Annals of Mathematics 181 (2015), 769-807
http://dx.doi.org/10.4007/annals.2015.181.2.7

Solution of Leray’s problem for stationary
Navier-Stokes equations in plane and
axially symmetric spatial domains

By MIkKHAIL V. KOROBKOV, KONSTANTIN PILECKAS, and REMIGIO RUSsO

Abstract

We study the nonhomogeneous boundary value problem for the Navier-
Stokes equations of steady motion of a viscous incompressible fluid in ar-
bitrary bounded multiply connected plane or axially-symmetric spatial do-
mains. (For axially symmetric domains, data is assumed to be axially
symmetric as well.) We prove that this problem has a solution under the
sole necessary condition of zero total flux through the boundary. The prob-
lem was formulated by Jean Leray 80 years ago. The proof of the main
result uses Bernoulli’s law for a weak solution to the Euler equations.

1. Introduction

Let © be a bounded domain in R™, n = 2,3, with C?-smooth bound-
ary 0§} = U;-V:Ol“j consisting of V + 1 disjoint components I';, j = 0,..., V.
Consider the stationary Navier-Stokes system with nonhomogeneous boundary
conditions

—l/Au—i-(u-V)u—i-Vp:f in Q,
(1.1) divu=0 inQ,
u=a on 0.

The continuity equation (1.12) implies the compatibility condition

(1.2) /a~nd3:i/a‘nds:i)]:j:O

o0 7=0p;

necessary for the solvability of problem (1.1), where n is a unit outward (with
respect to ) normal vector to Q2 and F; = frj a-ndS. Condition (1.2) means
that the total flux of the fluid through 912 is zero.

(© 2015 Department of Mathematics, Princeton University.
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In his famous paper of 1933 [22], Jean Leray proved that problem (1.1)
has a solution provided!

(1.3) fj:/a-ndS’:O, j=0,1,...,N.
Ly

The case when the boundary value a satisfies only the necessary condition (1.2)
was left open by Leray, and the problem whether (1.1), (1.2) admit (or do not
admit) a solution is known in the scientific community as Leray’s problem.

Leray’s problem has been studied in many papers. However, in spite of
all efforts, the existence of a weak solution u € W12(€) to problem (1.1) was
established only under assumption (1.3) (see, e.g., [22], [20], [21], [33], [13]), or
for sufficiently small fluxes F; 2 (see, e.g., [8], [9], [11], [12], [2], [30], [29], [18]),
or under certain symmetry conditions on the domain €2 and the boundary value
a and the external force f (see, e.g., [1], [31], [10], [25], [28], [27]). Recently [17],
the existence theorem for (1.1) was proved for a plane domain Q with two
connected components of the boundary assuming only that the flux through
the external component is negative (the inflow condition). A similar result
was also obtained for the spatial axially symmetric case [15]. In particular,
the existence was established without any restrictions on the fluxes F;, under
the assumption that all components I'; of 02 intersect the axis of symmetry.
For more detailed historical surveys, one can see the recent papers [17] or [27],
[28].

In the present paper we solve Leray’s problem for the plane case n = 2
and for the axially symmetric domains in R3. (For axially symmetric spatial
domains the boundary value a and the external force f are assumed to be
axially symmetric as well.) The main result for the plane case is as follows.

THEOREM 1.1. Assume that Q C R2 is a bounded domain with C?*-smooth
boundary OQ. If £ € W12(Q) and a € W3/22(0Q) satisfy condition (1.2), then

problem (1.1) admits at least one weak solution u.

Remark 1.1. Tt is well known (see [21]) that under the hypotheses of
Theorem 1.1, every weak solution u of problem (1.1) is more regular; i.e.,
uc Ww22(Q)n VVI‘?)CQ(Q) Generally speaking, the solution is as regular as the
data allow, in particular, u is C*°-smooth when f, a, and 9€2 are C'°°-smooth.

The proof of the existence theorem is based on an a priori estimate that
we derive using a reductio ad absurdum argument of Leray [22]. The essen-
tially new part in this argument is the use of Bernoulli’s law obtained in [14]

! Condition (1.3) does not allow the presence of sinks and sources.
2This condition does not assumes the norm of the boundary value a to be small.
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for Sobolev solutions to the Euler equations. (The detailed proofs are pre-
sented in [17].) The results concerning Bernoulli’s law are based on the recent
version of the Morse-Sard theorem proved by J. Bourgain, M. Korobkov and
J. Kristensen [3]. This theorem implies, in particular, that almost all level
sets of a function ¢ € W21(Q) are finite unions of C'-curves. This allows us
to construct suitable subdomains (bounded by smooth stream lines) and to
estimate the L?-norm of the gradient of the total head pressure. We use some
ideas here that are close (on a heuristic level) to the Hopf maximum princi-
ple for the solutions of elliptic PDEs. (For a more detailed explanation, see
Section 3.3.1.) Finally, a contradiction is obtained using the Coarea formula.

The paper is organized as follows. Section 2 contains preliminaries. Basi-
cally, this section consists of standard facts, except for the results of Section 2.2,
where we formulate the recent version [3] of the Morse-Sard Theorem for the
space W21(R?), which plays a key role. In Section 3.1 we briefly recall the
elegant reductio ad absurdum Leray’s argument. In Section 3.2 we discuss prop-
erties of the limit solution to the Euler equations, which were known before.
(Mainly, we recall some facts from [17].) In Section 3.3 we prove some new
properties of this limit solution and get a contradiction. Finally, in Section 4
we adapt these methods to the axially symmetric spatial case.

2. Notation and auxiliary results

2.1. Function spaces and definitions. By a domain we mean a connected
open set. In this paper we deal with bounded domains Q2 C R™, n = 2,3, with
C?-smooth boundary 9Q = U§V:0Fj consisting of V + 1 disjoint components
Fj; i.e.,

C=

(2.1) Q=0\(J%), Q5c,j=1...,N,

J=1

where I'; = 0€);.

We use standard notation for function spaces: C*(Q), C*(9%), Wk4(Q),
Wka(Q), We(dQ), where o € (0,1),k € Ny, q € [1,40c]. In our notation
we do not distinguish function spaces for scalar and vector-valued functions; it
will be clear from the context whether we use scalar, vector, or tensor-valued
function spaces. Denote by H(2) the subspace of all solenoidal vector fields
(divu = 0) from W'2(Q) equipped with the norm lullz@) = IVullr(o)-
Observe that for functions u € H(2), the norm || - [|z(q) is equivalent to
|- w2 -

Working with Sobolev functions, we always assume that the “best repre-
L (), the best representative w* is defined

sentatives” are chosen. For w € Lj
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as

r—0

lim fp () w(z)dz, if the finite limit exists,
w*(x) = '
0 otherwise,

where fBT(x)w(z)dz = m fBT(x)w(z)dz and By(z) ={y : |y — x| <r}
is the ball of radius r centered at x.

Below we discuss some properties of the best representatives of Sobolev
functions.

LEMMA 2.1 (see, e.g., [7, §4.8, Th. 1 and §4.9.2, Th. 2]). Ifw € W15(R?),
s > 1, then there exists a set Ay, C R? with the following properties:
(1) H'(Arw) =0
(ii) for each x € Q\ Ay,

. 2 .
tig () —w) = = 0
(iii) for every e > 0, there exists a set U C R? with $1 (U) < e and Ay, CU
such that the function w is continuous on Q\ U;
(iv) for every unit vector 1 € 0B1(0) and almost all straight lines L paral-
lel to 1, the restriction w|r, is an absolutely continuous function (of one
variable).

Here and henceforth we denote by ' the one-dimensional Hausdorff mea-
sure, i.e., H1(F) = th%1+ 9} (F), where
—

HL(F) =inf{ 3" diamF; : diamF; < t,F C | F}.
=1 =1

Remark 2.1. Property (iii) of Lemma 2.1 means that f is quasicontin-
uous with respect to the Hausdorff content $3.,. Really, Theorem 1(iii) of
Section 4.8 in [7] asserts that f € W1$(R?) is quasicontinuous with respect to
the s-capacity. But it is well known that for s = 1, smallness of the 1-capacity
of a set ' C R? is equivalent to smallness of 1 (F) (see, e.g., [7, §5.6.3, Th. 3
and its proof]).

Remark 2.2. By the Sobolev extension theorem, Lemma 2.1 is true for
functions w € W*(€), where Q C R? is a bounded Lipschitz domain. By the
trace theorem, each function w € W1(Q) is “well defined” for $!-almost all
r € 09Q. Therefore, we assume that every function w € W1$(Q) is defined
on 2.

2.2. On the Morse-Sard and Luzin N-properties of Sobolev functions in
W21, First, let us recall some classical differentiability properties of Sobolev
functions.
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LEMMA 2.2 (see [6, Prop. 1]). If v € W21(R?), then ) is continuous and
there exists a set Ay with H(Ay) = 0 such that ¢ is differentiable (in the
classical sense) at all v € R?\ Ay. Moreover, the classical derivative coincides
with Vi (z), where 71»1—I>I(1) JCBT($) (Vip(z) — Vp(z)|? dz = 0.

The theorem below is due to J. Bourgain, M. Korobkov and J. Kris-
tensen [3].

THEOREM 2.1. Let Q C R? be a bounded domain with Lipschitz boundary.

If ¢ € W21(Q), then

(1) H'({¥(2) : 2 € Q\ Ay & Vip(z) = 0}) =0.

(i) For every e > 0, there exists § > 0 such that H((U)) < & for any set
U C Q with 9L (U) < 6.

