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Abstract

We study the boundary value problem for the stationary Navier–Stokes system in two dimensional exte-
rior domain. We prove that any solution of this problem with finite Dirichlet integral is uniformly bounded. 
Also we prove the existence theorem under zero total flux assumption.
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1. Introduction

Let � be an exterior domain in R2, i.e.,

� =R2 \
N⋃

i=1

�i, (1.1)
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where �i are N pairwise disjoint bounded Lipschitz domains, �i ∩�j = ∅, i �= j . The boundary 
value problem associated with the Navier–Stokes equations in � is to find a solution to the system

ν�u − u · ∇u − ∇p = 0 in �,

div u = 0 in �,

u = a on ∂�,

(1.2)

with the condition at infinity

lim
x→∞ u(x) = u0, (1.3)

where a and u0 are, respectively, an assigned vector field on ∂� and a constant vector. Starting 
from a pioneering paper by J. Leray [23] it is now customary to look for a solution to (1.2) with 
finite Dirichlet integral

ˆ

�

|∇u|2dx < +∞, (1.4)

known also as D–solution. As is well known (e.g., [21]), such solution is real–analytic in �. Set

Fi =
ˆ

∂�i

a · nds. (1.5)

The existence of a D–solution to (1.2) has been first established by J. Leray [23] under the 
assumption

Fi = 0, i = 1 . . . ,N. (1.6)

To show this, Leray introduced an elegant argument, known nowadays as invading domains 
method, which consists in proving first that the Navier–Stokes problem

−ν�uk + (
uk · ∇)

uk + ∇pk = 0 in �k,

div uk = 0 in �k,

uk = a on ∂�,

uk = u0 on ∂Bk

(1.7)

has a weak solution uk for every bounded domain �k = � ∩ Bk , Bk = {x : |x| < k}, k 	 1, and 
then to show that the following estimate holds

ˆ

�k

|∇uk|2dx ≤ c, (1.8)

for some positive constant c independent of k. While (1.8) is sufficient to assure the existence 
of a subsequence uk which converges weakly to a solution u of (1.2) satisfying (1.4), it does 
l
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not give any information about the behavior at infinity of the velocity u,1 i.e., we do not know 
whether u satisfies the condition at infinity (1.3). In 1961 H. Fujita [8] recovered, by means of a 
different method, Leray’s result (see also [11, Chapter XII]). Nevertheless, due to the lack of a 
uniqueness theorem, the solutions constructed by Leray and Fujita are not comparable, even for 
very large ν.

Pushing a little further the argument of Leray [23], A. Russo [29] showed that the condition 
(1.6) could be extended to the case of “small” (not zero) fluxes by

m∑
i=1

|Fi | < 2πν. (1.9)

The first existence theorem for (1.2)–(1.3) is due to D.R. Smith and R. Finn [7], where it 
is proved that if u0 �= 0 and |a − u0| is sufficiently small, then there is a D–solution to (1.2)
which converges uniformly to u0. This result is particularly meaningful since it rules out (at least 
for small data) for the non–linear Navier–Stokes system (1.2)–(1.3) the famous Stokes paradox
which asserts that the equations obtained by linearization of (1.2)–(1.3)

ν�u − ∇p = 0 in �,

div u = 0 in �,

u = a on ∂�,

lim
x→∞ u(x) = u0,

(1.10)

have a solution if and only if (see, e.g., [30])

ˆ

∂�

(a − u0) · ψ ds = 0 (1.11)

for all densities ψ of the simple layer potentials constant on ∂�. In particular, since 
´

∂�

ψ �= 0, if 

a vanishes and u0 is a constant different from zero, then (1.10) is not solvable. Moreover, since 
for the exterior of a ball, ψ are the constant vectors,2 a solution to (1.10)1,2,4 satisfies

2πˆ

0

u(R, θ) dθ = 2πu0. (1.12)

Of course, by the linearity of the Stokes equations, it is equivalent to say that a solution to 
(1.10)1,2 constant on the boundary and vanishing at infinity does not exist. The situation is dif-
ferent for the nonlinear problem (1.2). The questions whether it admits a solution constant on ∂�

and zero at infinity is not answered yet, also for small data. Nevertheless, for domains symmetric 
with respect to the coordinate axes, i.e.,

1 Indeed, the unbounded function logα |x| (α ∈ (0, 1/2)) satisfies (1.4).
2 More in general, for the exterior of an ellipsoid of equation f (x) = 1, ψ = c/|∇f | for every constant vector c [25].
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(x1, x2) ∈ � ⇒ (−x1, x2), (x1,−x2) ∈ �,

in [27] it is showed that a symmetric D–solution

u1(x1, x2) = −u1(−x1, x2) = u1(x1,−x2)

u2(x1, x2) = u2(−x1, x2) = −u2(x1,−x2),
(1.13)

to (1.2), uniformly vanishing at infinity, exists under the only natural assumption that a satisfies 
(1.13) and natural regularity conditions. Note that (1.13) meets the mean property (1.12) with 
u0 = 0.

The problem of the asymptotic behavior at infinity of an arbitrary D–solution (u, p) to (1.2)1,2
was tackled by D. Gilbarg & H. Weinberger [12,13] and C. Amick [2]. In [13] it is shown that

p − p0 = o(1) as r → ∞, (1.14)

i.e., pressure has a limit at infinity (one can choose, say, p → 0), and

u(x) = o(log1/2 r),

ω = o(r−3/4 log1/8 r),

∇u(x) = o(r−3/4 log9/8 r),

(1.15)

where

ω = ∂1u2 − ∂2u1

is the corresponding vorticity. If, in addition, u is bounded, then there is a constant vector u∞
such that

lim
r→+∞

2πˆ

0

|u(r, θ) − u∞|2dθ = 0, (1.16)

and

ω = o(r−3/4),

∇u(x) = o(r−3/4 log r).
(1.17)

Here if u∞ = 0, then u = o(1). Moreover, in [28] it is proved that

∇p = O(rε−1/2) (1.18)

for every positive ε.
In [2] it is proved that if u vanishes on the boundary, then u is bounded and, as a consequence, 

satisfies (1.16), (1.17). However, in this last case the solution could tend to zero at infinity and 
even be the trivial one. This possibility was excluded by Amick [2] (Section 4.2) for the solution 
obtained by the Leray method, for symmetric with respect to the x2–axis (say) domains, i.e., 
(x1, x2) ∈ � ⇒ (x1, −x2) ∈ �. This result is remarkable as the first step to exclude the non–linear 
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Stokes paradox for every ν, at least for axisymmetric domains. For such kind of domains the 
existence of a D–solution to (1.2) is established in [17] only under the symmetry hypothesis 
a1(x1, x2) = a1(x1, −x2), a2(x1, x2) = −a2(x1, −x2).

Under similar symmetry assumptions, several results on existence, uniqueness and decay of 
solutions to (1.2) with external symmetrical force in the right–hand side were established by 
M. Yamazaki (see, e.g., [33–35]).

Despite the efforts of many researchers (see, e.g, the reference in [11]) several relevant prob-
lems remain open, among which: existence of a solution to (1.2) for arbitrary fluxes Fi , its 
uniqueness (for small data); the boundedness of a D–solutions (in the case of non-homogeneous 
boundary conditions), its uniform convergence to u∞ �= 03 and the relation between u∞ and u0; 
more precise asymptotic behavior of ∇p and the derivatives of u.

The present paper is devoted to some of the above issues. The first main result is as follows.

Theorem 1.1. Let u be a solution to the Navier–Stokes system

{ −ν�u + u · ∇u + ∇p = 0 in �,

div u = 0 in �
(1.19)

in the exterior domain � ⊂R2. Suppose

ˆ

�

|∇u|2dx < ∞. (1.20)

Then u is uniformly bounded in �0 =R2 \ BR0 , i.e.,

sup
x∈�0

|u(x)| < ∞, (1.21)

where BR0 is a disk with sufficiently large radius: 1
2BR0 � ∂�.

Using the above–mentioned results of D. Gilbarg and H. Weinberger, we obtain immediately

Corollary 1.1. Let u be a D-solution to the Navier–Stokes system (1.19) in a neighborhood of 
infinity. Then the asymptotic properties (1.14), (1.16)–(1.17) hold.

Using the results of the above–mentioned paper of Amick [2], we could say something more 
about asymptotic properties of D-solutions in the case of zero total flux, i.e., when

ˆ

∂�

a · nds = 0, (1.22)

3 By a remarkable result of L.I. Sazonov [31], this ensures that the solution behaves at infinity as that of the linear 
Oseen equations (see also [10] and [11]).
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Corollary 1.2. Let u be a D-solution to the Navier–Stokes problem (1.19) in an exterior do-
main � ⊂ R2 with zero total flux condition (1.22). Then in addition to the properties of Theo-
rem 1.1 and Corollary 1.1, the total head pressure � = p + 1

2 |u|2 and the absolute value of the 
velocity |u| have the uniform limit at infinity, i.e.,

|u(r, θ)| → |u∞| as r → ∞, (1.23)

where u∞ is a constant vector from the condition (1.16).

