,un'if) < CE(T);

zoER3

T
swp [ [ plant) = o (0] dade < +oc,
0 )

B(z0,3/2
T
sup / / Igjzi>rylp(2, ) — cwo(t)|g dxdt — 0
roER3
0 B(x0,3/2)

as R — +oc.

Moreover, assume that a pair u and q is a local energy solution to the
Cauchy problem (B.5.4), (B.5.5). Then, u =v.
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Now, let us outline the proof of Theorem 1.7.

So, according to Proposition 1.8, we can find a number Ty €]0, 7] and a
pair of functions v and p that are a local energy solution in the space-time
cylinder Qr,. If Ty = T, then we are done. Assume that it is not. By
Theorem 1.6, we can find ¢y €]0, Tp[ so that

’U('7t0) €E37

v and p are a local energy solution in R3x|ty, Ty[.

Next, there exist 77 and a pair of functions u and ¢ that is a local
energy solution in R3x]to, Ty [ and u € C([to, T1; 1%3) with u(-,t9) = v(-, o).
However, we know that there must be v = u in R®x]to, T1[. Without loss of
generality, we may assume that 7} < T'. Using density of smooth functions,
let us decompose v(-, ty) = a1 + az and g = g1 + g2 so that

”glan,um‘f(O,T) + ||a1HL3,un1',f < €(T - tO)?

as € CSO(RS),

and gs is a function of class C*° in Q7 and there exists Ro > 0 such that
the support of go(+,t) lies in B(Rz) for all t €]tg, T[. According to Theorem
5.11, there exists a pair u; and q1, which is a local energy solutions to the
Cauchy problem:

Opur (z,t) + divug (z,t) @ uy (z,t) — Aug(z,t) + Vai(x,t) = g1(a, t),

divu(z,t) =0
forx e R3and tg <t < T,
u1(z, to) = a1(x), r € R
Moreover,
U1l Lo (b0, 755 umiy) < cE(T = to). (B.5.9)
We seek functions ug and g¢o, solving the following Cauchy problem:

Opug(z,t) + div (uz(z,t) @ uz(z,t) + ui(x, t) @ ua(x,t)+

+usg(x,t) @ ui(z,t)) — Aug(z,t) + Vago(x,t) = go(x,t), divug(z,t)=0
forx e R®and tg <t < T,

Ug(l’,t()) = (12(1‘), S Rd
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We state that this problem has a weak Leray-Hopf solution with the finite
global energy satisfying the local energy inequality. To see that it is really
possible, let us comment the crucial term in proving a priori global energy
estimate. This term has the form

t
Iy = //(u2 ® u1 + u1 @ ug) : Vuadrds.
to R3

So, we need to estimate the integral

t
I://|u1|2|uQ|2dxds.

to R3
To this end, we fix o € R3 and apply successively Holder’s and Gagliardo’s
inequalities, and estimate (B.5.9):

t
1

|u1|2|u2|2dzd5§/t( / |u1|3d:c)%( / |u2|6dz)§ds

to B(xzo,1) to  B(wo,1) B(zo,1)

t
<l ot [ (V0 ual?)dods

to B(wo,1)
t
< (T - to)/ / (|Vug|2 + |uQ|2)da:ds.
to B(zo,1)

Using Besicovitch covering lemma, we can easily show

t
I<e(T - to)// (\vu2|2 + \uz\2>dxds
to R3
and therefore

t
Io < ce(T — to) // (|vu2\2 + \uQ\Z)dxds.
to R3
The latter allows us to hide Iy into the left-hand side of the global energy
inequality by choosing (T — tg) sufficiently small and to find
t

¢
/|uz(x,t)|2dx+//|Vuz|2d:17ds S/|a2(a:)|2d:c+2//92.u2d:rds.
R3 to R3 R3

to R3
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Using this estimate and suitable approximations, we can easily prove our
statements about us. In addition, all above arguments show that pressure
g2 may be taken in the form

G2 = %K*(uz(&ug—l—ul@’uz—l—uz@ul)
and, moreover,
g2 € Ly (R*x]t1, TT)
and we have representation:
@2(%, 1) — Couo (1) = G0, (,) + 3y, (1)
for zg € B(x0,3/2) and t €]tg, T'[, where

1
q%a:o = —g(‘Ug(l’ﬂf)‘Q + 2U1(I,t) : Ug(l’ﬂf))‘l’

/ K(z—1y): (3 ®uz +ur @ uz +us @)y, £)dy,
B(x0,2)

1
G=g [ (K@) -Kloo-y): (sursnSurtuasn) v, Ody,

]R"\B(xo,

Coz, () 47r / K(zo—y): (ua ®us + u1 @ ug + ug ® up)(y, t)dy.
R3\B(x0,2)
Now, we let
U = Uy + u2, q=q+qo.
Our task is to verify that this new pair is a local energy solution to the
Cauchy problem:
Owu(z,t) + divu(z,t) @ u(z,t) — Au(z,t) + Vg, t) = g(z, ),

divu(z,t) =0
forx e R® and tg <t < T,
u(z,to) = a(x), r € R3.