(iii) For every ¢ > 0, there exist an open set V. C R with H'(V) < € and a
function g € CY(R?) such that for each z € Q if Y(z) ¢ V, then x ¢ Ay
and ¥(z) = g(z), V() = Vg(z) £0.

(iv) For $H'-almost all y € ¥(Q) C R, the preimage 1~ (y) is a finite disjoint
family of C'-curves Sj, j =1,2,...,N(y). Each S; is either a cycle in
Q (i.e., Sj C Q is homeomorphic to the unit circle SY) or a simple arc
with endpoints on 0. (In this case Sj is transversal to 0S2.)

2.3. Some facts from topology. We shall need some topological definitions
and results. By continuum we mean a compact connected set. We understand
connectedness in the sense of general topology. A subset of a topological space
is called an arc if it is homeomorphic to the unit interval [0, 1].

Let us shortly present some results from the classical paper of A. S. Kron-
rod [19] concerning level sets of continuous functions. Let @ = [0,1] x [0, 1]
be a square in R?, and let f be a continuous function on Q. Denote by E;
a level set of the function f, ie., By = {x € Q : f(x) = t}. A connected
component K of the level set E; containing a point zg is a maximal connected
subset of E; containing xo. By Ty denote a family of all connected components
of level sets of f. It was established in [19] that T; equipped by a natural
4 Endpoints of this tree® are
the components C' € Ty that do not separate @Q; i.e., @\ C is a connected

topology® is a one-dimensional topological tree.

3 A system of neighborhoods in this topology is defined as follows. For a component C' € T
and an open set U D C, the set {B € Ty : B C U} is called a neighborhood of C. Accordingly,
the convergence in Ty is defined by the following rule: Ty 5 C; — C iff sup dist(z,C) — 0.

zeC;

4A locally connected continuum 7T is called a topological tree if it does not contain a curve
homeomorphic to a circle or, equivalently, if any two different points of T' can be joined by a
unique arc. This definition implies that 7" has topological dimension 1.

5 A point of a continuum K is called an endpoint of K (resp., a branching point of K) if its
topological index equals 1 (more or equal to 3 resp.). For a topological tree T, this definition is
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set. Branching points of the tree are the components C' € T such that Q \ C
has more than two connected components (see [19, Th. 5]). By results of [19,
Lemma 1] (see also [24] and [26]), the set of all branching points of T} is at
most countable. The main property of a tree is that any two points could be
joined by a unique arc. Therefore, the same is true for 7.

LEmMMA 2.3 ([19, Lemma 13]). If f € C(Q), then for any two different
points A € Ty and B € Ty, there exists a unique arc J = J(A, B) C Ty joining
A to B. Moreover, for every inner point C of this arc, the points A, B lie in
different connected components of the set Ty \ {C'}.

We can reformulate the above lemma in the following equivalent form.

LEMMA 2.4. If f € C(Q), then for any two different points A, B € T,
there exists a continuous injective function ¢ : [0,1] — T with the properties
(i) ¢(0) = A, o(1) = B;
(ii) for any ty € [0, 1],

lim sup dist(x, ¢(tg)) — 0;
[0,1}9t—>t0 :BEgO(t) ( ( ))

(iii) for any t € (0,1), the sets A, B lie in different connected components of
the set Q \ o(t).

Remark 2.3. If in Lemma 2.4 f € W2(Q), then by Theorem 2.1(iv),
there exists a dense subset E of (0,1) such that ¢(t) is a C'-curve for every
t € E. Moreover, ¢(t) is either a cycle or a simple arc with endpoints on 0Q.

Remark 2.4. All results of Lemmas 2.3 and 2.4 remain valid for level sets of
continuous functions f : Q — R, where €2 is a multi-connected bounded domain
of type (2.1), provided f = & = const on each inner boundary component
['j with j = 1,...,N. Indeed, we can extend f to the whole Qy by putting
f(z)=¢forz e Qj,j=1,...,N. The extended function f will be continuous
on the set (g that is homeomorphic to the unit square Q = [0, 1]%.

3. The plane case

3.1. Leray’s argument reductio ad absurdum. Consider the Navier-Stokes
problem (1.1) in the C?-smooth domain @ C R? defined by (2.1) with f €
Wh2(Q)). Without loss of generality, we may assume that f = V+b with
b e W22(Q)%, where (z,y)" = (—y, ). If the boundary value a € W3/22(9Q)
satisfies condition (1.2), then there exists a solenoidal extension A € W22(Q)

equivalent to the following: a point C' €T is an endpoint of 7" (resp., a branching point of T')
if the set T'\ {C} is connected (resp., if T\ {C'} has more than two connected components).

5By the Helmholtz-Weyl decomposition, for a C?-smooth bounded domain Q C R", n =
2,3, every f € W'2(Q) can be represented as the sum f = curlb 4+ Vi for n = 3, and
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of a (see [21], [32], [12]). Using this fact and standard results [21], we can
find a weak solution U € W22(Q) to the Stokes problem such that U — A €
H(Q)NW?22(Q) and

(3.1) y/VU~Vndx:/f-17d:c Ve H(Q).
Q Q

Moreover,

(32) IUllw22(0) < e(llallwsreapa + 1El20)-

By weak solution of problem (1.1) we understand a function u such that
w=u—-Ue€ H(Q) and

V/VW-Vnda:—/((w—i—U)-V)n-wdm—/(w-V)n-wa

(3.3) Q Q Q

:/(U-V)n'wa Vn € H(Q).
Q

Let us briefly reproduce the contradiction argument of Leray [22] that
was later used in many other papers. (See, e.g., [20], [21], [13], [1]; see also
[17] for details.) It is well known (see, e.g., [21]) that integral identity (3.3) is
equivalent to an operator equation in the space H () with a compact operator.
Therefore, by the Leray-Schauder theorem, to prove the existence of a weak
solution to the Navier-Stokes problem (1.1), it is sufficient to show that all the
solutions of the integral identity

y/Vw-Vnda:—)\/((w—i—U)-V)n-wdm—A/(w-V)n-de
Q Q

(3.4) °

:A/(U-V)n-Udm Ve HQ)
Q

are uniformly bounded in H(Q) (with respect to A € [0,1]). Assume that this

is false. Then there exist sequences {Ag}ren C [0,1] and {Wi}reny € H(Q)

such that

y/vwk : vnda:—Ak/((vAvHU) V)0 - W dm—)\k/(v/\?k V)n - Uda
Q Q Q

(3.5)
:)\k/(U-V)n-Uda: Vn e H(Q)
Q
and
(3.6) lim A = Ao € [0, 1], lim Jp = lim HwkHH(Q) = 00.
k—o0 k—o0 k—o0

f=V%ib+ Vo forn =2, with b,b, p € W?22(Q), and the gradient part is included then into
the pressure term (see, e.g., [21]).
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Using well-known techniques ([17], [1]), one shows that there exist p with”
1Pkllwia) < C(q)J?, q € [1,2), such that the pair (ﬁk =wy + U, ﬁk> is a
solution to the following system:

—vAG, + A (8 V)T + Vo =f  in Q,
(3.7) diviig =0 in 9,
u; =a on 0.

Choose n = J,;Z\/A\/'k in (3.5) and set wy = J,;lv/\\fk. Taking into account

that

/ ((wk +U)- V)wk -widr =0,
Q
we have

(3.8) u/\vwk|2dx:Ak/(wk.v)wk-udx+J,;1Ak/(U.v)wk.de.
Q Q Q

Since ||[wi| gy = 1, extracting a subsequence (if necessary), we can assume
without loss of generality that wj converges weakly in H(2) to a vector field
v € H(Q?). By the compact embedding

H(Q)—= L' (Q) Vre[l, o),

the subsequence {wy} converges strongly in L"(€2). Therefore, letting & — oo
in equality (3.8), we obtain

(3.9) v= /\0/ (v . V)v -Udz.
Q
In particular, A\g > 0, so A\ are separated from zero.
Put v = (\eJi) v Multiplying identities (3.7) by 51 = M e see
that the pair (uk = %kﬁk, Dr = ﬁﬁk) satisfies the following system:

—vpAuy + (uk . V)uk 4+ Vpr =1 in Q,
(3.10) divuy, =0 in Q,

u, = a; on 0f),

"The uniform estimates for the norms ||p [lw1.4(q) follow from well-known results concern-
ing regularity of solutions to the Stokes problem (see [32, Chap. 1, §2.5] or [21]). Observe that
in [17] we could have only pr, € W,1%(Q) because dQ has been assumed to be only Lipschitz.
However, for domains © with C?-smooth boundary and a € WS/Q‘Z(GQ), the corresponding
estimates hold globally.
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2
where f;, = )‘l’jg" f, a, = ’\’“%a, the norms |[ugl[yw12(q) and ||pkllwie@q)

are uniformly bounded for each ¢ € [1,2), u; € Wl‘:’)’f(Q), pr € VVI?)’CQ(Q)S,
and u, — v in WH2(Q). Extracting a subsequence (if necessary), we may
assume without loss of generality that, in addition, p, — p in W19(Q) for
each ¢ € [1,2). Then the limit functions (v, p) satisfy the Euler system

(v-V)v—l—Vp:O in Q,
(3.11) divv=0 1in Q,
v=0 on 0.

In conclusion, we can state the following lemma.

LEMMA 3.1. Assume that Q C R? is a bounded domain of type (2.1) with
C?-smooth boundary 9Q, f = Vb, b€ W22(Q), and a € W3/22(0Q) satisfies
condition (1.2). If there are no weak solutions to (1.1), then there exist v,p
with the following properties:

(E) v.€ Wh2(Q), p € WH9(Q), ¢ € (1,2), and the pair (v,p) satisfies
the Euler system (3.11).

