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Solution of Leray’s problem for stationary
Navier-Stokes equations in plane and
axially symmetric spatial domains

By Mikhail V. Korobkov, Konstantin Pileckas, and Remigio Russo

Abstract

We study the nonhomogeneous boundary value problem for the Navier-

Stokes equations of steady motion of a viscous incompressible fluid in ar-

bitrary bounded multiply connected plane or axially-symmetric spatial do-

mains. (For axially symmetric domains, data is assumed to be axially

symmetric as well.) We prove that this problem has a solution under the

sole necessary condition of zero total flux through the boundary. The prob-

lem was formulated by Jean Leray 80 years ago. The proof of the main

result uses Bernoulli’s law for a weak solution to the Euler equations.

1. Introduction

Let Ω be a bounded domain in Rn, n = 2, 3, with C2-smooth bound-

ary ∂Ω = ∪Nj=0Γj consisting of N + 1 disjoint components Γj , j = 0, . . . , N .

Consider the stationary Navier-Stokes system with nonhomogeneous boundary

conditions

(1.1)


−ν∆u +

Ä
u · ∇

ä
u +∇p = f in Ω,

div u = 0 in Ω,

u = a on ∂Ω.

The continuity equation (1.12) implies the compatibility condition

(1.2)

∫
∂Ω

a · n ds =
N∑
j=0

∫
Γj

a · n ds =
N∑
j=0

Fj = 0

necessary for the solvability of problem (1.1), where n is a unit outward (with

respect to Ω) normal vector to ∂Ω and Fj =
∫

Γj
a·n dS. Condition (1.2) means

that the total flux of the fluid through ∂Ω is zero.
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In his famous paper of 1933 [22], Jean Leray proved that problem (1.1)

has a solution provided1

(1.3) Fj =

∫
Γj

a · n dS = 0, j = 0, 1, . . . , N.

The case when the boundary value a satisfies only the necessary condition (1.2)

was left open by Leray, and the problem whether (1.1), (1.2) admit (or do not

admit) a solution is known in the scientific community as Leray ’s problem.

Leray’s problem has been studied in many papers. However, in spite of

all efforts, the existence of a weak solution u ∈ W 1,2(Ω) to problem (1.1) was

established only under assumption (1.3) (see, e.g., [22], [20], [21], [33], [13]), or

for sufficiently small fluxes Fj 2 (see, e.g., [8], [9], [11], [12], [2], [30], [29], [18]),

or under certain symmetry conditions on the domain Ω and the boundary value

a and the external force f (see, e.g., [1], [31], [10], [25], [28], [27]). Recently [17],

the existence theorem for (1.1) was proved for a plane domain Ω with two

connected components of the boundary assuming only that the flux through

the external component is negative (the inflow condition). A similar result

was also obtained for the spatial axially symmetric case [15]. In particular,

the existence was established without any restrictions on the fluxes Fj , under

the assumption that all components Γj of ∂Ω intersect the axis of symmetry.

For more detailed historical surveys, one can see the recent papers [17] or [27],

[28].

In the present paper we solve Leray’s problem for the plane case n = 2

and for the axially symmetric domains in R3. (For axially symmetric spatial

domains the boundary value a and the external force f are assumed to be

axially symmetric as well.) The main result for the plane case is as follows.

Theorem 1.1. Assume that Ω ⊂ R2 is a bounded domain with C2-smooth

boundary ∂Ω. If f ∈W 1,2(Ω) and a ∈W 3/2,2(∂Ω) satisfy condition (1.2), then

problem (1.1) admits at least one weak solution u.

Remark 1.1. It is well known (see [21]) that under the hypotheses of

Theorem 1.1, every weak solution u of problem (1.1) is more regular; i.e.,

u ∈ W 2,2(Ω) ∩W 3,2
loc (Ω). Generally speaking, the solution is as regular as the

data allow, in particular, u is C∞-smooth when f , a, and ∂Ω are C∞-smooth.