Let us note that formally Amick [2] established (1.23) under the stronger assumption

a ≡ 0. (1.24)

But really his argument for (1.23) cover the more general case (1.22) as well. Indeed, the main 
tool in [2] was the use of the auxiliary function γ = � − ωψ , where ψ is a stream function: 
∇ψ = u⊥ = (u2, −u1). This auxiliary function γ has remarkable monotonicity properties: it is 
monotone along level sets of the vorticity ω = c and vice versa – the vorticity is monotone along 
level sets γ = c. But, of course, the stream function ψ (and, consequently, the corresponding 
auxiliary function γ ) could be well defined in the neighborhood of infinity under the more gen-
eral case (1.22) instead of (1.24). Furthermore, Amick also proved that under the conditions of 
Corollary 1.2, the convergence

γ (r, θ) → 1

2
|u∞|2 as r → ∞ (1.25)

holds uniformly with respect to θ .
The second result of the paper concerns the existence of solutions to the non-homogeneous 

boundary value problem (1.2).

Theorem 1.2. Let � ⊂ R2 be an exterior domain with C2-smooth boundary. Suppose that a ∈
W 1/2,2(∂�) and the equality (1.22) holds, i.e., the total flux is zero. Then there exists a D-solution 
u to the Navier–Stokes boundary value problem (1.2).

This theorem shows also that the asymptotic results of Corollaries 1.1, 1.2 and (1.25) have 
meaning and are not just a figment of the imagination.

Note that the existence theorem for the steady Navier–Stokes problem in three–dimensional
exterior axially symmetric domains (with axially symmetric data) was proved in the recent pa-
per [19] without any conditions on fluxes Fi .

2. Notations and preliminaries

By a domain we mean an open connected set. We use standard notations for function spaces: 
Wk,q(�), Wα,q(∂�), where α ∈ (0, 1), k ∈ N0, q ∈ [1, +∞]. In our notation we do not distin-
guish function spaces for scalar and vector valued functions; it is clear from the context whether 
we use scalar or vector (or tensor) valued function spaces.
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For q ≥ 1 denote by Dk,q(�) the set of functions f ∈ W
k,q

loc (�) such that ‖f ‖Dk,q (�) =
‖∇kf ‖Lq(�) < ∞. Further, D1,2

0 (�) is the closure of the set of all smooth functions having com-

pact supports in � with respect to the norm ‖ · ‖D1,2(�), and H(�) = {v ∈ D
1,2
0 (�) : div v = 0}; 

D1,2
σ (�) := {v ∈ D1,2(�) : div v = 0}.

3. Boundedness of general D-solutions: proof of Theorem 1.1

Suppose the assumptions of Theorem 1.1 are fulfilled. By classical regularity results for 
D-solutions to Navier–Stokes system, the function u is uniformly bounded on each bounded 
subset of the set �0 = R2 \ BR0 ; moreover, u is real analytic in �0. By results of [13], pressure 
is uniformly bounded in �0:

sup
x∈�0

|p(x)| ≤ C < +∞. (3.1)

Suppose that the assertion (1.21) of the Theorem is false. Then there exists a sequence of points 
xk ∈ �0 such that

|xk| → +∞ and |u(xk)| → +∞. (3.2)

This means, by virtue of (3.1), that

�(xk) → +∞, (3.3)

where � = p + 1
2 |u|2 is the total head pressure.

Since u is a D-solution, 
´
�0

|∇u|2dx < ∞, by standard arguments there exists an increasing 

sequence on numbers Rm < Rm+1 such that Rm → ∞ and

ˆ

CRm

|∇u|ds → 0, (3.4)

where CR := {x ∈ R2 : |x| = R}. It implies that

sup
x∈CRm

|u(x) − ūm| → 0, (3.5)

here ūm is the mean value of u on the circle CRm . Indeed, for any component uj of u, by mean 
value theorem, there exists a point θ∗

j ∈ [0, 2π) such that

uj (Rm, θ∗
j ) = (2π)−1

2πˆ

0

uj (Rm, θ)dθ = ūjm, j = 1,2,

and
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|uj (Rm, θ) − ūjm| = |uj (Rm, θ) − uj (Rm, θ∗
j )| ≤

θˆ

θ∗
j

∣∣∂uj

∂θ

∣∣dθ ≤
ˆ

CRm

|∇u|ds → 0.

Since � satisfies the maximum principle (see, e.g., [13]), in particular, for any subdomain 
�m1,m2 = {x : Rm1 < |x| < Rm2}, with ∂�m1,m2 = CRm1

∪ CRm2
we have

sup
x∈�m1,m2

�(x) = sup
x∈CRm1

∪CRm2

�(x).

Relations (3.2), (3.5) imply that |ūm| → +∞; consequently, by (3.1), (3.3), (3.5),

inf
x∈CRm

�(x) → +∞.

Then we could assume without loss of generality (choosing a subsequence) that

sup
x∈CRm

�(x) < inf
x∈CRm+1

�(x). (3.6)

Recall that by the classical Morse–Sard Theorem (see, e.g., [14]), applied to the real analytic 
function �, for almost all values t ∈ �(�0) the level set {� = t} contains no critical points, 
i.e., ∇�(x) �= 0 if x ∈ �0 and �(x) = t . Further such values are called regular. Take arbitrary 
regular value t > t∗ = sup

x∈CR1 ∪CR0

�(x). Then by the implicit function theorem the level set {x ∈
�0 : �(x) = t} consists of a finite family of disjoint smooth curves which are separated (by 
construction) both from infinity and from the boundary ∂�0 = CR0 . Of course, this implies that 
every connected component of this level set {� = t} is homeomorphic to a circle. Let us call 
these components quasicircles. By obvious geometrical arguments, for every regular t > t∗ there 
exists at least one quasicircle S separating CR1 from infinity, i.e., CR1 is contained in the bounded 
connected component of the open set R2 \S. Because of the maximum principle, such quasicircle 
is unique, and we will denote it by St .

For t∗ < τ < t let �τ,t be a domain with ∂�τ,t = Sτ ∪ St . Integrating the identity

�� = ω2 + 1

ν
div (�u) (3.7)

over �τ,t , we obtain

´
St

|∇�|ds − ´
Sτ

|∇�|ds = ´
�τ,t

ω2dx + 1
ν

´
St

�u · nds − 1
ν

´
Sτ

�u · nds

= ´
�τ,t

ω2dx + 1
ν
(t − τ)F ,

(3.8)

where F = ´
CR0

u ·n is the total flux. Notice that by construction the unit normal n to the level set 

St = {x : �(x) = t} is equal to ∇�
|∇�| , so that ∇� · n = |∇�| on St ; analogously, ∇� · n = −|∇�|

on Sτ . The further proof splits into two cases.
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CASE I. The total flux is not zero: F �= 0. First suppose that F > 0. Then from (3.8) (fixing 
τ and taking a big t ) we obtain

C1t ≤
ˆ

St

|∇�|ds ≤ C2t (3.9)

for sufficiently large t and for some positive constants C1, C2 (not depending on t ). Denote by 
R the set of all regular values t > t∗, and put

Et :=
⋃

τ∈[t,2t]∩R
Sτ .

Applying the classical coarea formula

ˆ

Et

f |∇�|dx =
2tˆ

t

(ˆ
Sτ

f ds

)
dτ

for f = |ω| and for f = |∇�| we obtain

2t´
t

(´
Sτ

|ω|ds

)
dτ = ´

Et

|ω| · |∇�|dx ≤
(´

Et

|∇�|2dx

) 1
2
(´

Et

ω2dx

) 1
2

=
(2t´

t

(´
Sτ

|∇�|ds

)
dτ

) 1
2
(´

Et

ω2dx

) 1
2 ≤ εt,

(3.10)

where ε → 0 as t → ∞ (we used here (3.9) and the assumption that the Dirichlet integral is 
finite). From (3.10) and from the mean value theorem it follows that there exists a value τ ∈
[t, 2t] ∩R such that

ˆ

Sτ

|ω|ds ≤ 2ε. (3.11)

Since the pressure is uniformly bounded (see (3.1)), we conclude that |u| ∼ √
2τ < 2

√
τ on Sτ

for large τ , therefore, using the identity

∇� = −ν∇⊥ω + ωu⊥,

we obtain
ˆ

Sτ

|∇�|ds =
ˆ

Sτ

ωu⊥ · nds ≤ 2
√

τ

ˆ

Sτ

|ω|ds ≤ 4
√

τε (3.12)

(the integral of ∇⊥ω · n = curlω · n over the closed curve Sτ is equal to zero).
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The last estimate contradicts the first inequality in (3.9). Thus, if F > 0, then the assumption 
(3.2) is false and the solution u is uniformly bounded.