(E-NS) Conditions (E) are satisfied, and there exist sequences of functions

u, € Wh(Q), pr € WH(Q) and numbers vy — 0+, Ay — Ao > 0

such that the norms ||ug|lw12(q), |Pkllwie@q) are uniformly bounded

)\klji f
v2 )

for every q € [1,2), the pairs (ug,px) satisfy (3.10) with £, =
a, = ’\’“% a, and

IVupllze@) =1, we—vin W(Q), pp—pin WH(Q) Vqe[l,2).

Moreover, uy, € VVlif(Q), Dk € W12002(Q)

From now on we assume that assumptions (E-NS) are satisfied. Our goal
is to prove that they lead to a contradiction. This implies the validity of
Theorem 1.1.

3.2. Some previous results on the Fuler equations. In this subsection we
collect the information on the limit solution (V, p) to (3.11) obtained in pre-
vious papers.

The next statement was proved in [13, Lemma 4] and in [1, Th. 2.2]; see
also [17, Rem. 3.2].

8The interior regularity of the solution depends on the regularity of f € W*2(Q), but not
on the regularity of the boundary value a; see [21].



778 MIKHAIL V. KOROBKOV, KONSTANTIN PILECKAS, and REMIGIO RUSSO

THEOREM 3.1. If conditions (E) are satisfied, then there exist constants
Do, -..,PN such that

(3.12) p(x) =p; for H'-almost all x € T.
Remark 3.1. From Theorem 3.1 and from the classical results of [5] it
follows that
peCQ)NWH(Q)
if conditions (E) are satisfied. (For the accurate proof of this fact, see, e.g., [17,

Th. 3.3].) Consequently, the identities (3.12) are valid for all = € I'; (instead
of “$t-almost all”).

COROLLARY 3.1. If conditions (E-NS) are satisfied, then
v . R
(3.13) N :ij/a-nds:ij}"j.
Proof. By simple calculations from (3.9) and (3.11;), it follows that

)\L:—/Vp-UdJ::—/div(pU)dx:—/pa-nds.
0 Q Q o0

In virtue of (3.12), this implies (3.13). O

Set @), = py, + 1|ug|?, ® =p+ 3|v|>. From (3.11) and (3.113), it follows
that there exists a stream function ¢ € W22(Q) such that

(3.14) Vy=vt inQ.

Here and henceforth we set (a,b)* = (b, a).
Applying Lemmas 2.1, 2.2 and Remark 2.2 to the functions v, v, ®, we
get the following

LEMMA 3.2. If conditions (E) are satisfied, then the stream function v is
continuous on Q and there exists a set Ay C Q such that
(i) H'(Av) = 0.
(ii) For all z € 2\ Ay,

lim v(z) — v(z)|?dz = lim B(z) — ®(z)|?dz = 0;
b f VG vl =l (0G) - o)

moreover, the function is differentiable at x and Vi (x) = (—va(x),v1(z)).
(iii) For every ¢ > 0, there exists a set U C R? with $. (U) < € such that
Ay C U and the functions v, ® are continuous in Q\ U.

The next version of Bernoulli’s Law for solutions in Sobolev spaces was
obtained in [14, Th. 1]. (See also [17, Th. 3.2] for a more detailed proof.)
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THEOREM 3.2. Let conditions (E) be satisfied, and let Ay C Q be the
set from Lemma 3.2. For any compact connected set K C §, the following
property holds: if

(3.15) le = const,
then
(3.16) O(x1) = P(x2) for all x1,22 € K\ Ay.

LEMMA 3.3. If conditions (E) are satisfied, then there exist constants
€0,-..,&n € R such that Y(z) = & on each component 'y, 5 =0,...,N.

Proof. The assertion follows easily from the fact that v extended by 0
outside  belongs to the space H(R?) C VVI})’CQ(RQ), and hence the stream
function ¢ € W22 (R?) is well defined in R? with Vi) = 0 in R?\ Q. O

For x € Q, denote by K, the connected component of the level set {z €
Q :9(2) = ¥(x)} containing the point . By Lemma 3.3, K,N9Q = @ for every
y € Y(Q)\ {&,...,En} and for every o € ¥~ 1(y). Thus, Theorem 2.1(ii) and
(iv) imply that for almost all y € ¥(2) and for every = € ¥~ 1(y), the equality
K, N Ay = 0 holds and the component K, C € is a C'-curve homeomorphic
to the circle. We call such K, an admissible cycle.

The next lemma was obtained in [17, Lemma 3.3].

LEMMA 3.4. If conditions (E-NS) are satisfied, then there ezists a subse-
quence Py, such that ®y,|s converges to ®|g uniformly P, |s = P|g on almost
all? admissible cycles S.

Below we assume (without loss of generality) that the subsequence ®y,
coincides with ®5. Admissible cycles S from Lemma 3.4 will be called regular
cycles.

3.3. Obtaining a contradiction. We consider the following two cases:

(a) The maximum of ® is attained on the boundary 9:

(3.17) max_p; = esssup ®(x).
7=0,....,N zeN

(b) The maximum of ® is not attained'’ on 9Q:

(3.18) max_p; < esssup ®(z).
j=0,..,.N 2eQ

9«Almost all cycles” means cycles in preimages zpfl(y) for almost all values y € ¥(Q).

9The case esssup ®(z) = 400 is not excluded.
TEQ
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3.3.1. The mazimum of ® is attained on the boundary 0N2. Let (3.17) hold.
Adding a constant to the pressure we can assume, without loss of generality,
that

(3.19) ‘max_p; = esssup ®(x) = 0.
J:07"'7N Z'EQ

In particular,

(3.20) O(z) <0 in .
If pp = p1 = --- = pn, then by Corollary 3.1 and the flux condition (1.2),
we immediately obtain the required contradiction. Thus, assume that
3.21 in p; <O0.
(&2 AP <

Change (if necessary) the numbering of the boundary components I'g, I'y,
..., 'y in such a way that

(3.22) P <0, j=0,...,M,

(3.23) pM+1=-=pn=0.

First, we introduce the main idea of the proof in a heuristic way. It is well
known that every ®; satisfies the linear elliptic equation

1 1
(3.24) Ay, = wi 4+ — div(®puy) — —F - ug.
Vg Vi

If f;, = 0, then by Hopf’s maximum principle, in a subdomain €’ € Q with C?-
smooth boundary 9€, the maximum of ®,, is attained at the boundary 9,
and if z, € 9 is a maximum point, then the normal derivative of ®; at x.
is strictly positive. It is not sufficient to apply this property directly. Instead
we will use some “integral analogs” that lead to a contradiction by using the
Coarea formula (see Lemmas 3.8 and 3.9). For ¢ € N and sufficiently large
k > k(i), we construct a set E; C € consisting of level lines of ®; such that
®r|p, — 0 as i — oo and E; separates the boundary component I'y (where
® = 0) from the boundary components I'; with j = 0,..., M (where ® < 0).
On the one hand, the length of each of these level lines is bounded from below
by a positive constant (since they separate the boundary components), and
by the Coarea formula this implies the estimate from below for [, [V®|. On
the other hand, elliptic equation (3.24) for ®, the convergence f;, — 0, and
boundary conditions (3.103) allow us to estimate [p |V®|? from above (see
Lemma 3.8), and this asymptotically contradicts the previous one.

The main idea of the proof for a general multiply connected domain is the
same as in the case of annulus-like domains (when 9 = I'g UT';). The proof
has an analytical nature, and unessential differences concern only well-known
geometrical properties of level sets of continuous functions of two variables.
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First of all, we need some information concerning the behavior of the
limit total head pressure ® on stream lines. We do not know whether the
function ® is continuous or not on 2. But we shall prove that ® has some
continuity properties on stream lines.

By Remark 2.4 and Lemma 3.3, we can apply Kronrod’s results to the
stream function ¢. Define the total head pressure on the Kronrod tree Ty, (see
Section 2.3 ) as follows. Let K € T, with diam K > 0. Take any z € K \ Ay,
and put ®(K) = ®(x). This definition is correct by Bernoulli’s Law (see
Theorem 3.2).

LEMMA 3.5. Let A,B € Ty, diam A > 0,diam B > 0. Consider the
corresponding arc [A,B] C Ty joining A to B (see Lemmas 2.3 and 2.4).
Then the restriction ‘D‘[A,B] 18 a continuous function.