The proof of the existence theorem is based on an a priori estimate that

we derive using a reductio ad absurdum argument of Leray [22]. The essen-

tially new part in this argument is the use of Bernoulli’s law obtained in [14]

1Condition (1.3) does not allow the presence of sinks and sources.
2This condition does not assumes the norm of the boundary value a to be small.
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for Sobolev solutions to the Euler equations. (The detailed proofs are pre-

sented in [17].) The results concerning Bernoulli’s law are based on the recent

version of the Morse-Sard theorem proved by J. Bourgain, M. Korobkov and

J. Kristensen [3]. This theorem implies, in particular, that almost all level

sets of a function ψ ∈ W 2,1(Ω) are finite unions of C1-curves. This allows us

to construct suitable subdomains (bounded by smooth stream lines) and to

estimate the L2-norm of the gradient of the total head pressure. We use some

ideas here that are close (on a heuristic level) to the Hopf maximum princi-

ple for the solutions of elliptic PDEs. (For a more detailed explanation, see

Section 3.3.1.) Finally, a contradiction is obtained using the Coarea formula.

The paper is organized as follows. Section 2 contains preliminaries. Basi-

cally, this section consists of standard facts, except for the results of Section 2.2,

where we formulate the recent version [3] of the Morse-Sard Theorem for the

space W 2,1(R2), which plays a key role. In Section 3.1 we briefly recall the

elegant reductio ad absurdum Leray’s argument. In Section 3.2 we discuss prop-

erties of the limit solution to the Euler equations, which were known before.

(Mainly, we recall some facts from [17].) In Section 3.3 we prove some new

properties of this limit solution and get a contradiction. Finally, in Section 4

we adapt these methods to the axially symmetric spatial case.

2. Notation and auxiliary results

2.1. Function spaces and definitions. By a domain we mean a connected

open set. In this paper we deal with bounded domains Ω ⊂ Rn, n = 2, 3, with

C2-smooth boundary ∂Ω = ∪Nj=0Γj consisting of N + 1 disjoint components

Γj ; i.e.,

(2.1) Ω = Ω0 \
Ä N⋃
j=1

Ω̄j

ä
, Ω̄j ⊂ Ω0, j = 1, . . . , N,

where Γj = ∂Ωj .

We use standard notation for function spaces: Ck(Ω), Ck(∂Ω), W k,q(Ω),

W̊ k,q(Ω), Wα,q(∂Ω), where α ∈ (0, 1), k ∈ N0, q ∈ [1,+∞]. In our notation

we do not distinguish function spaces for scalar and vector-valued functions; it

will be clear from the context whether we use scalar, vector, or tensor-valued

function spaces. Denote by H(Ω) the subspace of all solenoidal vector fields

(divu = 0) from W̊ 1,2(Ω) equipped with the norm ‖u‖H(Ω) = ‖∇u‖L2(Ω).

Observe that for functions u ∈ H(Ω), the norm ‖ · ‖H(Ω) is equivalent to

‖ · ‖W 1,2(Ω).

Working with Sobolev functions, we always assume that the “best repre-

sentatives” are chosen. For w ∈ L1
loc(Ω), the best representative w∗ is defined
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as

w∗(x) =

lim
r→0

−
∫
Br(x)w(z)dz, if the finite limit exists,

0 otherwise,

where −
∫
Br(x)w(z)dz = 1

meas(Br(x))

∫
Br(x)w(z)dz and Br(x) = {y : |y − x| < r}

is the ball of radius r centered at x.

Below we discuss some properties of the best representatives of Sobolev

functions.