Let F < 0. Writing relation (3.8) in the form

ˆ

St

|∇�|ds =
ˆ

Sτ

|∇�|ds +
ˆ

�τ,t

ω2dx + 1

ν
(t − τ)F , (3.13)

we immediately see that for large t the right-hand side becomes negative, while the left-hand 
side is positive for all t . We again obtain a contradiction to assumption (3.2). Thus, the proof for 
the case F �= 0 is complete.

CASE II. The total flux is zero: F = 0. Then formula (3.8) takes the form

ˆ

St

|∇�|ds =
ˆ

Sτ

|∇�|ds +
ˆ

�τ,t

ω2dx. (3.14)

From the last identity it follows that 
´
St

|∇�| ds is a bounded increasing function, i.e., it has 

a finite positive limit, in particular,

C1 ≤
ˆ

St

|∇�|ds ≤ C2 (3.15)

for sufficiently large t and for some positive constants C1, C2 (independent of t ). Applying the 
Coarea formula, we obtain now

2t´
t

(´
Sτ

|ω|ds

)
dτ = ´

Et

|ω| · |∇�|dx ≤
(´

Et

|∇�|2dx

) 1
2 ·

(´
Et

ω2dx

) 1
2

=
(2t´

t

(´
Sτ

|∇�|ds

)
dτ

) 1
2 ·

(´
Et

ω2dx

) 1
2 ≤ ε

√
t,

(3.16)

where ε → 0 as t → ∞. From (3.16) and from the mean value theorem the existence of a value 
τ ∈ [t, 2t] ∩R follows such that

ˆ

Sτ

|ω|ds ≤ ε
2√
τ

. (3.17)

As in the Case I, we have |u| ∼ √
2τ on Sτ . Therefore, integrating again the identity

∇� = −ν∇⊥ω + ωu⊥,

we obtain
ˆ

|∇�|ds =
ˆ

ωu⊥ · nds ≤ 2
√

τ

ˆ
|ω|dx ≤ 4ε. (3.18)
Sτ Sτ Sτ
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The last estimate is in contradiction with the first inequality in (3.15). Therefore, in the case 
F = 0 assumption (3.2) is again false and the solution u is uniformly bounded. Theorem 1.1 is 
proved.

4. The existence theorem: proof of Theorem 1.2

Here we need some preliminary results on real analysis and topology.

4.1. On Morse-Sard and Luzin N-properties of Sobolev functions from W 2,1

Let us recall some classical differentiability properties of Sobolev functions.

Lemma 4.1 (see Proposition 1 in [5]). Let ψ ∈ W 2,1(R2). Then the function ψ is continuous and 
there exists a set Aψ such that H 1(Aψ) = 0, and the function ψ is differentiable (in the classical 
sense) at each x ∈ R2 \Aψ . Furthermore, the classical derivative at such points x coincides with 
∇ψ(x) = lim

r→0
−́
Br(x)

∇ψ(z)dz, and lim
r→0

−́
Br(x)

|∇ψ(z) − ∇ψ(x)|2dz = 0.

Here and henceforth we denote by H 1 the one-dimensional Hausdorff measure, i.e., 

H 1(F ) = lim
t→0+H 1

t (F ), where H 1
t (F ) = inf{

∞∑
i=1

diamFi : diamFi ≤ t, F ⊂
∞⋃
i=1

Fi}. Note, that 

in this definition the case t = ∞ is also allowed (the value H 1∞(E) is called ‘the Hausdorff 
content of E’).

The next theorem has been proved recently by J. Bourgain, M. Korobkov and J. Kristensen 
[3] (see also [4] for a multidimensional case).

Theorem 4.3. Let D ⊂ R2 be a bounded domain with Lipschitz boundary and ψ ∈ W 2,1(D). 
Then

(i) H 1({ψ(x) : x ∈ D̄ \ Aψ & ∇ψ(x) = 0}) = 0;
(ii) for every ε > 0 there exists δ > 0 such that for any set U ⊂ D̄ with H 1∞(U) < δ the 

inequality H 1(ψ(U)) < ε holds;
(iii) for H 1–almost all y ∈ ψ(D̄) ⊂ R the preimage ψ−1(y) is a finite disjoint family of 

C1–curves Sj , j = 1, 2, . . . , N(y). Each Sj is either a cycle in D (i.e., Sj ⊂D is homeomorphic 
to the unit circle S1) or it is a simple arc with endpoints on ∂D (in this case Sj is transversal to 
∂D).

4.2. Some facts from topology

We shall need some topological definitions and results. By continuum we mean a compact 
connected set. We understand connectedness in the sense of general topology. A subset of a 
topological space is called an arc if it is homeomorphic to the unit interval [0, 1].

Let us shortly present some results from the classical paper of A.S. Kronrod [20] concerning 
level sets of continuous functions. Let Q = [0, 1] × [0, 1] be a square in R2 and let f be a 
continuous function on Q. Denote by Et a level set of the function f , i.e., Et = {x ∈ Q : f (x) =
t}. A component K of the level set Et containing a point x0 is a maximal connected subset of 
Et containing x0. By Tf denote the family of all connected components of level sets of f . It 
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was established in [20] that Tf equipped by a natural topology4 is a one-dimensional topological 
tree.5 Endpoints of this tree6 are the components C ∈ Tf which do not separate Q, i.e., Q \ C

is a connected set. Branching points of the tree are the components C ∈ Tf such that Q \ C has 
more than two connected components (see [20, Theorem 5]). By results of [20, Lemma 1], the 
set of all branching points of Tf is at most countable. The main property of a tree is that any two 
points could be joined by a unique arc. Therefore, the same is true for Tf .

Lemma 4.2 (see Lemma 13 in [20]). If f ∈ C(Q), then for any two different points A ∈ Tf and 
B ∈ Tf , there exists a unique arc J = J (A, B) ⊂ Tf joining A to B . Moreover, for every inner 
point C of this arc the points A, B lie in different connected components of the set Tf \ {C}.

We can reformulate the above Lemma in the following equivalent form.

Lemma 4.3. If f ∈ C(Q), then for any two different points A, B ∈ Tf , there exists a continuous 
injective function ϕ : [0, 1] → Tf with the properties

(i) ϕ(0) = A, ϕ(1) = B;
(ii) for any t0 ∈ [0, 1],

lim[0,1]�t→t0
sup

x∈ϕ(t)

dist (x,ϕ(t0)) → 0;

(iii) for any t ∈ (0, 1) the sets A, B lie in different connected components of the set Q \ ϕ(t).

Remark 4.1. If in Lemma 4.3 f ∈ W 2,1(Q), then by Theorem 4.3 (iii), there exists a dense 
subset E of (0, 1) such that ϕ(t) is a C1–curve for every t ∈ E. Moreover, ϕ(t) is either a cycle 
or a simple arc with endpoints on ∂Q.

Remark 4.2. All results of Lemmas 4.2–4.3 remain valid for level sets of continuous functions 
f : �0 →R, where �0 ⊂R2 is a compact set homeomorphic to the unit square Q = [0, 1]2.

4.3. Leray’s argument “reductio ad absurdum”

Consider the Navier–Stokes problem (1.2) in the C2-smooth exterior domain � ⊂R2 defined 
by (1.1). Let a ∈ W 1/2,2(∂�) have zero total flux:

ˆ

∂�

a · nds = 0. (4.1)

4 The convergence in Tf is defined as follows: Tf � Ci → C iff sup
x∈Ci

dist (x, C) → 0.

5 A locally connected continuum T is called a topological tree, if it does not contain a curve homeomorphic to a 
circle, or, equivalently, if any two different points of T can be joined by a unique arc. This definition implies that T has 
topological dimension 1.

6 A point of a continuum K is called an endpoint of K (resp., a branching point of K) if its topological index equals 1 
(more or equal to 3 resp.). For a topological tree T this definition is equivalent to the following: a point C ∈ T is 
an endpoint of T (resp., a branching point of T ), if the set T \ {C} is connected (resp., if T \ {C} has more than two 
connected components).
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Take an extension A satisfying

A ∈ W 1,2(�),

div A = 0 in �,

A = a on ∂�,

A(x) = 0 if x ∈ R2 \ BR0 ,

(4.2)

where BR0 = B(0, R0) is a disk of sufficiently large radius such that

1

2
BR0 ⊃ ∂�

(such extension exists because of condition (4.1), see, e.g., [22]).
By a weak solution (= D-solution) of problem (1.2) we mean a function u such that u =

w + A, w ∈ H(�), and the integral identity

ν

ˆ

�

∇u · ∇θ dx +
ˆ

�

(
u · ∇)

u · θ dx = 0 (4.3)

holds for any θ ∈ J∞
0 (�), where J∞

0 (�) is the set of all infinitely smooth solenoidal vector-fields 
with compact support in �. In particular, by this definition we have

ˆ

�

|∇u|2dx < ∞. (4.4)

Moreover, by classical regularity results for the Navier–Stokes system (see, e.g., [21], [11]) every 
such solution is C∞–regular inside the domain.