Proof. Put (A, B) = [A,B]\ {4, B}. Let C; € (A, B) and C; — Cp in Ty,
By construction, each C; is a connected component of the level set of ¢ and
the sets A, B lie in different connected components of R? \ C;. Therefore,

diam(C;) > min(diam(A), diam(B)) > 0.
By the definition of convergence in Ty, we have

(3.25) sup dist(z,Cy) - 0 as i — oo.

zeC;
By Theorem 3.2, there exist constants ¢; € R such that ®(z) = ¢; for all
r € C;\ Ay, where $!(Ay) = 0. Analogously, ®(z) = ¢ for all z € Cp \ Ay. If

¢; = ¢, then we can assume, without loss of generality, that
(3.26) Ci = Coo £ Cyp A8 T —> 00

and the components C; converge as i — oo in the Hausdorff metric'! to some
set C) C Cp. Clearly, diam(C()) > 0. Take a straight line L such that the
projection of C{ on L is not a singleton. Since Cj) is a connected set, this
projection is a segment. Let Iy be the interior of this segment. For z €
Iy, denote by L, the straight line such that z € L, and L, 1 L. From
Lemma 3.2(i) and (iii) it follows that L, N Ay = () for §'-almost all z € Iy, and
the restriction ®|g 1. is continuous. Fix a point z € Ij with above properties.
Then by construction, C;N L, # () for sufficiently large 7. Now, take a sequence

1 The Hausdorff distance dy between two compact sets A, B C R" is defined as follows:

du(A,B) = max(sup dist(a, B), sup dist(b, A)) (see, e.g., [4, §7.3.1]). By Blaschke selection
acA beB
theorem [ibid], for any uniformly bounded sequence of compact sets A; C R", there exists

a subsequence A;; that converges to some compact set Ao with respect to the Hausdorff
distance. Of course, if all A; are compact connected sets and diam A; > § for some § > 0,
then the limit set Ag is also connected and diam Ag > 6.
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yi € C; N L, and extract a convergent subsequence y;; — yo € Cp. Since
(I)|§mLZ is continuous, we have ®(y;;) = c;; — ®(yo) = co as j — oo. This
contradicts (3.26). O

For the velocities ug = (uf,u?) and v = (v!,v?), denote by wy and w the
corresponding vorticities: wy = 82uk aluk, w = Ow! — 01v? = Ay. The
following formulas are direct consequences of (3.11) and (3.10):

(3.27) V& =wvt =wVi, Vo, = 14, Viug +wpud + £, in Q.

We say that a set Z C T, has T-measure zero if §1({¢(C): C € Z}) =0.
The function ®|, ,, has some analogs of Luzin’s N-property.

LEMMA 3.6. Let A, B € T with diam(A) > 0, diam(B) > 0. If Z C
[A, B] has T-measure zero, then H'({®(C): C € Z}) = 0.

Proof. Recall that the Coarea formula

(3.25) [1951ds = [ 8} rtw)dy
E R

holds for a measurable set E and the best representative (see Lemma 2.1) of
any Sobolev function f € WH1(Q) (see, e.g., [23]).

Now, let Z C [A, B] have T-measure zero. Set E = UcezC. Then by
definition, H!()(E)) = 0. Take a Borel set G D ¥(E) with $}(G) = 0, and
put 2’ ={C € [A,B] : ¥(C) € G}, E' = Ugez/C. Then E’ is a Borel set as
well and E’ D E. Hence, by Coarea formula (3.28) applied to 9| g/, we see that
Vi(z) = 0 for $H2-almost all x € E'. Then by (3.27), V®(x) = 0 for H2-almost
all z € E. Applying the Coarea formula to ®|g/, we obtain

o_/\vq>|dx_/ Z HYO) dy.

R cez’. =y

Since $H1(C) > min(diam(A),diam(B)) > 0 for every C' € [A, B], we have
H{®(C): C € 2'}) =0, and this implies the assertion of Lemma 3.6. O

From Lemmas 3.4 and 3.6 we have
COROLLARY 3.2. If A, B € T}, with diam(A) > 0, diam(B) > 0, then
.?_)1<{<I>(C') :C € [A, B] and C is not a regular cycle}) =0.

Denote by By, ..., By the elements of T, such that B; D I';, 7 =0,..., N.
By virtue of Lemma 3.3, every element C' € [B;, B;| \ {B;, B;} is a connected
component of a level set of 1) such that the sets B;, B; lie in different connected
components of R?\ C.
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Put

a = 1max min ®(C).
j=0,...,M C€[B;,BN]

By (3.22), a < 0. Take a sequence of positive values ¢; € (0, —«), i € N, with
tiy1 = %ti and such that the implication

®(C) = —t; = C is a regular cycle

holds for every j = 0,...,M and for all C' € [Bj, By]. The existence of the
above sequence follows from Corollary 3.2.

Consider the natural order on the arc [C}, By], namely, C' < C" if C”
is closer to By than C’. (That means, C’ and By lie in different connected
components of the set Ty, \ {C"}.) For j =0,...M and i € N, put

Al = max{C € [Bj, By] : ®(C) = —t;}.

In other words, A7 is an element of the set {C € [Bj, Bn] : ®(C) = —t;} that
is closest to I'y. By construction, each Ag is a regular cycle.!? (See Figure 1
for the case of annulus type domains (N = 1).)

By definition of regular cycles (see the commentary to Lemma 3.4), each
set Ag is a C'-curve homeomorphic to the unit circle and Ag C Q. In par-
ticular, for each ¢ € N, the compact set UjA/iOAg is separated from 9} and

dist(U}LyA7,8Q) > 0. Then for each i and for sufficiently small i > 0 (this
smallness depends on i), we have the inclusion {z € Q : dist(z,I'y) < h} C
0\ (Ujj\ioAD. Of course, the set {x € Q : dist(z,I'y) < h} is connected for
small h. (It is homeomorphic to the open ring.) Hence, for small h, this set is
included in some connected component of the open set €\ (Uj]‘/ioAg ) Denote
this component by V;. In particular, there holds I'yy C 9V;.

We claim that
(3.29) Qnoav;=Au..-uAM,

(We present this proof as typical for set identities. Below, similar proofs for
other set identities are omitted because of their simplicity.) Indeed, by con-
struction, QN 9V; € A? U --- U AM (since V; is a connected component of
the open set Q\ (Uj]\/ioAg)). Suppose that (3.29) is false; i.e., A{l ¢ 9V; for
some j; € {0,...,M}. Then, obviously, Agl NV,; = 0 (since the cycles Az
are either disjoint or coincide) and there exists a cycle Agz #* Agl such that
the sets V; and AZI lie in different connected components of R? \ A{Q. In
particular, AgQ separates 'y from Agl. But the last assertion contradicts the

1280me of these cycles AZ could coincide — i.e., equalities of type A{l = A{Q are possible
(if Kronrod arcs [Bj,, Bn] and [Bj,, By| have nontrivial intersection) — but this a priori
possibility has no influence on our arguments. Note also that by construction, the cycles Ag
are either disjoint or coincide; i.e., if AJ' # A7% then AJ' N A7 = 0.
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definition of Ag : indeed, by construction ® > t; = @(A{Q) at the interior points
of the Kronrod arc [Agl,BN]. Consequently, AgQ ¢ [Afl,BN]. The obtained
contradiction finishes the proof of (3.29).

By construction, the sequence of domains V; is decreasing; i.e., V; D Viy1.
Hence, the sequence of sets (9€2) N (0V;) is nonincreasing:

(3.30) (02) N (9V;) 2 (9€) N (OVisa).-

Every set (092) N (0V;) consists of several components I'; with [ > M (since
arcs UjﬂioAg separate 'y from T'g,...,T"ys, but not necessary from other I';).
Since there are only finitely many components I';, using the monotonicity prop-
erty (3.30) we conclude that for sufficiently large ¢, the set (92) N (9V;)
is independent of i. So we may assume, without loss of generality, that
0Q)N0V;) =TgU--- Uy, where K € {M +1,..., N}. Therefore,

(3.31) oV; =AU UAM Ul U---UTy.

From Lemma 3.4 we have the uniform convergence ®;|,; = @(AZ ) = —t; as
k — oo. Thus for every ¢ € N, there exists k; such that for all & > k;,

7 5 .
(3.32) (I)k|Aq' < —=t;, @k’AjH > —gti Vi=0,...,M.

8
Then
5 7

(3.33) Vit € [éti, gtz} Vk > k; (I)k|AZ < —t, CI)’“’A{H >—t Vj=0,...,M.

Fork>k;,7=0,...,M,andt € [%ti, %ti], denote by VVZJk(t) the connected
component of the open set {z € V; \ V41 : ®x(x) > —t} such that 3W/Z7é(t) D
Az_H, and put

M
Wie(t) = J Wi (®),  Si(t) = (@Wi(t)) N Vi\ Vii1.
=0

Clearly, @, = —t on Si(t). By construction,
(3.34) OWir(t) = Sir(t) UAY U~ U AM 5

)

see Figure 1. Since by (E-NS) each ®; belongs to I/VE)CQ (€2), by the Morse-Sard
theorem for Sobolev functions (see Theorem 2.1) we have that for almost all
t e [%ti, %ti], the level set S;x(t) consists of finitely many C'-cycles and &, is
differentiable (in classical sense) at every point x € Si(t) with V®g(z) # 0.
The values t € [%ti, gti] having the above property will be called (k, i)-regular.
By construction,

(3.35) / V- nds — — / V| ds < 0,

Sik(t) Sik(t)

where n is the unit outward (with respect to Wik (¢)) normal vector to OW;(t).



LERAY’S PROBLEM FOR STATIONARY NAVIER-STOKES EQUATIONS 785

Figure 1. The case of an annulus-like domain (N = 1).

For h > 0, denote I'y, = {z € Q : dist(z, g U---UTyN) = h)}, Qp ={z €
Q:dist(z, g U---UT'y) < h)}. By elementary results of analysis, there is a
positive constant

1
60<§min{\a:—ylzxef‘j, yely, jyme{0,....,N},j #m}

such that for each h < &y, the set 'y, is a union of N — K +1 C'-smooth
curves homeomorphic to the circle, and

(3.36) H'(Tw) < Co Vh € (0,60],

where Cy = 39! (' U--- UTy) is independent of h.

Since ® # const on V;, by (3.27) we have [ w?dx > 0 for each i. Hence,
Vi
from the weak convergence wy — w in L?(2), it follows

LEMMA 3.7. For any i € N, there exist constants ; > 0, §; € (0,dp), and
ki € N such that

Qs NA =05, nAL =0, j=0,... M,

and [ widx >e; forallk > K.
Vig1\Qs;,

The key step is the following estimate.