Lemma 2.1 (see, e.g., [7, §4.8, Th. 1 and §4.9.2, Th. 2]). If w ∈W 1,s(R2),

s ≥ 1, then there exists a set A1,w ⊂ R2 with the following properties :

(i) H1(A1,w) = 0;

(ii) for each x ∈ Ω \A1,w,

lim
r→0
−
∫
Br(x)

|w(z)− w(x)|2 dz = 0;

(iii) for every ε > 0, there exists a set U ⊂ R2 with H1
∞(U) < ε and A1,w ⊂ U

such that the function w is continuous on Ω \ U ;

(iv) for every unit vector l ∈ ∂B1(0) and almost all straight lines L paral-

lel to l, the restriction w|L is an absolutely continuous function (of one

variable).

Here and henceforth we denote by H1 the one-dimensional Hausdorff mea-

sure, i.e., H1(F ) = lim
t→0+

H1
t (F ), where

H1
t (F ) = inf

{ ∞∑
i=1

diamFi : diamFi ≤ t, F ⊂
∞⋃
i=1

Fi
}
.

Remark 2.1. Property (iii) of Lemma 2.1 means that f is quasicontin-

uous with respect to the Hausdorff content H1
∞. Really, Theorem 1(iii) of

Section 4.8 in [7] asserts that f ∈W 1,s(R2) is quasicontinuous with respect to

the s-capacity. But it is well known that for s = 1, smallness of the 1-capacity

of a set F ⊂ R2 is equivalent to smallness of H1
∞(F ) (see, e.g., [7, §5.6.3, Th. 3

and its proof]).

Remark 2.2. By the Sobolev extension theorem, Lemma 2.1 is true for

functions w ∈W 1,s(Ω), where Ω ⊂ R2 is a bounded Lipschitz domain. By the

trace theorem, each function w ∈ W 1,s(Ω) is “well defined” for H1-almost all

x ∈ ∂Ω. Therefore, we assume that every function w ∈ W 1,s(Ω) is defined

on Ω.

2.2. On the Morse-Sard and Luzin N-properties of Sobolev functions in

W 2,1. First, let us recall some classical differentiability properties of Sobolev

functions.



LERAY’S PROBLEM FOR STATIONARY NAVIER-STOKES EQUATIONS 773

Lemma 2.2 (see [6, Prop. 1]). If ψ ∈W 2,1(R2), then ψ is continuous and

there exists a set Aψ with H1(Aψ) = 0 such that ψ is differentiable (in the

classical sense) at all x ∈ R2 \Aψ . Moreover, the classical derivative coincides

with ∇ψ(x), where lim
r→0

−
∫
Br(x) |∇ψ(z)−∇ψ(x)|2 dz = 0.

The theorem below is due to J. Bourgain, M. Korobkov and J. Kris-

tensen [3].

Theorem 2.1. Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary.

If ψ ∈W 2,1(Ω), then

(i) H1({ψ(x) : x ∈ Ω \Aψ & ∇ψ(x) = 0}) = 0.

(ii) For every ε > 0, there exists δ > 0 such that H1(ψ(U)) < ε for any set

U ⊂ Ω with H1
∞(U) < δ.

(iii) For every ε > 0, there exist an open set V ⊂ R with H1(V ) < ε and a

function g ∈ C1(R2) such that for each x ∈ Ω if ψ(x) /∈ V , then x /∈ Aψ
and ψ(x) = g(x), ∇ψ(x) = ∇g(x) 6= 0.

(iv) For H1–almost all y ∈ ψ(Ω) ⊂ R, the preimage ψ−1(y) is a finite disjoint

family of C1-curves Sj , j = 1, 2, . . . , N(y). Each Sj is either a cycle in

Ω (i.e., Sj ⊂ Ω is homeomorphic to the unit circle S1) or a simple arc

with endpoints on ∂Ω. (In this case Sj is transversal to ∂Ω.)

2.3. Some facts from topology. We shall need some topological definitions

and results. By continuum we mean a compact connected set. We understand

connectedness in the sense of general topology. A subset of a topological space

is called an arc if it is homeomorphic to the unit interval [0, 1].