We look for a solution to (1.2) as a limit of weak solutions to the Navier–Stokes problem in a 
sequence of bounded domain �bk that in the limit exhaust the unbounded domain �. The follow-
ing result concerning the solvability of the Navier-Stokes problem in bounded multi connected 
domains was proved in [18].

Theorem 4.4. Let �′ = �0 \ ( N⋃
j=1

�j

)
be a bounded domain in R2 with multiply connected 

C2-smooth boundary ∂�′ consisting of N + 1 disjoint components �j = ∂�j , j = 0, . . . , N . 
If a ∈ W 1/2,2(∂�′) satisfies

ˆ

∂�′
a · nds = 0,

then (1.2) with � = �′ admits at least one weak solution u ∈ W 1,2(�′).

Remark 4.3. Formally in the formulation of the existence theorem in [18] we assumed that 
the boundary value a satisfies a ∈ W 3/2,2(�) in order to have the regularity condition (u, p) ∈
W 2,2(�). But really we used only local variant of such regularity (u, p) ∈ W

2,2
(�) (see [18, 
loc
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page 784, line 8 from below]). Now in our situation every D-solution has much better C∞
regularity inside the domain �, so we could assume less restrictive condition a ∈ W 1/2,2(�).

Take an increasing sequence Rk → +∞ and consider the boundary value problems

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν�ûk + (̂uk · ∇ )̂uk + ∇p̂k = 0 in �bk,

div ûk = 0 in �bk,

ûk = a on ∂�,

ûk = 0 on CRk
= ∂Bk,

(4.5)

where �bk = Bk ∩ � for k ≥ k0, Bk = {x : |x| < Rk}, 1
2Bk0 ⊃

N⋃
i=1

�i . By Theorem 4.4, each 

problem (4.5) has a solution ̂uk ∈ W 1,2(�bk) satisfying div ûk = 0 and the corresponding integral 
identities (of (4.3) type).

Assume that there is a positive constant c independent of k such that

ˆ

�

|∇ûk|2dx ≤ c (4.6)

(possibly along a subsequence of {̂uk}k∈N ). This estimate implies the existence of a solution 
to problem (1.2). Indeed, from (4.6) and from the boundary conditions (4.5)3 it follows that 
the sequence ̂uk is bounded in W 1,2

loc (�). Hence, ̂uk converges weakly (modulo a subsequence) 
in W 1,2

loc (�) and strongly in Lq

loc(�) (1 ≤ q < ∞) to a function ̂u ∈ D1,2
σ (�). It is easy to check 

that this limiting function û is a D-solution to the Navier–Stokes problem (1.2) in the exterior 
domain �.

Thus, to prove the assertion of Theorem 1.2, it is sufficient to establish the uniform esti-
mate (4.6). We shall prove (4.6) following a classical reductio ad absurdum argument of J. Leray 
[23] and O.A. Ladyzhenskaia [21]. If (4.6) is not true, then there exists a sequence {̂uk}k∈N such 
that

lim
k→+∞J 2

k = +∞, J 2
k =

ˆ

�

|∇ûk|2dx.

The sequence uk = ûk/Jk is bounded in D1,2
σ (�) ∩ L

q

loc(�) and it holds

ν

Jk

ˆ

�

∇uk · ∇θ dx = −
ˆ

�

(uk · ∇)uk · θ dx (4.7)

for all θ ∈ H(�bk). Extracting a subsequence (if necessary) we can assume that uk converges 
weakly in D1,2

σ (�) and strongly in Lq

loc(�) (1 ≤ q < ∞) to a vector field v ∈ H(�) with

ˆ
|∇v|2dx ≤ 1. (4.8)
�
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Fixing in (4.7) a solenoidal smooth θ with compact support and letting k → +∞ we get

ˆ

�

(v · ∇)v · θ dx = 0 ∀ θ ∈ J∞
0 (�). (4.9)

Hence, v ∈ H(�) is a weak solution to the Euler equations, and for some p ∈ W
1,q

loc (�), (1 <
q < 2), the pair (v, p) satisfies the Euler equations almost everywhere:

⎧⎪⎨
⎪⎩

(
v · ∇)

v + ∇p = 0 in �,

div v = 0 in �,

v = 0 on ∂�.

(4.10)

Put νk = (Jk)
−1ν. Then the system (4.5) could be rewritten in the following form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−νk�uk + (uk · ∇)uk + ∇pk = 0 in �bk,

div uk = 0 in �bk,

uk = νk

ν
a on ∂�,

uk = 0 on CRk
= ∂Bk,

(4.11)

where uk, pk ∈ C∞
loc(�bk). In conclusion, we come to the following assertion.

Lemma 4.4. Assume that � ⊂ R2 is an exterior domain of type (1.1) with C2-smooth boundary 
∂�, and a ∈ W 1/2,2(∂�) satisfies zero total flux condition (1.22). If the assertion of Theorem 1.2
is false, then there exist v, p with the following properties.

(E) The functions v ∈ H(�), p ∈ W
1,q

loc (�) (∀q ∈ [1, 2)) satisfy the Euler system (4.10).

(E-NS) Condition (E) is fulfilled and there exist sequences of functions uk ∈ W 1,2(�bk), pk ∈
W 1,q (�bk), �bk = � ∩ BRk

, Rk → ∞ as k → ∞, and numbers νk → 0+, such that the pair 
(uk, pk) satisfies (4.11), and

‖∇uk‖L2(�bk)
= 1, uk ⇀ v in W

1,2
loc (�), pk ⇀ p in W

1,q

loc (�), (4.12)

ν =
ˆ

�

(v · ∇)v · Adx. (4.13)

Moreover, uk, pk ∈ C∞(�bk) (this notation means C∞-regularity inside the domain �bk).

Proof. We need to prove only the identity (4.13), all other properties are already established 
above. By construction uk = wk + 1

Jk
A, where wk ∈ H(�bk), in particular, wk ≡ 0 on ∂�bk . 

Choosing θ = wk in (4.7) and integration by parts yields

ν =
ˆ

(wk · ∇)wk · Adx + 1

Jk

ˆ
A · ∇wk · Adx + ν

Jk

ˆ
∇A · ∇uk dx. (4.14)
� � �
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Since A ∈ W 1,2(�) has a compact support, it is easy to check that we can pass to the limit 
in (4.14) and receive the required assertion (4.13). �

Notice that because of (4.13) the limiting solution v of the Euler system (4.10) is nontrivial.
Now, to finish the proof of Theorem 1.2, we need to show that conditions (E-NS) lead to a 

contradiction. The next two subsections are devoted to this purpose.

4.4. Some properties of solutions to Euler system

In this section we assume that the assumptions (E) of Lemma 4.4 are satisfied. In particular,

ˆ

�

|∇v(x)|2 dx < ∞. (4.15)

The next statement was proved in [15, Lemma 4] and in [2, Theorem 2.2].

Theorem 4.5. Let the conditions (E) be fulfilled. Then

∀j ∈ {1, . . . ,N} ∃ p̂j ∈ R : p(x) ≡ p̂j for H 1 − almost all x ∈ �j . (4.16)

Using the last fact, below we assume without loss of generality that the functions v, p are 
extended to the whole plane R2 as follows:

v(x) := 0, x ∈R2 \ �, (4.17)

p(x) := p̂j , x ∈ R2 ∩ �̄j , j = 1, . . . ,N. (4.18)

Obviously, the extended functions inherit the properties of the previous ones. Namely, v ∈
H(R2), p ∈ W

1,q

loc (R2), and the Euler equations (4.10) are fulfilled almost everywhere in R2. 
That means, the pair (v, p) is a weak (=Sobolev) solution to Euler system (4.10) in the whole 
plane.

First of all, we prove the uniform boundedness and continuity of the pressure.