LeMMA 3.8. For any i € N, there exists k(i) € N such that the inequality

(3.37) / V| ds < Fi
Sik ()

holds for every k > k(i) and for almost all t € [%ti, %ti], where the constant F
is independent of t, k and 1.
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Proof. Fix i € N, and assume k > k; (see (3.32)). Take a sufficiently small
o > 0. (The exact value of o will be specified below.) We choose the parameter
ds € (0,0;] (see Lemma 3.7) small enough to satisfy the following conditions:

1
3.38 d%ds < —o> Vh e (0,6,],
3
'y
1 2 2 2 1 2 AN/
(339) — gO’ < q)k dS — @k dS < gO’ Vh ,h c (0,(50—] Vk c N
Ty Ty

The last estimate follows from the fact that for any ¢ € (1,2), the norms
| @k lyw1.a(q) are uniformly bounded. Consequently, the norms [[®5V @ 1q(0)
are uniformly bounded as well. In particular, for ¢ = 6/5, we have

/@ids—/@%ds

r Ly Qi \Qy,r

<2 / D] - [V | da

h/

5

6

< 2& / "ka<§k‘6/5 dw) meas( 2y \Qh,)% 50 ash K —0.
ANy

From the weak convergence ®; — ® in the space W4(Q), ¢ € (1,2), it
follows that'® ®|r, = ®|r, as k — oo for almost all h € (0,d,); see [1], [17].14
From the last fact and (3.38)—(3.39) we see that there exists &’ € N such that

(3.40) /cbi ds < o® Vhe (0,6,] Vk>K.
I'n

Obviously, for a function g € W22(2) and for an arbitrary C'-cycle S C €,
we have

/VLg~nds:/Vg-lds:O,
S S
where 1 is the tangent vector to S. Consequently, by (3.27),

/V@k-nds:/wkuﬁ'nds;
S S

recall that by our assumptions, f = V+b.

"3Really this uniform convergence hold for a subsequence ®;, (Lemma 3.4), which we
identify with ®.

'41n [1] Amick proved the uniform convergence ®; = & on almost all circles. However,
his method can be easily modified to prove the uniform convergence on almost all level lines
of every C''-smooth function with nonzero gradient. Such modification was done in the proof
of Lemma 3.3 of [17].
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Now, fix a sufficiently small £ > 0. (The exact value of € will be specified
below.) Our next purpose is as follows. For a given sufficiently large k > £/,
find a number hy € (0,d,) such that the estimates

(3.41) / V& -nds| = /wkui ‘nds| < e,
T, T,
(3.42) / g2 ds < Cov?
T,

hold, where the constant C. is independent of k and o. For this purpose, take

I =Tk U---UTy, and consider the function g(h) = [ |ug|?ds. In particular,
Ly

(Mevi)?
9(0) = [ fwds = 220 al
T

where A\ € (0,1]; see (3.103). Also denote f(h) = [ |Vug|- |ug| ds. By the
'y

classical formula of changing variables in the integral, there exists a C'-smooth
function J : Qs5, — (0, 400) (not depending on k) such that Jp =1 and'®

/
<r/ J|uk|2ds> < 2/J|uk| | Vug| ds.
h h Ty

Consequently, there are constants Cy, Cs > 0 (not depending on k, h) such that
for every hg € (0, 0;], the following estimate holds:

ho
C1g(h0) f(h)
Put
C. = 61,1 exp(iﬁ).

YHere J(x) is the Jacobian of the following mapping: ¢ : Qs

i

35z = ) =
(v(z),dist(x,T')) € I' x [0,d;], where y(z) € I is a metric projection of z onto I
|z — v(z)| = dist(z,T). Tt is well known that C*-smoothness of T' and smallness §; < &o
guarantee that the mapping ¢ is C*-smooth diffeomorphism and, in particular, J(zx) is sep-
arated from zero and infinity by positive constants. Note also that for every = € Qs,, the
segment [x,v(x)] is perpendicular to curves I'y, and v(y) = v(x) for all y € [z, y(z)]. In other
words, the mapping ¢ generates an orthogonal curvilinear system whose coordinate lines are
curves I', and rectilinear segments of type [z, v(z)].
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Consider two possible cases:

Case 1. g(h) < C’Evz Vh € [0,0,]. Then by the Holder inequality we
obtain

1
2 2 2
(3.44) (si/!Vuk\-!ukldacﬁdi 50051/,3(9/ VUk\le‘) < %.
UQ(S(, o . -

Here we have used the estimate

(3.45) /\Vuk|2dgc <2,
Q

which is valid for sufficiently large k (because of the convergence [ |Vuy|? dz
Q

— 1; see assumptions (E-NS)). Estimate (3.44) implies that there exists hy, €
(0,9,) such that

Zngz
o

(3.46) / Vg - [ug| ds <
F;Lk

Then, taking into account that v, — 0 as k — oo, while C¢, §, are independent
of k, we obtain the required estimates (3.41) and (3.42) for sufficiently large k.

Case 2. sup g(h) > C.vi. Take hg = min{h € [0,d,] : g(h) = C.v}}.

he[0,05]
By choice of C. and (3.43),

ho
2_ [ 1)
(3.47) 6 SO/g(h) dh.

We claim that there exists hy € (0, ho) satisfying (3.41) and (3.42). Suppose
the contrary; then f(h) > ¢ for all h € (0, hg). By the Holder inequality,

F2(h) < g(h) - / |Vuy|? ds.

Consequently,
f2(h) _ f(h)e
Vug|? ds > > Vh € (0, ho).
Jiwuanz G52 0 (0t
h
Hence
ho hO h
/ V|2 do :/dh/yvudeS z/f((h); dh > 2.
Qg 0 Th 0 g

(In the last inequality we have used (3.47), and in the first equality we have
used the well-known identity |V dist(z,I')] = 1 on Qs,.) We have obtained
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a contradiction with (3.45). This proves the existence of the required hy €
(0,9, ) satisfying (3.41) and (3.42) for sufﬁciently large k.
Now, for (k,i)-regular value t € [3t;, Z¢;], consider the domain

Qi (1) = Wi (1) UV i3 \ -

By construction, 982 (t) =1, U Si(t) (see Figure 1). Integrating the equa-
tion

1 1

(3.48) Aq)k = w,% + — div(@kuk) — 7fk - Ug
Vg Vi

over the domain € (t), we have

/ Vo - nal.s—k/V(I)/r€ nds

zk(t) k
= / widw—— / fi - ug dr
Vi
(3.49) Qiﬁk (®) Qi ()
/ Pruy -nds+ — / Pruy - nds
Szk(t) k)
= / wkdm—— / 1 - ukdx—t)\k}"—i—f/fbkuk nds,
Qi}_v.k (t) thk (t)

where F = (Fo+ -+ Far). In view of (3.35) and (3.41), we can estimate

1
/\V@Mdsgt}"—i-e—k— / fi. - uy do — / wi dx
Uk

Sik(t) Qi () ka (®)
(3.50) ) 1
2
+<‘/ @ids <‘/ |uk|2ds ,
Vk
b
with F = |F|. By definition, i”kaLQ(Q) = A’“”’“Hf”p(g — 0 as k — oo.
Therefore,
1
— / fk - Ug dx <e
Vg
Qi ()

for sufficiently large k. Using inequalities (3.40) and (3.42), we obtain

/]V@k\dsgt}"—i—?e—i—m/CE— / wi dx

Sik(t) Qi ()

<tF+2+0yC:— / w,%d:c,

Vig1\Qs;,

(3.51)
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where C; is independent of k and o. Choosing € = %Q, o= 3\%5“ and a
sufficiently large k, from Lemma 3.7 we obtain 2e+o+/C _f%+1\95- widx < 0.
Estimate (3.37) is proved. O

Now, we receive the required contradiction using the Coarea formula.

LEMMA 3.9. Assume that Q C R? is a bounded domain of type (2.1)
with C%-smooth boundary 9Q, £ € W'2(Q), and a € W3/22(0Q) satisfies
condition (1.2). Then assumptions (E-NS) and (3.17) lead to a contradiction.

Proof. For i € N and k > k(i) (see Lemma 3.8), put

E; = U Sir(t).

te[ Z,St]

By the Coarea formula (3.28) (see also [23]), for any integrable function g :
E; — R, the equality

-y
8 1
(3.52) /g|vq>k\dx=/ / () d' (z) dt
E; %tzszk(t)

holds. In particular, taking g = |V®;| and using (3.37), we obtain

Lt Lt
(3.53) /|V<I>k|2d:1:— / / V| () d$5' (z) dt < /ftdt:f’t,?,
*t S'Lk %ti

where F/ = 1%]—" is independent of i. Now, taking g = 1 in (3.52) and using
the Holder inequality, we have

50 Zﬁl(sik(t))dt E/ V@] da < ( / e dm)é(meas(Ei))é

< VF't; (meas(Ei)) %

By construction, for almost all ¢t € [ ti, gt |, the set Six(t) is a finite union of
smooth cycles and S (t) separates AZ from AJ, | for j =0,..., M. Thus, each

set S,(t) separates I'; from I'y. In particular,
Y Sik(t)) > min(diam(Fj),diam(FN)).