Let us shortly present some results from the classical paper of A. S. Kron-

rod [19] concerning level sets of continuous functions. Let Q = [0, 1] × [0, 1]

be a square in R2, and let f be a continuous function on Q. Denote by Et
a level set of the function f , i.e., Et = {x ∈ Q : f(x) = t}. A connected

component K of the level set Et containing a point x0 is a maximal connected

subset of Et containing x0. By Tf denote a family of all connected components

of level sets of f . It was established in [19] that Tf equipped by a natural

topology3 is a one-dimensional topological tree.4 Endpoints of this tree5 are

the components C ∈ Tf that do not separate Q; i.e., Q \ C is a connected

3A system of neighborhoods in this topology is defined as follows. For a component C ∈ Tf
and an open set U ⊃ C, the set {B ∈ Tf : B ⊂ U} is called a neighborhood of C. Accordingly,

the convergence in Tf is defined by the following rule: Tf 3 Ci → C iff sup
x∈Ci

dist(x,C)→ 0.

4A locally connected continuum T is called a topological tree if it does not contain a curve

homeomorphic to a circle or, equivalently, if any two different points of T can be joined by a

unique arc. This definition implies that T has topological dimension 1.
5A point of a continuum K is called an endpoint of K (resp., a branching point of K) if its

topological index equals 1 (more or equal to 3 resp.). For a topological tree T , this definition is
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set. Branching points of the tree are the components C ∈ Tf such that Q \ C
has more than two connected components (see [19, Th. 5]). By results of [19,

Lemma 1] (see also [24] and [26]), the set of all branching points of Tf is at

most countable. The main property of a tree is that any two points could be

joined by a unique arc. Therefore, the same is true for Tf .

Lemma 2.3 ([19, Lemma 13]). If f ∈ C(Q), then for any two different

points A ∈ Tf and B ∈ Tf , there exists a unique arc J = J(A,B) ⊂ Tf joining

A to B. Moreover, for every inner point C of this arc, the points A,B lie in

different connected components of the set Tf \ {C}.

We can reformulate the above lemma in the following equivalent form.

Lemma 2.4. If f ∈ C(Q), then for any two different points A,B ∈ Tf ,

there exists a continuous injective function ϕ : [0, 1]→ Tf with the properties

(i) ϕ(0) = A, ϕ(1) = B;

(ii) for any t0 ∈ [0, 1],

lim
[0,1]3t→t0

sup
x∈ϕ(t)

dist(x, ϕ(t0))→ 0;

(iii) for any t ∈ (0, 1), the sets A,B lie in different connected components of

the set Q \ ϕ(t).

Remark 2.3. If in Lemma 2.4 f ∈ W 2,1(Q), then by Theorem 2.1(iv),

there exists a dense subset E of (0, 1) such that ϕ(t) is a C1-curve for every

t ∈ E. Moreover, ϕ(t) is either a cycle or a simple arc with endpoints on ∂Q.

Remark 2.4. All results of Lemmas 2.3 and 2.4 remain valid for level sets of

continuous functions f : Ω→ R, where Ω is a multi-connected bounded domain

of type (2.1), provided f ≡ ξj = const on each inner boundary component

Γj with j = 1, . . . , N . Indeed, we can extend f to the whole Ω0 by putting

f(x) = ξj for x ∈ Ωj , j = 1, . . . , N . The extended function f will be continuous

on the set Ω0 that is homeomorphic to the unit square Q = [0, 1]2.