Theorem 4.6. Let the conditions (E) be fulfilled. Then

p ∈ D2,1(R2) ∩ D1,2(R2). (4.19)

In particular, the function p is continuous and convergent at infinity, i.e.,

∃ lim
x→∞p(x) ∈R. (4.20)

Proof. By well-known fact concerning D-solutions to Euler and Navier–Stokes system (see, 
e.g., [13, Lemma 4.1]), the averages of the pressure are uniformly bounded:

sup
r>0

∣∣∣∣1

r

ˆ
p ds

∣∣∣∣ < ∞, (4.21)
Cr
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where, recall, Cr = {x ∈R2 : |x| = r}. Moreover, since 
´
R2

|∇v|2dx < ∞, there exists an increas-

ing sequence ri → +∞ such that

ˆ

Cri

|∇v|ds ≤ εi → 0 as i → ∞ (4.22)

and

sup
x∈Cri

∣∣v(x)
∣∣ ≤ εi

√
ln ri (4.23)

(see [13, Lemmas 2.1–2.2])). From (4.21)–(4.22) and from the equation (4.10)1 it follows that

sup
x∈Cri

∣∣p(x)
∣∣ ≤ C

√
ln ri . (4.24)

Indeed,

|p(ri, θ) − p̄(ri)| ≤
ˆ

Cri

|∇p|ds ≤
ˆ

Cri

|v| · |∇v|ds ≤ εi

√
ln ri

ˆ

Cri

|∇v|ds ≤ ε2
i

√
ln ri,

here p̄(ri) = 1
2πri

´
Cri

p ds. The last inequality and the uniform boundedness of p̄(ri) (see (4.21)) 

implies (4.24).
Clearly, p ∈ W

1,q

loc (R2) is the weak solution to the Poisson equation

�p = −∇v · ∇v� in R2 (4.25)

(recall that after our agreement about extension of v and p, see (4.17)–(4.18), the Euler equations 
(4.10) are fulfilled in the whole R2).

Put

G(x) = − 1

2π

ˆ

�

log |x − y|(∇v · ∇v�)(y)dy.

By the results of [9], ∇v · ∇v� belongs to the Hardy space H1(R2). Hence by Calderón–
Zygmund theorem for Hardy’s spaces [32], G ∈ D2,1(R2) ∩ D1,2(R2). By classical facts from 
the theory of Sobolev spaces (see, e.g., [26]), the last inclusion implies that G is continuous and 
convergent at infinity, in particular,

sup
x∈R2

|G(x)| < ∞. (4.26)

Consider the function p∗ = p − G. By construction, �p∗ = 0 in R2, i.e., p∗ is a harmonic 
function, and by (4.24), (4.26) we have
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sup
x∈Cri

|p∗(x)| ≤ C
√

ln ri . (4.27)

From the Liouville type theorems for harmonic functions (see, i.e., [1]) it follows that p∗ ≡ const. 
Consequently, p ≡ G + const, that implies the assertions of the Theorem. �

We say that the function f ∈ W
1,s
loc (R2) satisfies a weak one-side maximum principle, if

ess sup
x∈�′

f (x) ≤ ess sup
x∈∂�′

f (x) (4.28)

holds for any bounded subdomain �′ with the boundary ∂�′ not containing singleton connected 
components. (In (4.28) negligible sets are the sets of 2–dimensional Lebesgue measure zero in 
the left esssup, and the sets of 1–dimensional Hausdorff measure zero in the right esssup.)

The total head pressure for the Euler system

� := p + 1

2
|v|2

plays an important role in the forthcoming considerations. The following two results were proved 
in [16].

Theorem 4.7. Suppose that the assumptions (E−NS) from the previous subsection are satisfied. 
Then the total head pressure � satisfies the weak maximum principle in R2.

The second equality in (4.10) (which is fulfilled, after the above extension agreement, 
see (4.17)–(4.18), in the whole plane R2) implies the existence of a stream function ψ ∈
W

2,2
loc (R2) such that

∇ψ = v⊥, (4.29)

i.e.,

∂ψ

∂x1
= v2,

∂ψ

∂x2
= −v1. (4.30)

Let us formulate regularity results concerning the considered functions.

Lemma 4.5 (see, e.g., Theorem 3.1 in [16]). If conditions (E) are satisfied, then ψ ∈ C(R2) and 
there exists a set Av ⊂R2 such that

(i) H 1(Av) = 0;
(ii) for all x ∈ � \ Av

lim
r→0

−
ˆ

Br(x)

|v(z) − v(x)|2dz = lim
r→0

−
ˆ

Br (x)

|�(z) − �(x)|2dz = 0;

moreover, the function ψ is differentiable at x and ∇ψ(x) = (v2(x), −v1(x));
(iii) for every ε > 0 there exists a set U ⊂ R2 with H 1∞(U) < ε such that Av ⊂ U and the 

functions v, � are continuous in R2 \ U .
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By virtue of (4.17), we have ∇ψ(x) = 0 for almost all x ∈ �j . Then

∀j ∈ {1, . . . ,N} ∃ ξj ∈ R : ψ(x) ≡ ξj ∀x ∈ �j ∩R2. (4.31)

By direct calculations one easily gets the identity

∇� = ω∇ψ, (4.32)

here ω = �ψ = ∂1v2 − ∂2v1 means the corresponding vorticity.
The next assertion, obtained in the paper [16], is the another important tool for the proof of 

Theorem 2.

Theorem 4.8 (Bernoulli law for Sobolev solutions). Let the conditions (E) be valid. Then there 
exists a set Av ⊂ R2 with H 1(Av) = 0, such that for any compact connected7 set K ⊂ R2 the 
following property holds: if

ψ
∣∣
K

= const, (4.33)

then

�(x1) = �(x2) for all x1, x2 ∈ K \ Av. (4.34)

Of course, we could assume without loss of generality that the sets Av from Lemma 4.5 and 
Theorem 4.8 are the same.

Identities (4.17)–(4.18) mean that

�(x) ≡ p̂j ∀x ∈R2 ∩ �j, j = 1, . . . ,N. (4.35)

Now consider the behavior of � at infinity. By construction, there exists an increasing se-
quence of numbers ri → +∞ such that

sup
x∈Cri

|�(x) − �i | → 0, (4.36)

where �i = −́
Cri

�(x) ds is the mean value of � over the circle Cri . Indeed, by definition, 
|∇�| ≤ |v| · |∇v|. By standard estimates (e.g., [11, Lemma 2.1])

ˆ

Cr

|v|2ds ≤ Cr ln r. (4.37)

Further, since 
´
R2

|∇v|2dx =
∞́

0
dr

´
Cr

|∇v|2ds < ∞, there exists an increasing sequence ri →
+∞ such that

7 We understand the connectedness in the sense of general topology.
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ˆ

Cri

|∇v|2ds ≤ εi

ri ln ri
, (4.38)

where εi → 0. Formulas (4.37)–(4.38) and the Hölder inequality imply

ˆ

Cri

|∇�|ds ≤
ˆ

Cri

|v| · |∇v|ds ≤ √
Cεi → 0, (4.39)

thus we obtain (4.36).
From the weak maximum principle (see Theorem 4.7) it follows that there exists a limit �∞ =

lim
i→∞�i , which does not depend on the choice of circles Cri (it can be �∞ = ∞). Again the same 

maximum principle implies that

ess sup
x∈R2

�(x) = max{�∞, p̂1, . . . , p̂N }, (4.40)

where p̂j are the constants form Theorem 4.5. Below we consider separately three possible cases.
(a) The maximum of � is attained strictly at infinity,8 i.e.,

�∞ = ess sup
x∈�

�(x) > max{p̂1, . . . , p̂N }. (4.41)

(b) The maximum of � is attained on some boundary component — not at infinity:

max{p̂1, . . . , p̂N } = ess sup
x∈�

�(x) > �∞. (4.42)

(c) The maximum of � is attained both at infinity and on some boundary component:

�∞ = ess sup
x∈�

�(x) = max{p̂1, . . . , p̂N }. (4.43)

4.5. The case ess sup
x∈�

�(x) = �∞ > max{p̂1, . . . , ̂pN }

Let us consider the first case (4.41). We will adopt the arguments of [18, subsection 2.4.1]. 
Note that the calculation in the present situations are much easier, since the set where � close 
to the maximum is separated from the boundary components. For the reader convenience, in this 
subsection we reproduce these arguments in details.

Since the pressure is determined up to an additive constant, without loss of generality we 
could assume that

�∞ > δ > 0 > −δ > max{p̂1, . . . , p̂N }, (4.44)

where δ is sufficiently small positive number.

8 The case ess sup�(x) = +∞ is not excluded.

x∈�
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Fig. 1. The surface Sk(t1, t2, t) for the case of N = 1.

Since H 1(Av) = 0, the intersection Cr ∩ Av is empty9 for 1-almost all r > 0. Then by defi-
nition of �∞ (see, e.g., (4.36)), there exists a radius r0 > 0 such that B 1

2 r0
⊃ ∂� and

Cr0 ∩ Av = ∅; (4.45)

inf
x∈Cr0

�(x) ≥ δ. (4.46)

Our first goal is to separate the boundary components �j where � < 0 from Cr0 by level sets 
of � compactly supported in �. More precisely, for any t ∈ (0, δ) and j = 1, . . . , N we construct 
a continuum Aj(t) � � with the following properties:

(i) The set �j = ∂�j lies in a bounded connected component of the open set R2 \ Aj(t);
(ii) ψ |Aj (t) ≡ const, �(Aj (t)) = −t ;
(iii) (monotonicity) If 0 < t1 < t2 < δp , then Aj(t1) lies in the unbounded connected compo-

nent of the set R2 \ Aj(t2) (in other words, the set Aj(t2) ∪ �j lies in the bounded connected 
component of the set R2 \ Aj(t1), see Fig. 1).