Hence, the left integral in (3.54) is greater than Ct;, where C' > 0 does not
depend on i. On the other hand, evidently, meas(E;) < meas(Vi \ Vi+1> — 0
as i — 00. The obtained contradiction finishes the proof of Lemma 3.9. O



LERAY’S PROBLEM FOR STATIONARY NAVIER-STOKES EQUATIONS 791

3.3.2. The mazimum of ® is not attained at J). In this subsection we
consider the case (b), when (3.18) holds. Adding a constant to the pressure,
we assume, without loss of generality, that

(3.55) ‘max_pj <0 < esssup ®(x).
7=0,....N z€Q

(Here we do not exclude the case ess sup ®(x) =+0o0.) Denote o= max p; <O0.
wEQ J=Y,..,

As in the previous subsection, we consider the behavior of ® on the Kro-
nrod tree Ty,. In particular, Lemmas 3.5 and 3.6 hold.

LeEMMA 3.10. There exists F' € Ty, such that diam F' > 0, F'N Q) = 0,
and ®(F) > o.

Proof. By assumptions, ®(z) < o for every z € 99 \ A, and there is a
set of a positive measure E C 2 such that ®(z) > ¢ at each x € E. In virtue
of Lemma 3.2(iii), there exists a straight-line segment I = [zg,yo] C Q with
INA, =0, g € 09, yo € E, such that ®|; is a continuous function. By
construction, ®(xg) < o, ®(yp) > o + dp with some dy > 0. Take a subinterval
I = [21,y0) C Q such that ®(z1) = 0 + 30 and ®(z) > o + 3d for each
x € [x1,y0). Then by Bernoulli’s Law (see Theorem 3.2), ¢ # const on .
Hence, we can take x € I; such that the preimage ¢ ~!(¢)(z)) consists of a
finite union of regular cycles (see Lemma 3.4). Denote by F' the regular cycle
containing x. Then by construction, ®(F) > o + %50, and by definition of
regular cycles, diam F' > 0 and F N 9Q = (. O

Fix F from above lemma and consider the behavior of ® on the Kronrod
arcs [Bj,F], j = 0,...N. (Recall that by B; we denote the elements of Ty,
such that I'; C Bj.) The rest part of this subsection is similar to that of Sec-
tion 3.3.1 with the following difference: F' now plays the role that was played
before by By, and the calculations become easier since F lies strictly inside €.

Adding a constant to the pressure, we could assume, without loss of
generality, that ®(F) = 0. Then by construction, 0 > ¢ > ®(B;) for each
j=20,...,N So, using Lemmas 3.5, 3.6 and Corollary 3.2 we can find a se-
quence of positive numbers t; € (0,—0), i € N, with ¢;4; = %ti, and the
corresponding regular cycles A{ €[Bj,F],j=0,...,N, with CID(Ag) = —t; and
O(C) > —t; forall C € (AZ , F']. Denote by V; the connected component of the
set Q\ (A%U--- UAfV) containing F. By construction, V; C Q, V; D V;,1, and

(3.56) oV, = AVU---u AN,

By definition of regular cycles (see Lemma 3.4), we again obtain esti-

mates (3.32) and (3.33) for k > k;. Accordingly, for k > k; and t € [2t;, 5t;],
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we can define Wfk(t) as the connected component of the open set
{zxeV; \Vi—i-l : Pp(x) > —t}

with OW7, (t) D Azﬂ and put
Wie(t) = | Wi(t),  Su(t) = @Wa(t)) N Vi \ Vig1.

By construction,
OWi(t) = Sik(t) U A U+ U AN,

and the set Sj;(t) separates A? U --- U AN from A? ; U---U AN . By the
Morse—Sard theorem (see Theorem 2.1) applied to @, € Wlic (), for almost all
t € [5t;, It;], the level set S (t) consists of finitely many C'-cycles. Moreover,
by construction,

(3.57) / V&, -nds =— / V| ds < 0,
Sik (1) Sik (1)

where n is the unit outward normal vector to OW;(t). As before, we call such
values t € [3t;, Lt;] (k,i)-regular.

Since ® # const on V;, from (3.27) it follows that [ w?dz > 0 for each i,
Vi
and taking into account the weak convergence wy, — w in L?(f), we get

LEMMA 3.11. For every i € N, there exist constants ; > 0, 0; € (0,d)
and k} € N such that [ widx >e; for all k > K.
Vit

Now, we can prove

LEMMA 3.12. Assume that Q C R? is a bounded domain of type (2.1)
with C2-smooth boundary 09, £ € WH2(Q), and a € W3/22(0Q) satisfies
condition (1.2). Then assumptions (E-NS) and (3.18) lead to a contradiction.

Proof. The proof of this lemma is similar to that of Lemma 3.8. However,
now the situation is easier since we separate V; from the whole boundary 0f2.
Fix ¢ € N, and assume that & > k; (see (3.32)). For a (k,i)-regular value
te [ i, 8t ], consider the domain

Qi (t) = Wir(t) U Vigr.



LERAY’S PROBLEM FOR STATIONARY NAVIER-STOKES EQUATIONS 793

By construction, 0€Q;x(t) = Sik(t). Integrating identity (3.48) over Q;(t), we
obtain

1
0> / V&, -nds = / w,%dac—i—y— / druy - nds
&

Sik(t) Qe (t) Six(t)
! f, dx = 2 g — d
Qix(t) Qe () Six(t)
1 9 1
- / fi - upde = / wi de — — / fi. - uy dx
Vi Vg
Qix(t) Qix(t) Qix(t)
and, as before, we have a contradiction with Lemma 3.11. ]

Proof of Theorem 1.1. Let the hypotheses of Theorem 1.1 be satisfied.
Suppose that its assertion fails. Then, by Lemma 3.1, there exist v,p and
a sequence (ug,py) satisfying (E-NS), and by Lemmas 3.12 and 3.9 these as-
sumptions lead to a contradiction. [l

4. Axially symmetric case

First, let us specify some notation. Let Og,,O,,,O,, be coordinate axes
in R? and 0 = arctg(xa/x1), 7 = (27 +3)'/2, 2 = x3 be cylindrical coordinates.
Denote by vy, v, v, the projections of the vector v on the axes 0, r, z.

A function f is said to be axially symmetric if it does not depend on 6.
A vector-valued function h = (h,, hg, h;) is called axially symmetric if h,, hg
and h, do not depend on 6. A vector-valued function h’ = (h,, hg, h.) is called
axially symmetric with no swirl if hg = 0 while h, and h, do not depend on 6.

The main result of this section is as follows.

THEOREM 4.1. Assume that Q C R3 is a bounded axially symmetric
domain of type (2.1) with C%-smooth boundary 0. If f € W12(Q), a €
W3/22(9Q) are axially symmetric and a satisfies condition (1.2), then (1.1)
admits at least one weak axially symmetric solution. Moreover, if f and a are
azially symmetric with no swirl, then (1.1) admits at least one weak azxially
symmetric solution with no swirl.

Using the “reductio ad absurdum” Leray argument (the main idea is pre-
sented in Section 3.1 for the plane case; specific details concerning the axially
symmetric case can be found in [15]), it is possible to prove the following

LEMMA 4.1. Assume that Q C R3? is a bounded axially symmetric do-
main of type (2.1) with C?-smooth boundary 052, f = curl b, b € W2(Q),
ac W3/2’2(8Q) are axially symmetric, and a satisfies condition (1.2). If the
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assertion of Theorem 4.1 is false, then there exist v,p with the following prop-

erties:

(BE-AX) The azially symmetric functions v € Wh2(Q), p € Wh3/2(Q)
satisfy the Euler system (3.11).

(E-NS-AX) Condition (E-AX) is satisfied, and there exist a sequences of az-
ially symmetric functions ui, € W2(Q), pp € WH/2(Q) and
numbers v, — 04, A, — Ao > 0 such that the norms [|ug|ly1.2(q),
1D, s/2(q) are uniformly bounded, the pair (ug, pr) satisfies

(3.10) with £, = kyk f, a; = ’\’“%a, and
(4.1)  |Vupllz =1, w—v in WH(Q), pp—p in WH2(Q).
Moreover, u;, € VVI?(’)(?(Q) and pi € T/VI?)CQ(Q)

As in the previous section, in order to prove existence Theorem 4.1, we
need to show that conditions (E-NS-AX) lead to a contradiction.

Assume that
FjﬂOxB#@, jZO,...,M/,

Fj00x3:(2), j:M/+1,...,N.

Let Py = {(0,29,23) : 2 > 0, z3 € R}, D = QN P;. Obviously, on Py
the coordinates s, x3 coincide with the coordinates 7, z.
For a set A C R3, put A:= An P, , and for B C Py, denote by B the set
in R3 obtained by rotation of B around O,-axis.
One can easily see that
(S1) D is a bounded plane domain with Lipschitz boundary. Moreover, f‘j
(A is defined just above) is a connected set for every j = 0,...,N.
In other words, {IV’J :j =0,...,N} coincides with the family of all
connected components of the set Py N 9D.

Hence, v and p satisfy the following system in the plane domain D:

dp  (vg)? oy ov.
or 7 U or +vzt9z =0,
Op + ov: + v Ov: _ 0
0z Ur or 0z
(4.2) 5 5
VoUy Vg v
r Tt " or T 0z 0,
o(rv,)  O(rv.)
or + 0z 0

(these equations are satisfied for almost all z € D) and

(4.3) v(z) =0 for Hl-almost all x € P, N ID.
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We have the following integral estimates: v € VV11>02 (D),

(4.4) /T|Vv(r,z)]2 drdz < oo
D
and, by the Sobolev embedding theorem for three-dimensional domains,

v e L5(Q), ie.,

(4.5) /r\v(r, 2)|8 drdz < oc.
D

Also, the condition Vp € L32(Q) can be written as

(4.6) /r]Vp(r, 2)}2 drdz < .
D

4.1. Some previous results on Fuler equations. The next statement was
proved in [13, Lemma 4] and in [1, Th. 2.2].

THEOREM 4.2. If conditions (E-AX) are satisfied, then
(4.7) Vvje{0,1,...,N}3dp; eR: p(x)=p; for $%-almost all z € r;.
In particular, by axial symmetry,
(4.8) p(x) =p; for H'-almost all x € fj.