3. The plane case

3.1. Leray ’s argument reductio ad absurdum. Consider the Navier-Stokes

problem (1.1) in the C2-smooth domain Ω ⊂ R2 defined by (2.1) with f ∈
W 1,2(Ω). Without loss of generality, we may assume that f = ∇⊥b with

b ∈ W 2,2(Ω)6, where (x, y)⊥ = (−y, x). If the boundary value a ∈ W 3/2,2(∂Ω)

satisfies condition (1.2), then there exists a solenoidal extension A ∈ W 2,2(Ω)

equivalent to the following: a point C∈T is an endpoint of T (resp., a branching point of T )

if the set T \ {C} is connected (resp., if T \ {C} has more than two connected components).
6By the Helmholtz-Weyl decomposition, for a C2-smooth bounded domain Ω ⊂ Rn, n =

2, 3, every f ∈ W 1,2(Ω) can be represented as the sum f = curlb + ∇ϕ for n = 3, and
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of a (see [21], [32], [12]). Using this fact and standard results [21], we can

find a weak solution U ∈ W 2,2(Ω) to the Stokes problem such that U −A ∈
H(Ω) ∩W 2,2(Ω) and

(3.1) ν

∫
Ω

∇U · ∇η dx =

∫
Ω

f · η dx ∀ η ∈ H(Ω).

Moreover,

(3.2) ‖U‖W 2,2(Ω) ≤ c
Ä
‖a‖W 3/2,2(∂Ω) + ‖f‖L2(Ω)

ä
.

By weak solution of problem (1.1) we understand a function u such that

w = u−U ∈ H(Ω) and

ν

∫
Ω

∇w · ∇η dx−
∫
Ω

Ä
(w + U) · ∇

ä
η ·w dx−

∫
Ω

Ä
w · ∇

ä
η ·U dx

=

∫
Ω

Ä
U · ∇

ä
η ·U dx ∀η ∈ H(Ω).

(3.3)

Let us briefly reproduce the contradiction argument of Leray [22] that

was later used in many other papers. (See, e.g., [20], [21], [13], [1]; see also

[17] for details.) It is well known (see, e.g., [21]) that integral identity (3.3) is

equivalent to an operator equation in the space H(Ω) with a compact operator.

Therefore, by the Leray-Schauder theorem, to prove the existence of a weak

solution to the Navier-Stokes problem (1.1), it is sufficient to show that all the

solutions of the integral identity

ν

∫
Ω

∇w · ∇η dx− λ
∫
Ω

Ä
(w + U) · ∇

ä
η ·w dx− λ

∫
Ω

Ä
w · ∇

ä
η ·U dx

= λ

∫
Ω

Ä
U · ∇

ä
η ·U dx ∀ η ∈ H(Ω)

(3.4)

are uniformly bounded in H(Ω) (with respect to λ ∈ [0, 1]). Assume that this

is false. Then there exist sequences {λk}k∈N ⊂ [0, 1] and {“wk}k∈N ∈ H(Ω)

such that

ν

∫
Ω

∇“wk · ∇η dx−λk
∫
Ω

Ä
(“wk+U) · ∇

ä
η · “wk dx−λk

∫
Ω

Ä“wk · ∇
ä
η ·U dx

= λk

∫
Ω

Ä
U · ∇

ä
η ·U dx ∀η ∈ H(Ω)

(3.5)

and

(3.6) lim
k→∞

λk = λ0 ∈ [0, 1], lim
k→∞

Jk = lim
k→∞

‖“wk‖H(Ω) =∞.

f = ∇⊥b+∇ϕ for n = 2, with b, b, ϕ ∈W 2,2(Ω), and the gradient part is included then into

the pressure term (see, e.g., [21]).
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Using well-known techniques ([17], [1]), one shows that there exist p̂k with7

‖p̂k‖W 1,q(Ω) ≤ C(q)J2
k , q ∈ [1, 2), such that the pair

Ä
ûk = “wk + U, p̂k

ä
is a

solution to the following system:

(3.7)


−ν∆ûk + λk

Ä
ûk · ∇

ä
ûk +∇p̂k = f in Ω,

div ûk = 0 in Ω,

ûk = a on ∂Ω.

Choose η = J−2
k “wk in (3.5) and set wk = J−1

k “wk. Taking into account

that ∫
Ω

Ä
(wk + U) · ∇

ä
wk ·wk dx = 0,

we have

(3.8) ν

∫
Ω

|∇wk|2 dx = λk

∫
Ω

Ä
wk · ∇

ä
wk ·U dx+ J−1

k λk

∫
Ω

Ä
U · ∇

ä
wk ·U dx.