For this construction, we shall use the results of Subsection 4.2. More precisely, we apply Kro-
nrod’s results to the stream function ψ |B̄r0

. Accordingly, T 0
ψ means the corresponding Kronrod 

tree for the restriction ψ |B̄r0
.

For any element C ∈ T 0
ψ with C \ Av �= ∅ we can define the value �(C) as �(C) = �(x), 

where x ∈ C \ Av. This definition is correct because of the Bernoulli Law. (In particular, �(C)

is well defined if diamC > 0.)
Take points x0 ∈ Cr0 and xj ∈ �j , j = 1, . . . , N , such that the straight segment Lj with 

endpoints x0 and xj satisfies

Lj ∩ Av = ∅; (4.47)

the restriction �|Lj
is a continuous function (4.48)

(the existence of such points and segments follows from Lemma 4.5 (iii)).

9 It follows from the fact that the image of a set of 1-measure zero under every smooth transformation has 1-measure 
zero as well, see, e.g., [6]. Here and in the sequel “1-measure zero” means “H 1-measure zero”.
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Denote by E0 and Ej the elements of T 0
ψ with x0 ∈ E0 and xj ∈ Ej . Note that from ψ |�j

≡
const it follows that �j ⊂ Ej . Consider the arc [Ej , E0] ⊂ T 0

ψ . Recall that, by definition, a 
connected component C of a level set of ψ |B̄r0

belongs to the arc [Ej , E0] iff C = E0, or C = Ej , 

or C separates E0 from Ej in B̄r0 , i.e., if E0 and Ej lie in different connected components 
of B̄r0 \ C. In particular, since E0 ∩ Lj �= ∅ �= Ej ∩ Lj , we have

C ∩ Lj �= ∅ ∀C ∈ [Ej ,E0]. (4.49)

Therefore, in view of equality (4.47) the value �(C) is well defined for all C ∈ [Ej , E0]. More-
over, we have

Lemma 4.6. The restriction �|[Ej ,E0] is a continuous function.

Proof. The assertion follows immediately10 from the assumptions (4.47)–(4.49), from the con-
tinuity of �|Lj

, and from the definition of convergence in T 0
ψ (see Subsection 4.2). �

Define the natural order11 on the arc [Ej , E0]. Namely, we say, that A < C for some different 
elements A, C ∈ [Ej , E0] iff C closer to E0 than A, i.e., if the sets E0 and C lie in the same 
connected component of the set B̄r0 \ A.

Put

Kj = min{K ∈ [Ej ,E0] : K ∩ Cr0 �= ∅}
(this minimum exists since E0 ∩Cr0 �= ∅). By elementary and obvious topological arguments we 
have

∀K ∈ [Ej ,E0]
(
K ∩ Cr0 �= ∅ ⇔ K ≥ Kj

)
. (4.50)

From (4.45)–(4.46) and from the Bernoulli Law it follows that

�(K) ≥ δ ∀K ∈ [Kj ,E0]. (4.51)

In particular, since �(Ej ) < −δ, we have

Ej < Kj ≤ E0. (4.52)

By construction,

K ∩ Cr0 = ∅ ∀K ∈ [Ej ,Kj ), (4.53)

where, as usual, [Ej , Kj) = [Ej , Kj ] \ {Kj }.
We say that a set Z ⊂ [Ej , E0] has T -measure zero if H 1({ψ(K) : K ∈ Z}) = 0.

10 See also the proof of Lemma 3.5 in [18].
11 Recall, that by Lemma 4.2, the set [Ej , E0] is homeomorphic to the segment of a real line, i.e. it is an arc. So we 
could define a natural order on this arc and take maxima, minima etc. — as for usual segment. There are two symmetric 
possibilities to define a usual linear order on the arc; here by our choice Ej < E0.
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Lemma 4.7. For every j = 1, . . . , N , T -almost all K ∈ [Ej , Kj ] are C1-curves homeomorphic 
to the circle and K∩Av = ∅. Moreover, there exists a subsequence �kl

such that �kl
|K converges 

to �|K uniformly �kl
|K ⇒ �|K on T -almost all K ∈ [Ej , E0].

Proof. The first assertion of the lemma follows from Theorem 4.3 (iii) and (4.53). The validity 
of the second one for T -almost all K ∈ [Ej , Kj ] was proved in [16, Lemma 3.3]. �

Below we assume (without loss of generality) that the subsequence �kl
coincides with the 

whole sequence �k . Furthermore, we will call regular the cycles K which satisfy the assertion 
of Lemma 4.7.

Since diamC > 0 for every C ∈ [Ej , E0], we obtain, by [18, Lemma 3.6], that the function 
�|[Ej ,E0] has the following analog of Luzin’s N -property.

Lemma 4.8. For every j = 1, . . . , N , if Z ⊂ [Ej , E0] has T -measure zero, then H 1({�(K) :
K ∈ Z}) = 0.

Note that Lemma 4.8 is not tautological: in the definition of T -zero measure we have stream 
function ψ , but Lemma 4.8 deals about another function, total head pressure �. It looks like 
Luzin N -property: ψ(E) has zero measure implies �(E) has zero measure.

From Lemmas 4.7–4.8 and from (4.51) we conclude

Corollary 4.3. For every j = 1, . . . , N and for almost all t ∈ (0, δ) we have

(
K ∈ [Ej ,E0] and �(K) = −t

) ⇒ K is a regular cycle.

Below we will say that a value t ∈ (0, δ) is regular if it satisfies the assertion of Corollary 4.3. 
Denote by T the set of all regular values. Then the set (0, δ) \ T has zero measure.

For t ∈ (0, δ) and j ∈ {1, . . . , N} denote

Aj(t) = max{K ∈ [Ej ,E0] : �(K) = −t}.
By construction, Aj(t) is nonincreasing and satisfies the properties (i)–(iii) from the beginning 
of this subsection. Moreover, by definition of regular values we have the following additional 
property:

(iv) If t ∈ T , then Aj(t) is a regular cycle.12

For t ∈ T denote by V (t) the unbounded connected component of the open set R2 \(∪N
j=1Aj(t)

)
. Since Aj1(t) can not separate Aj2(t) from infinity13, for Aj1(t) �= Aj2(t), we have

∂V (t) = A1(t) ∪ · · · ∪ AN(t), t ∈ T . (4.54)

By construction, the sequence of domains V (t) is increasing, i.e., V (t1) ⊂ V (t2) for t1 < t2.

12 Some of these cycles Aj (t) could coincide, i.e., equalities of type Aj1 (t) = Aj2 (t) are possible (if Kronrod arcs 
[Ej1 , E0) and [Ej2 , E0) have nontrivial intersection), but this a priori possibility has no influence on our arguments.
13 Indeed, if Aj2 (t) lies in a bounded component of R2 \Aj1 (t), then by construction Aj1 (t) ∈ [Ej2 , E0] and Aj1 (t) >
Aj2 (t) with respect to the above defined order on [Ej2 , E0]. However, it contradicts the definition of Aj2 (t) = max{K ∈
[Ej , E0] : �(K) = −t}.
2
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Let t1, t2 ∈ T and t1 < t2. The next geometrical objects play an important role in the estimates 
below: for t ∈ (t1, t2) we define the level set Sk(t, t1, t2) ⊂ {x ∈ �bk : �k(x) = −t} separat-
ing cycles ∪N

j=1Aj(t1) from ∪N
j=1Aj(t2) as follows. Namely, take arbitrary t ′, t ′′ ∈ T such that 

t1 < t ′ < t ′′ < t2. From Properties (ii), (iv) we have the uniform convergence �k|Aj (t1) ⇒ −t1, 
�k|Aj (t2) ⇒ −t2 as k → ∞ for every j = 1, . . . , N . Thus there exists k◦ = k◦(t1, t2, t ′, t ′′) ∈ N
such that for all k ≥ k◦

�k|Aj (t1) > −t ′, �k|Aj (t2) < −t ′′ ∀j = 1, . . . ,N. (4.55)

In particular,

�k|Aj (t1) > −t, �k|Aj (t2) < −t, ∀t ∈ [t ′, t ′′], ∀k ≥ k◦,
∀j = 1, . . . ,N.

(4.56)

For k ≥ k◦, j = 1, . . . , N , and t ∈ [t ′, t ′′] denote by Wj
k (t1, t2; t) the connected component of 

the open set {x ∈ V (t2) \ V (t1) : �k(x) > −t} such that ∂W
j
k (t1, t2; t) ⊃ Aj(t1) (see Fig. 1) and 

put

Wk(t1, t2; t) =
N⋃

j=1

W
j
k (t1, t2; t), Sk(t1, t2; t) = (∂Wk(t1, t2; t)) ∩ V (t2) \ V (t1).