The following result was obtained in [15].

~

THEOREM 4.3. If conditions (E-AX) are satisfied, then pp = -+ = par,
where D; are the constants from Theorem 4.2.

We need a weak version of Bernoulli’s law for a Sobolev solution (v, p) to
the Euler equations (4.2) (see Theorem 4.4 below).

From the last equality in (4.2) and from (4.4) it follows that there exists
a stream function ¢ € Wif(D) such that

oY oY

— = =TV, —— =T

or 20z "

Fix a point x, € D. For € > 0, denote by D, the connected component of

DnA{(r,z) : r > e} containing x,. Since

(4.10) Y e WA(D,) Ve >0,

(4.9)

by Sobolev embedding theorem, 1 € C(D.). Hence 1 is continuous at points
of D\ O, =D\ {(0,2) : z € R}.

LEMMA 4.2 (cf. Lemma 3.3). If conditions (E-AX) are satisfied, then
there exist constants &,...,En € R such that ¢¥(x) = & on each curve T'j,
7=0,...,N.
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Proof. In virtue of (4.3) and (4.9), we have Vi(x) = 0 for $-almost all
x € 9D\ O,. Then the Morse-Sard property (see Theorem 2.1) implies that

for any connected set C C 9D\ O,, Ja = a(C) e R:¢(x) = a Vz € C.
Hence, since fj are connected (see (S1)), the lemma follows. O
|v|? .
Denote by & = p + N the total head pressure corresponding to the
solution (v,p). Obviously,

(4.11) /T!V@(r, 22 drdz < .
D

Hence,

(4.12) d e W/3(D,) Ve>o.

Applying Lemmas 2.1, 2.2, and Remark 2.2 to the functions v,, ®, we
get the following

LEMMA 4.3. If conditions (E-AX) hold, then there exists a set Ay C D
such that

(i) H'(Ay)=0.
(ii) For all x = (r,z) € D\ Ay,

lim v(y) — v(z)|?dy = lim d(y) — ®(z)|?dy = 0;
Lim Bp(x)l (y) — v(x)|"dy Ly BMI (v) (z)|"dy

moreover, the function 1 is differentiable at x, and

V() = (=rvz(z), roe(2)).
(iii) For every ¢ > 0, there ewists a set U C R? with H._ (U) < ¢, Ay, C U,
and such that the functions v, ® are continuous on D\ (U U O,).

The next two results were obtained in [15].

THEOREM 4.4 (Bernoulli’s Law). Let conditions (E-AX) be valid, and let
Ay be a set from Lemma 4.3. For any compact connected set K C D\ O, the
following property holds: if

(4.13) d}‘K = const,
then
(4.14) O(x1) = ®(x2) forall 1,29 € K\ Ay.

We also need the following assertion from [15] concerning the behavior of
the total head pressure near the singularity axis O,.
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LEMMA 4.4. Assume that conditions (E-AX) are satisfied. Let K; be a
sequence of compact sets with the following properties: K; C D\ O,, 1|k, =
const, and lim inf =0, lim sup r>0. Then ®(K;) — Dy asi — o0.

i—00 (r,2)€K; i—00 (r,2)eK;

Here we denote by ®(Kj;) the corresponding constant ¢; € R such that

®(x) = ¢ for all z € K; \ Ay (see Theorem 4.4).

4.2. Obtaining a contradiction. We consider three possible cases.
(a) The maximum of ® is attained on the boundary component intersect-
ing the symmetry axis:

(4.15) Po = max_p; = esssup ®(x).
J=0,...,.N zEQ

(b) The maximum of ® is attained on a boundary component that does
not intersect the symmetry axis:

(4.16) Do < Py = max_p; = esssup P(x).
]:07"'7N ZEQ

(¢) The maximum of ® is not attained on 9%

(4.17) max_p; < esssup ®(x).
j:O,...,N e

4.2.1. The case esssup ®(z) = pp. Let us consider case (4.15). Adding a
zeN
constant to the pressure p, we can assume, without loss of generality, that

(4.18) Do = esssup ®(z) = 0.
e

Since the identity pp = p1 = --- = py is impossible (see Corollary 3.1,
which is valid also for the axial-symmetric case), we have that p; < 0 for some
je{M +1,...,N}. (Recall that by Theorem 4.3, pg = --- = ppyr = 0.)

Now, we receive a contradiction following the arguments of [15], [16]. For
the reader’s convenience, we recall these arguments. From equation (3.111) we
obtain the identity

O=x-Vp(x)+z- (v(m) : V)v(ac
(4.19) = div [m p(z) + (v

~—

= div [:E p(z) + (v
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Integrating it over € and using (4.18), we derive

1 N
0> 30(x) — =|v(z)|?| de = z)(z-n)ds = D;j z-n)ds
> [[30@) ~ @] dz = [ p(@)(e-n) §p/()

Q o0 / T,
N N

= fZﬁj/divxdx = —3Zﬁj|Qj| > 0.
Jj=1 Q; J=1

The obtained contradiction finishes the proof for case (4.15).

4.2.2. The case pyp < py = esssup ®(x). Suppose that (4.16) holds. We
z€Q
may assume, without loss of generality, that the maximum value is zero; i.e.,

(4.20) Po < Py = max_p; = esssup ®(x) = 0.
7=0,....N zeQ)
From Theorem 4.3, we have

(4.21) Po=- =P < 0.

Change (if necessary) the numbering of the boundary components Iy 1, ...,
I'ny_1 so that

(4.22) p; <0, j=0,....,M, M>M,
(4.23) Prgl = =pn = 0.

The first goal is to remove a neighborhood of the singularity line O, from
our considerations. Then we can reduce the proof to the plane case considered
in Section 3.3.1.

Take ro > 0 such that the open set D, = {(r,2) € D : r > £} is connected
for every e < rg (i.e., D is a domain), and

I c D, and inf r>2ry, j=M +1,...,N,
(r,z)el’;

(4.24) I'; N D. is a connected set

and sup 1 >2rg, 7=0,...,M' €€ (0,r].
(r,2)€l;ND.
Let a set C' C D. separate I'; and fj in D, for some different indexes 7, j €
{0,...,N}; ie, I; N D, and f’j N D, lie in different connected components of
D. \ C. Obviously, for ¢ € (0,rq], there exists a constant §(¢) > 0 (not

depending on i, j, C') such that the uniform estimate sup r > §(e) holds (see
(r,2z)eC
Figure 2). Moreover, the function d(¢) is nondecreasing. In particular,

(4.25) d(e) > d(rog), €€ (0,79].

By Remark 2.4 and Lemma 4.2, we can apply Kronrod’s results to the
stream function 1|p_, € € (0,70]. Accordingly, T, . means the corresponding
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Kronrod tree for the restriction 1|5 . Define the total head pressure on T}, .
as we did in Section 3.3.1. Then the following analog of Lemma 3.5 holds.

LEMMA 4.5. Let A,B € Ty ., where € € (0,7p], diam A > 0, and diam B
> 0. Consider the corresponding arc [A, B] C Ty . joining A to B (see Lem-
mas 2.3 and 2.4). Then the restriction <I>\[A7B] s a continuous function.

The lemma is proved using the argument of Lemma 3.5 and taking into
account the above definitions, Theorem 4.4, and the continuity properties of
®; see Lemma 4.3(iii).

Denote by Bg, ..., By the elements of T}, . such that B; > fj ND., j=
0,...,M', and B D f‘j, j=M+1,...,N. By construction, ®(B5) < 0 for
j=0,...,M,and ®(B5) =0for j =M +1,...,N. For r >0, let L, be the
horizontal straight line L, = {(r, z) : z € R}. We have

LEMMA 4.6. There ezist v € (0,70] and C; € [Bj*,By], j =0,..., M,
such that ®(C;) <0 and C N L,, =0 for all C € [C}, By].

Proof. Suppose that the lemma fails for some j = 0, ..., M. Then it is easy
to construct r; — 0 and C* € [B}*, By] such that C'N Ly, #0and &(C?) — 0.

Since by (4.22), po < 0, we have ®(C?) » pg. By (4.25), sup r > 6(rg).
(r,z)eC?
Thus, we have a contradiction with Lemma 4.4, and the result is proved. [

Lemma 4.6 allows us to remove a neighborhood of the singularity line
O, from our argument. Thus, we can apply the approach developed in Sec-
tion 3.3.1 for the plane case. Put, for simplicity, T\, = Ty ,, and B; = B;
Since 0D,, C ByU---U By U L,, and the set {By,...,By} C Ty is finite,
we can change C; (if necessary) so that the assertion of Lemma 4.6 takes the
following stronger form:

(4.26) Vi=0,....M Cj S [Bj,BN], @(Cj) <0,
and
(4.27) C’ﬁ@DT* =0 VCe [Cj,BN).

Observe that I'; N L,, # 0 for j =0, ..., M’'. Therefore, if a cycle C' € Ty,
separates I'y from I'g and C' N ID,, = 0, then C separates I'y from T'; for all
j=1,...,M'. So we can take Cy = --- = Cpy (see Figure 2) and consider
only the Kronrod arcs [Cyp, By], ..., [Cum, By].

Recall that a set Z C T, has T-measure zero if H'({¢(C): C € Z}) = 0.