Since ‖wk‖H(Ω) = 1, extracting a subsequence (if necessary), we can assume

without loss of generality that wk converges weakly in H(Ω) to a vector field

v ∈ H(Ω). By the compact embedding

H(Ω) ↪→ Lr(Ω) ∀ r ∈ [1,∞),

the subsequence {wk} converges strongly in Lr(Ω). Therefore, letting k →∞
in equality (3.8), we obtain

(3.9) ν = λ0

∫
Ω

Ä
v · ∇

ä
v ·U dx.

In particular, λ0 > 0, so λk are separated from zero.

Put νk = (λkJk)
−1ν. Multiplying identities (3.7) by 1

λkJ
2
k

=
λkν

2
k

ν2 , we see

that the pair
Ä
uk = 1

Jk
ûk, pk = 1

λkJ
2
k
p̂k
ä

satisfies the following system:

(3.10)


−νk∆uk +

Ä
uk · ∇

ä
uk +∇pk = fk in Ω,

divuk = 0 in Ω,

uk = ak on ∂Ω,

7The uniform estimates for the norms ‖pk‖W1,q(Ω) follow from well-known results concern-

ing regularity of solutions to the Stokes problem (see [32, Chap. 1, §2.5] or [21]). Observe that

in [17] we could have only pk ∈W 1,q
loc (Ω) because ∂Ω has been assumed to be only Lipschitz.

However, for domains Ω with C2-smooth boundary and a ∈ W 3/2,2(∂Ω), the corresponding

estimates hold globally.
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where fk =
λkν

2
k

ν2 f , ak = λkνk
ν a, the norms ‖uk‖W 1,2(Ω) and ‖pk‖W 1,q(Ω)

are uniformly bounded for each q ∈ [1, 2), uk ∈ W 3,2
loc (Ω), pk ∈ W 2,2

loc (Ω)8,

and uk ⇀ v in W 1,2(Ω). Extracting a subsequence (if necessary), we may

assume without loss of generality that, in addition, pk ⇀ p in W 1,q(Ω) for

each q ∈ [1, 2). Then the limit functions (v, p) satisfy the Euler system

(3.11)


Ä
v · ∇

ä
v +∇p = 0 in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω.

In conclusion, we can state the following lemma.

Lemma 3.1. Assume that Ω ⊂ R2 is a bounded domain of type (2.1) with

C2-smooth boundary ∂Ω, f = ∇⊥b, b ∈W 2,2(Ω), and a ∈W 3/2,2(∂Ω) satisfies

condition (1.2). If there are no weak solutions to (1.1), then there exist v, p

with the following properties :

(E) v ∈ W 1,2(Ω), p ∈ W 1,q(Ω), q ∈ (1, 2), and the pair
Ä
v, p
ä

satisfies

the Euler system (3.11).

(E-NS) Conditions (E) are satisfied, and there exist sequences of functions

uk ∈ W 1,2(Ω), pk ∈ W 1,q(Ω) and numbers νk → 0+, λk → λ0 > 0

such that the norms ‖uk‖W 1,2(Ω), ‖pk‖W 1,q(Ω) are uniformly bounded

for every q ∈ [1, 2), the pairs (uk, pk) satisfy (3.10) with fk =
λkν

2
k

ν2 f ,

ak = λkνk
ν a, and

‖∇uk‖L2(Ω) → 1, uk ⇀ v in W 1,2(Ω), pk ⇀ p in W 1,q(Ω) ∀ q ∈ [1, 2).

Moreover, uk ∈W 3,2
loc (Ω), pk ∈W 2,2

loc (Ω).

From now on we assume that assumptions (E-NS) are satisfied. Our goal

is to prove that they lead to a contradiction. This implies the validity of

Theorem 1.1.