The most difficult part of this task is to show that u and ¢ satisfy the
local energy inequality. It can be done essentially in the same way as
the corresponding part of the proof of the uniqueness for C([0,T7; E‘g)—
solutions. And this immediately implies that u = v in the R3x]tg, T1].
Since p(z,t) — q(x,t) = c(t) € L3 (to, T1), we can change function ¢z, in a
suitable way and assume that ¢ = p in the R®x]to, Ti[. So, the pair u and ¢
can be regarded as a required extension of v and p to the whole space-time
cylinder Qp. Theorem 1.7 is proved.
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B.6 Density

Lemma B.10. For any f Eém and for any € > 0, there exists f. €
C°(R3) such that

If = fellLmouniy <E- (B.6.1)
PROOF Let
By = B(zy,2), xy, € 73,
Clearly |J Br = R3. Moreover, there is a universal constant N with the
followingkproperty:
for any o € R3, the ball B(xo, 1) is covered by not more
than Na balls By.

For this covering, we can find a partition of unity such that
1, € C5°(R?), spt px C By, vk >0, Zwk =1
k
Now, given R > 0, we introduce two smooth cut-off functions
x(x) =1, =z e B(1), spt x C B(2), xr(z) = x(z/R).

We fix a ball By. There exists a function v* € W} (By; R?) that is a solution
of the equation

) 1
dlvvkZf'VXRSOk_W/f'vXRSOkdm
By

and satisfies the estimate
& c c
[o¥l5, < S5, < 5]
with a universal constant c. Extending v* by zero to the whole R3, we set

szg "
k

and observe that, for each R > 0, the function v has a compact support
and, moreover,

Lo unif

dive? = f- Vg in R?,

CN2
[R50t < Y 1M B0 < 20 Lpunsys Voo €RE.
k
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Next, we let
uft = fyp — o
Obviously, we have
divuf =0 in R3,

and u® has a compact support. Since f € Es, we see that, for an arbitrary
€ > 0, we can find R > 0 such that

”f - uRHLWL‘unif < ”f - fXRHLm,um'f + HvR”Lm,umf

Ny
R

To complete the proof of the lemma, it is enough to smooth u® which

<|If- fXRHLyn‘unif + ”f”Lm,umf <é&.

is easy. Lemma B.10 is proved.

B.7 Comments

The main source for the content of Appendix B is the monograph of P.-G.
Lemarie-Riesset [Lemarie-Riesset (2002)]. Our interpretation of his results
is given in the paper [Kikuchi and Seregin (2007)] and we follow it here.
We wish to emphasize that the Lemarie-Riesset conception of local energy
weak Leray-Hopf solution! is heavily used in Chapter 7.

n fact, G.-P. Lemarie-Riesset himself calls them simply local Leray solutions
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Leray-Schauder principle, 48, 49, 97,
99

Liouville type theorem, 166, 167

local boundary regularity, 88

local energy ancient solution, 184, 185

local energy inequality, 114



258 Lecture Notes on Regularity Theory for the Navier-Stokes Equations

local energy solution, 190, 192, 199,
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local interior regularity, 84

local Leray solution, 250

local regularity, 36
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Mozer’s iterations, 178

multiplicative inequality, 106, 193,
235

Navier-Stokes scaling, 147, 159
Necas Imbedding Theorem, 16
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Newtonian potential, 5

parabolic embedding theorem, 136
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pressure, 33, 38, 39, 77, 114, 143, 184

pressure equation, 161, 163

regularity of weak solution, 52

singular set, 149
singularity of Type II, 165

Sobolev derivative, 62

Sobolev space WF(Q),LE(Q) , 1
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space BMO, 150, 161

spaces of solenoidal vector fields
THQ), TH(@), 21

stationary Navier-Stokes system, 47

Stokes operator, 41, 65

strong maximum principle, 168, 175

strong solution, 119

suitable weak solution, 133, 178, 199

swirl, 170

Type I blowup, 165
unique continuation, 203, 205, 210

vorticity, 152
vorticity equation, 201
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