Clearly, �k ≡ −t on Sk(t1, t2; t). By construction (see Fig. 1),

∂Wk(t1, t2; t) = Sk(t1, t2; t) ∪ A1(t1) ∪ · · · ∪ AN(t1). (4.57)

(Note that Wk(t1, t2; t)) and Sk(t1, t2; t) are well defined for all t ∈ [t ′, t ′′] and k ≥ k◦ =
k◦(t1, t2, t ′, t ′′).)

Since by (E–NS) each �k belongs to C∞(�bk), by the classical Morse-Sard theorem we have 
that for almost all t ∈ [t ′, t ′′] the level set Sk(t1, t2; t) consists of finitely many C∞-cycles and �k

is differentiable (in classical sense) at every point x ∈ Sk(t1, t2; t) with ∇�k(x) �= 0. The values 
t ∈ [t ′, t ′′] having the above property will be called k-regular.

By construction, for every k-regular value t ∈ [t ′, t ′′] the set Sk(t
′, t ′′; t) is a finite union of 

smooth cycles, and

ˆ

Sk(t1,t2;t)
∇�k · nds = −

ˆ

Sk(t1,t2;t)
|∇�k|ds < 0, (4.58)

where n is the unit outward normal vector to ∂Wk(t1, t2; t).
The last inequality leads us to the main result of this subsection.

Lemma 4.9. Assume that � ⊂ R2 is a domain of type (1.1) with C2-smooth boundary ∂�, 
and a ∈ W 1/2,2(∂�) satisfies zero total flux condition (1.22). Then assumptions (E-NS) and (4.41)
lead to a contradiction.
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Fig. 2. The domain �k(t) for the case of N = 1.

Proof. Fix t1, t2, t ′, t ′′ ∈ T with t1 < t ′ < t ′′ < t2. Below we always assume that k ≥
k◦(t1, t2, t ′, t ′′) (see (4.55)–(4.56)), in particular, the set Sk(t1, t2; t) is well defined for all 
t ∈ [t ′, t ′′].

The main idea of the proof of Lemma 4.9 is quite simple: we will integrate the equation

��k = ω2
k + 1

νk

div (�kuk) (4.59)

over a suitable domain �k(t) with ∂�k(t) ⊃ Sk(t1, t2; t).
We split the construction of the domain �k(t) into two steps. Namely, for t ∈ T ∩ [t ′, t ′′] and 

sufficiently large k denote by �Sk(t1,t2;t) the bounded open set in R2 such that

∂�Sk(t1,t2;t) = Sk(t1, t2; t).

Then put by definition

�k(t) = Bk \ �Sk(t1,t2;t) (4.60)

(see Fig. 2). Here Bk = {x ∈ R2 : |x| < Rk} are the balls where the solutions uk ∈ W 1,2(� ∩ Bk)

from (E-NS)-assumptions are defined.
By construction (see Fig. 2), ∂�k(t) = Sk(t1, t2; t) ∪CRk

. Integrating the equation (4.59) over 
the domain �k(t), we obtain

´
Sk(t1,t2;t)

∇�k · nds + ´
CRk

∇�k · nds = ´
�k(t)

ω2
k dx

+ 1
νk

´
Sk(t1,t2;t)

�kuk · nds + 1
νk

´
CRk

�kuk · nds.
(4.61)

By direct calculations, (4.11) implies

∇�k = −νk∇⊥ωk + ωku⊥
k , (4.62)

where, recall, for u = (u1, u2) we denote u⊥ = (u2, −u1) and ∇⊥ω = (∂2ω, −∂1ω).
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By the Stokes theorem, for any C1-smooth closed curve S ⊂ � and g ∈ C1(�) we have

ˆ

S

∇⊥g · nds = 0.

So, in particular,

ˆ

S

∇�k · nds =
ˆ

S

ωku⊥
k · nds. (4.63)

Since by construction for every x ∈ CRk
= {y ∈ R2 : |y| = Rk} there holds the equality

uk(x) = 0, (4.64)

we see that
ˆ

CRk

∇�k · nds = 0. (4.65)

Furthermore, using (4.64) we get

1

νk

ˆ

CRk

�kuk · nds = 0. (4.66)

Finally, since �k(x) ≡ −t for all x ∈ Sk(t1, t2; t), we obtain

ˆ

Sk(t1,t2;t)
�kuk · nds = −t

ˆ

Sk(t1,t2;t)
uk · nds = t

ˆ

CRk

uk · nds = 0. (4.67)

In view of (4.58), (4.61) and (4.65)–(4.67) we get

ˆ

Sk(t1,t2;t)
|∇�k|ds = −

ˆ

�k(t)

ω2
k dx, (4.68)

a contradiction. The Lemma is proved. �
4.6. The case �∞ < p̂N = ess sup

x∈�̄

�(x)

Suppose now that (4.42) holds, i.e., the maximum of � is attained on the boundary compo-
nent �N and not at infinity. Then the proof can be reduced to the case with a bounded domain, 
which was considered in [18]. Let us describe the essential details of this reduction.

Without loss of generality we can assume that �∞ < 0 and ess sup�(x) = p̂N = �(�N) = 0. 
Repeating the arguments from the first part of Subsection 4.5, we construct a C1-smooth cycle 
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AN ⊂ � such that ψ |AN
= const, �∞ < �(AN) < 0 and �N lies in the bounded connected 

component of the set R2 \ AN . Denote this component by �b . The cycle AN separates �N

from infinity. Thus, in order to obtain a contradiction, it is enough to consider the bounded 
domain �b ∩ �.

Namely, let

�b ∩ �j = ∅, j = 1, . . .M1 − 1,

�b ⊃ �j , j = M1, . . . ,N

(the case M1 = N is not excluded). Making a renumeration (if necessary), we may assume with-
out loss of generality that

�(�j ) < 0, j = M1, . . . ,M2,

�(�j ) = p̂N = 0, j = M2 + 1, . . . ,N

(the case M2 = M1 − 1, i.e., when � attains maximum value at every boundary component 
inside the domain �b, is not excluded). Now in order to receive the required contradiction, one 
needs to repeat almost word by word the corresponding arguments of Subsection 2.4.1 in [18]. 
The only modifications are as follows: now the sets AN and �M1, . . . , �M2 play the role of the 
sets �0, �1, . . . , �M from [18, Subsection 2.4.1], and the domain �b ∩ � in the present case 
plays the role of the domain � from [18, Subsection 2.4.1], etc.

4.7. The case �∞ = p̂N = ess sup
x∈�̄

�(x)

Consider the last possible case, when the maximum of � is attained both at infinity and on 
some boundary component:

�∞ = ess sup
x∈�

�(x) = p̂N = max{p̂1, . . . , p̂N } (4.69)

(recall, that p̂j = �(�j )).
This case is more delicate: we need to combine the arguments of the previous subsections.
Without loss of generality we may assume that

0 = �∞ = ess sup
x∈�

�(x), (4.70)

p̂j < 0, j = 1, . . . ,M, (4.71)

p̂j = 0, j = M + 1, . . . ,N. (4.72)

Note that 1 ≤ M < N , i.e., the case p̂j ≡ 0 for all j = 1, . . . , N is impossible. Indeed, from (4.13)
and (4.10)1 we have

−ν =
N∑

p̂jFj , (4.73)

j=1
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where, recall,

Fj =
ˆ

∂�j

a · nds. (4.74)

Let

δ > max{−p̂j : j = 1, . . . ,M}.
Using precisely the same arguments as above in Subsection 4.5, we construct a measurable set 
T ⊂ [0, δ] of full measure (i.e., meas

([0, δ] \ T
) = 0) and smooth cycles Aj(t) � � for all 

t ∈ T and every j = 1, . . . , M with the following properties:
(i) The set �j = ∂�j lies in a bounded connected component of the open set R2 \ Aj(t);
(ii) ψ |Aj (t) ≡ const, �(Aj (t)) = −t ;
(iii) (monotonicity) If 0 < t1 < t2 < δp , then Aj(t1) lies in the unbounded connected compo-

nent of the set R2 \ Aj(t2) (i.e., the set Aj(t2) ∪ �j lies in the bounded connected component of 
the set R2 \ Aj(t1));

(iv) Aj(t) is a regular cycle, i.e., it is a smooth curve homeomorphic to the unit circle and

�k|Aj (t) converges to �|Aj (t) uniformly for all t ∈ T . (4.75)

Further, using also the methods of Subsection 4.5, for any numbers t1, t2, t ′, t ′′ ∈ T with 
t1 < t ′ < t ′′ < t2 and for all t ∈ T ∩ (t ′, t ′′) and k ≥ k◦(t1, t2, t ′, t ′′) we construct14 a domain 
�k(t) with ∂�k(t) = CRk

∪Sk(t1, t2; t), where Sk(t1, t2; t) is a union of smooth cycles satisfying 
the following conditions:

Sk(t1, t2; t) separates Aj(t1) from Aj(t2) for all j ∈ 1, . . . ,M; (4.76)

�k ≡ −t on Sk(t1, t2; t); (4.77)

∇� �= 0 on Sk(t1, t2; t); (4.78)ˆ

Sk(t1,t2;t)
∇�k · nds = −

ˆ

Sk(t1,t2;t)
|∇�k|ds < 0, (4.79)

where n is the unit outward normal vector to ∂�k(t).
Now we are ready to prove the key estimate.