LEMMA 4.7. For every j = M',..., M, T-almost all C € [C}, By] are
C'-curves homeomorphic to the circle. Moreover, there exists a subsequence

®y, such that the sequence @y, |c converges to ®|c uniformly ®lc = ®|c on
T-almost all cycles C € [Cj, Bn].
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Figure 2. The domain D for the case M’ = M =1, N = 2.

The first assertion of the lemma follows from Theorem 2.1(iv) and (4.27).
The validity of the second one for T-almost all C' € [C;, By] was proved in [17,
Lemma 3.3].

Below we assume (without loss of generality) that the subsequence ®y,
coincides with ®;. Besides, cycles satisfying the assertion of Lemma 4.7 will
be called regular cycles.

From Lemmas 4.7 and 3.6 (which is also valid for the axially symmetric
case), we obtain

COROLLARY 4.1. For each j = M’',..., M, we have
,F_)l<{<I>(C’) : C € [C}, By] and C' is not a regular cycle}) = 0.

As in the plane case (see Section 3.3.1), we can take a sequence of positive
values t; with t;11 = %ti, the corresponding regular cycles A] € [C}, By] with
P(A?) = —t;, and the sequence of domains V; C D,, with

(4.28) V=AM U...uAM UTU---UTy,

where K > M + 1 is independent of 1.

By the definition of regular cycles, we have again estimates (3.32) and
(3.33) for k > k;. Accordingly, for k > k; and ¢ € [2¢;, £t;], we can define W,L]k(t)
as the connected component of the open set {x € V;\ Vi1 : ®p(x) > —t} with
3Wfk(t) D AZ-'Jrl and put

M
W1k<t) = U Wijk(t), S; (t) = <8Wlk(t)) nv; \Vi—H-
j=M'
By construction,
OWi(t) = Siw(t) U AN U~ U AN,
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and the set Sj(t) separates AM U ---UAM from AM| U--- U AM,. Since
¢ € VV%?(Q) (see (E-NS-AX)), by the Morse-Sard theorem (see Theorem 2.1),
for almost all t € [3t;, %ti], the level set S;1,(t) consists of finitely many C!-cycles
and @y is differentiable (in classical sense) at every point = € Sji(t) with
V() # 0. Therefore, Si,(t) is a finite union of smooth surfaces (tori), and

by construction,

(4.29) / Vdy -ndS = — / V| dS < 0,

Sin(®) Sin(®)
where n is the unit outward normal vector to OW;y(t). (Recall that for a set
B C P4, we denote by B the set in R3 obtaining by rotation of B around
O,-axis.)

For h > 0, denote I'y, = {z € Q : dist(z, g U---UTy) = h)}, Qp ={z €
Q :dist(z, g U---UTxN) < h)}. Since the distance function dist(z, ) is
Cl-regular and the norm of its gradient is equal to one in the neighborhood of
012, there is a constant dy > 0 such that for every h < dy, the set ['j, is a union
of N— K +1 C'-smooth surfaces homeomorphic to the torus, and

(4.30) H°(Ch) < co Vh € (0,00,

where the constant cg = 36%(I'x U---UT'y) is independent of h.
By a direct calculation, (4.2) implies

(4.31) Ve=vxw in

where w = curlv; i.e.,

(~9v v Ove vy, Ovn
0z’ Oz or’ r or’/’

w = (W, wp, wz) =

Set wi = curlug, w(z) = |w(z)|, wk(x) = |wk(x)|. Since ® # const on Vj,
(4.31) implies f‘; w?dx > 0 for every i. Hence, from the weak convergence
wi — w in L*(Q) it follows

LEMMA 4.8. For any i € N, there exist constants €; > 0, 0; € (0,d0) and
ki € N such that

ﬁaiﬂAgzﬁgiﬂAgH:@, j=M,. .., M,

and [ widx >e; for allk > kK.
Vir1\Q,

Now we are ready to prove the key estimate.
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LEMMA 4.9. For any i € N, there exists k(i) € N such that for every
k > k(i) and for almost all t € [%ti, %ti], the inequality

(4.32) / V®,|dS < Ft,

Sik (1)
holds with the constant F independent of t,k and 1.

Proof. Since the proof of this lemma is similar to that of Lemma 3.8 for
the plane case, we comment only some key steps.

Fix i € N. Below we always assume that k& > k; (see (3.32)). Since
we have removed a neighborhood of the singularity line O,, we can use the
Sobolev embedding theorem in the plane domain D,,. In particular, from
the uniform estimate ||(I)k”wlv3/2(p,.*) < const, we deduce that the norms
|®|lzs(p,,) are uniformly bounded. Consequently, by the Holder inequality,
|26V @ Lo/5(p, ) < const, and this implies

(4.33) H‘I’kV‘I)kHLa/zs(ﬁT*) < const.

Fix a sufficiently small o > 0 (the exact value of o will be specified below),
and take the parameter J, € (0,;] (see Lemma 4.8) small enough to satisfy
the following conditions:

(4.34) O, NAI =Q5 NAL, =0, j=M,... M,
(4.35) /cbi dsS < o* VYhe(0,6,] Vk>k.
'y

(The last estimate follows from the identity ®|r,u..ury = 0, the weak conver-
gence ®; — ® in the space W13/2(Q), and (4.33).)
By a direct calculation, (3.10) implies

2

1 b.
2 cur

V&, = —vpeurl wy +wp X ug + £, = —ypcurl wy + wy X ug +
By the Stokes theorem, for any C'-smooth closed surface S C Q and g €
W22(Q), we have

/curlg -ndS =0.
S

So, in particular,

/V‘I)k -ndS = /(wk X uk) -ndS.
S S

Now, fix a sufficiently small £ > 0. (The exact value of € will be specified
below.) For a given sufficiently large k& > k', we make a special procedure to
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find a number hy, € (0,0,) such that the estimates

(4.36) /vq>k-nds <2 / g - [Vug| dS < &,
T, T,
(4.37) / g2 dS < Cvf?
Iy

k

hold, where C; is independent of £ and o. This procedure exactly repeats the
argument lines of the proof of Lemma 3.8.

The final part of the proof is identical to that of Lemma 3.8. We have to
integrate formula (3.48) (which is valid for the axially symmetric case as well)
over the three-dimensional domain €;, (¢) with 9Q,;, (t) =T}, U Six(t). This
means that we have only to replace the curves S;x(t) by the surfaces S (t) in
the corresponding integrals. O

Now, we obtain a contradiction by repeating word-by-word the proof of
Lemma 3.9 and replacing the one-dimensional Hausdorff measure by the two-
dimensional one, and the curves S;x(t) by the surfaces S;(t) in the correspond-
ing integrals.

4.2.3. The case esssup ¢(x) > ArgaxNﬁj. Assume that (4.17) is satisfied,

e J=9,...,
and set 0 = max p;. Then, as in the proof of Lemma 3.10, we can find

7=0,....N
a compact connected set F' C D\ Ay such that diam(F) > 0, ¢|p = const,

and ®(F) > o. Without loss of generality, we may assume that o < 0 and
®(F) = 0. Since now it is more difficult to separate F' from 9D by regular
cycles (than in Lemma 3.10), we have to apply the method of Section 4.2.2.
Namely, take a number ro > 0 such that F' C D, the open set D, = {(r, z) €
D :r > e} is connected for every £ < rg, and conditions (4.24) are satisfied.
Then for € € (0,79], we can consider the behavior of ® on the Kronrod trees
Ty corresponding to the restrictions v¢|p_. Denote by F*® the element of
Ty containing F'. Using the same procedure as in Section 4.2.2, we can find
7« € (0,70] such that the following lemma holds.

LEMMA 4.10. There exist C; € [B;*,F™], j =0,...,N, such that ®(Cj)
<0 and CNL,, =0 forall C € [C}, F™].

Set Ty = Ty, F* = F™, and B; = B}, ie., B; € Ty and B; D I;ND,,.
As above, we can change C; (if necessary) so that Lemma 4.10 takes the
following stronger form:

Vj=0,....,N C;€[B;,F*], ®C;)<0,
C’ﬂ@DT*:(Z) VCE[CJ,F*L and COZ"’:CM/'
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The rest of the procedure of obtaining a contradiction is done in the same way
as in Section 3.3.2. Namely, we need to take positive numbers t; = 27, reg-
ular cycles Ag € [C}, F*] with @(Ag) = —t;, and the set Si(t) with ®xlg,, ) =
—t separating AM U---U AV from Af\fl U---UAN,, etc. The only difference
is that we have to integrate identity (3.48) over the three-dimensional domains

Proof of Theorem 4.1. Let the hypotheses of Theorem 4.1 be satisfied.
Suppose that its assertion fails. Then by Lemma 4.1 there exist v,p and
a sequence (ug, py) satisfying (E-NS-AX). However, in Sections 4.2.1-4.2.3 we
have shown that assumptions (E-NS-AX) lead to a contradiction in all possible
cases (4.15)—(4.17). This finishes the proof of Theorem 4.1. O

Remark 4.1. In Lemma 4.1, let the data f and a be axially symmetric
with no swirl. If the corresponding assertion of Theorem 4.1 fails, then it can
be shown (see [15]) that conditions (E-NS-AX) are satisfied with uy axially
symmetric with no swirl as well. But since we have proved that assumptions
(E-NS-AX) lead to a contradiction in the more general case with possible swirl,
we get the validity of both assertions of Theorem 4.1.

Remark 4.2. It is well known (see [21]) that under the hypothesis of
Theorem 4.1, every weak solution u of problem (1.1) is more regular; i.e,
ue W22(Q) N W2(Q).

loc
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