Lemma 4.10. For any t1, t2, t ′, t ′′ ∈ T with t1 < t ′ < t ′′ < t2 there exists k∗ = k∗(t1, t2, t ′, t ′′)
such that for every k ≥ k∗ and for almost all t ∈ [t ′, t ′′] the inequality

ˆ

Sk(t1,t2;t)
|∇�k|ds < F t, (4.80)

holds with the constant F independent of t, t1, t2, t ′, t ′′ and k.

14 See, e.g., (4.55)–(4.56), where now the number M plays the role of N .
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Proof. Fix t1, t2, t ′, t ′′ ∈ T with t1 < t ′ < t ′′ < t2. Below we always assume that k ≥ k◦ =
k◦(t1, t2, t ′, t ′′), in particular, the set Sk(t1, t2; t) is well defined for all t ∈ [t ′, t ′′] ∩ T .

Put �̃k(t) = � ∩ �k(t). By construction,

∂�̃k(t) = CRk
∪ Sk(t1, t2; t) ∪ �K ∪ · · · ∪ �N, (4.81)

where M < K . This representation follows from the fact that the set Sk(t1, t2; t) separates the 
circle CRk

from the boundary components �j with j = 1, . . . , M . However, a priori it does 
not separate CRk

from other boundary components �i with i > M . This is the main difference 
comparing to the situation of Subsection 4.5, where the boundary of the integration domain 
consists of only two parts: CRk

∪ Sk(t1, t2; t) (see the proof of Lemma 4.9).
It is easy to see that K in the representation (4.81) does not depend on k for sufficiently 

large k; see, e.g., [18, Subsection 2.4.1] for the detailed explanation of this fact.
Now we have to consider two possible cases:

CASE I. K = N + 1. It means that no component �j is contained in the domain �̃k(t), i.e.

∂�̃k(t) = CRk
∪ Sk(t1, t2; t). (4.82)

The contradiction for this case is derived exactly in the same way as in the proof of previous 
Lemma 4.9.

CASE II. K ≤ N . For h > 0 denote �0 = �K ∪ · · · ∪ �N , �h = {x ∈ � : dist (x, �0) = h}, 
�k(t, h) = {x ∈ �̃k(t) : dist (x, �0) > h}. Then

∂�k(t, h) = CRk
∪ Sk(t1, t2; t) ∪ �h (4.83)

for any fixed t ∈ T ∩ [t ′, t ′′], for sufficiently small h < δ(t1) and for sufficiently large k ≥ k◦.
It was established in [18] (see the proof of formulas (3.40)–(3.42) on pages 786–788) that for 

any fixed ε > 0 and for sufficiently large k ≥ kε ≥ k◦ there exists a value h̄k < δ(t1) such that

∣∣∣∣
ˆ

�h̄k

∇�k · nds

∣∣∣∣ < ε, (4.84)

1

νk

∣∣∣∣
ˆ

�h̄k

�kuk · ndS

∣∣∣∣ < ε. (4.85)

It was shown before (see formulas (4.65)–(4.66)) that

ˆ

CRk

∇�k · nds = 0, (4.86)

ˆ

C

�kuk · nds = 0. (4.87)
Rk
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Denote �0k(t) := �k(t, h̄k). Then

∂�0k(t) = CRk
∪ Sk(t1, t2; t) ∪ �h̄k

.

Integrating the equation (4.59) over the domain �0k(t) and using (4.86)–(4.87), we get

´
Sk(t1,t2;t)

∇�k · nds + ´
�h̄k

∇�k · nds = ´
�k(t)

ω2
k dx

+ 1
νk

´
Sk(t1,t2;t)

�kuk · nds + 1
νk

´
�h̄k

�kuk · nds.
(4.88)

Using (4.79), (4.84)–(4.85), we obtain the estimate

ˆ

Sk(t1,t2;t)
|∇�k|ds < 2ε − 1

νk

ˆ

Sk(t1,t2;t)
�kuk · nds. (4.89)

Finally, since �k(x) ≡ −t for all x ∈ Sk(t1, t2; t), we derive

´
Sk(t1,t2;t)

�kuk · nds = −t
´

Sk(t1,t2;t)
uk · nds = t

´
�0

uk · nds

= t νk

´
�0

a · nds = tνkF◦,
(4.90)

here F◦ = 1
ν

N∑
j=K

Fj and we have used the identities (4.11)3, (4.81) and

0 =
ˆ

∂�̃k(t)

uk · nds =
ˆ

CRk
∪Sk(t1,t2;t)∪�0

uk · nds =
ˆ

Sk(t1,t2;t)
uk · nds +

ˆ

�0

uk · nds.

Since the parameter ε > 0 could be chosen to be arbitrary small, from (4.89)–(4.90) the inequality

ˆ

Sk(t1,t2;t)
|∇�k|ds ≤ (|F◦| + 1

)
t (4.91)

follows for sufficiently large k. The Lemma is proved. �
Now we apply the argument from [18, proof of Lemma 3.9] and receive the required contra-

diction using the Coarea formula.

Lemma 4.11. Assume that � ⊂R2 is a bounded domain of type (1.1) with C2-smooth boundary 
∂�, and a ∈ W 1/2,2(∂�) satisfies zero total flux condition (1.22). Then assumptions (E-NS) and 
(4.43) lead to a contradiction.
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Proof. Take a number t0 ∈ T such that ti := 2−i t0 ∈ T for all i ∈ N . Let R0 be a sufficiently 
large radius such that B 1

2 R0
⊃ ∂�. Denote Sik(t) := BR0 ∩ Sk(ti+1, ti , t) (it is well defined for 

almost all t ∈ [ 5
8 ti , 78 ti] and for k ≥ k∗ ≥ k◦, see paragraph before Lemma 4.10) and put

Ei =
⋃

t∈[ 5
8 ti ,

7
8 ti ]∩T

Sik(t).

By the Coarea formula (see, e.g., [24]), for any integrable function g : Ei →R the equality

ˆ

Ei

g|∇�k|dx =
7
8 tiˆ

5
8 ti

ˆ

Sik(t)

g(x) ds dt (4.92)

holds. In particular, taking g = |∇�k| and using (4.80), we obtain

ˆ

Ei

|∇�k|2 dx =
7
8 tiˆ

5
8 ti

ˆ

Sik(t)

|∇�k|(x) ds dt ≤
7
8 tiˆ

5
8 ti

F t dt = F ′t2
i (4.93)

where F ′ = 3
16F is independent of i. Now, taking g = 1 in (4.92) and using the Hölder inequal-

ity we have

7
8 tiˆ

5
8 ti

H 1(Sik(t)
)
dt =

ˆ

Ei

|∇�k|dx

≤
(ˆ

Ei

|∇�k|2 dx

) 1
2 (

meas(Ei)
) 1

2 ≤ √
F ′ti

(
meas(Ei)

) 1
2 .

(4.94)

By construction, for almost all t ∈ [ 5
8 ti , 78 ti] the set Sik(t) is a finite union of smooth curves and 

Sik(t) separates Aj(ti+1) from Aj(ti) in BR0 for j = 1, . . . , M . Thus, each set Sik(t) separates 
�j from �N . In particular, H 1(Sik(t)) ≥ min

(
diam(�j ), diam(�N)

)
. Hence, the left integral in 

(4.94) is greater than Cti , where C > 0 does not depend on i. On the other hand, the uniformly 
bounded sets Ei are pairwise disjoint and, therefore, meas(Ei) → 0 as i → ∞. The obtained 
contradiction finishes the proof of Lemma 4.11. �

We can summarize the results of Subsections 4.5–4.7 in the following statement.

Lemma 4.12. Assume that � ⊂ R2 is an exterior plane domain of type (1.1) with C2-smooth 
boundary ∂� and a ∈ W 1/2,2(∂�) satisfies zero total flux condition (1.22). Let (E-NS) be ful-
filled. Then every possible assumption (4.41), (4.42) and (4.43) lead to a contradiction.
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Proof of Theorem 1.2. Let the hypotheses of Theorem 1.2 be satisfied. Suppose that its asser-
tion fails. Then, by Lemma 4.4, there exist v, p and a sequence (uk, pk) satisfying (E-NS), and 
by Lemma 4.12 these assumptions lead to a contradiction. �
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