3.2. Some previous results on the Euler equations. In this subsection we

collect the information on the limit solution
Ä
v, p
ä

to (3.11) obtained in pre-

vious papers.

The next statement was proved in [13, Lemma 4] and in [1, Th. 2.2]; see

also [17, Rem. 3.2].

8The interior regularity of the solution depends on the regularity of f ∈W 1,2(Ω), but not

on the regularity of the boundary value a; see [21].
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Theorem 3.1. If conditions (E) are satisfied, then there exist constants

p̂0, . . . , p̂N such that

(3.12) p(x) ≡ p̂j for H1-almost all x ∈ Γj .

Remark 3.1. From Theorem 3.1 and from the classical results of [5] it

follows that

p ∈ C(Ω) ∩W 1,2(Ω)

if conditions (E) are satisfied. (For the accurate proof of this fact, see, e.g., [17,

Th. 3.3].) Consequently, the identities (3.12) are valid for all x ∈ Γj (instead

of “H1-almost all”).

Corollary 3.1. If conditions (E-NS) are satisfied, then

(3.13) − ν

λ0
=

N∑
j=0

p̂j

∫
Γj

a · n ds =
N∑
j=0

p̂jFj .

Proof. By simple calculations from (3.9) and (3.111), it follows that

ν

λ0
= −

∫
Ω

∇p ·U dx = −
∫
Ω

div(pU) dx = −
∫
∂Ω

pa · n ds.

In virtue of (3.12), this implies (3.13). �

Set Φk = pk + 1
2 |uk|

2, Φ = p+ 1
2 |v|

2. From (3.112) and (3.113), it follows

that there exists a stream function ψ ∈W 2,2(Ω) such that

(3.14) ∇ψ ≡ v⊥ in Ω.

Here and henceforth we set (a, b)⊥ = (−b, a).

Applying Lemmas 2.1, 2.2 and Remark 2.2 to the functions v, ψ,Φ, we

get the following

Lemma 3.2. If conditions (E) are satisfied, then the stream function ψ is

continuous on Ω and there exists a set Av ⊂ Ω such that

(i) H1(Av) = 0.

(ii) For all x ∈ Ω \Av,

lim
r→0
−
∫
Br(x)

|v(z)− v(x)|2dz = lim
r→0
−
∫
Br(x)

|Φ(z)− Φ(x)|2dz = 0;

moreover, the function ψ is differentiable at x and ∇ψ(x)=(−v2(x),v1(x)).

(iii) For every ε > 0, there exists a set U ⊂ R2 with H1
∞(U) < ε such that

Av ⊂ U and the functions v,Φ are continuous in Ω \ U .

The next version of Bernoulli’s Law for solutions in Sobolev spaces was

obtained in [14, Th. 1]. (See also [17, Th. 3.2] for a more detailed proof.)
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Theorem 3.2. Let conditions (E) be satisfied, and let Av ⊂ Ω be the

set from Lemma 3.2. For any compact connected set K ⊂ Ω, the following

property holds : if

(3.15) ψ
∣∣∣
K

= const,

then

(3.16) Φ(x1) = Φ(x2) for all x1, x2 ∈ K \Av.

Lemma 3.3. If conditions (E) are satisfied, then there exist constants

ξ0, . . . , ξN ∈ R such that ψ(x) ≡ ξj on each component Γj , j = 0, . . . , N .

Proof. The assertion follows easily from the fact that v extended by 0

outside Ω belongs to the space H(R2) ⊂ W 1,2
loc (R2), and hence the stream

function ψ ∈W 2,2
loc (R2) is well defined in R2 with ∇ψ = 0 in R2 \ Ω. �

For x ∈ Ω, denote by Kx the connected component of the level set {z ∈
Ω : ψ(z) = ψ(x)} containing the point x. By Lemma 3.3, Kx∩∂Ω = ∅ for every

y ∈ ψ(Ω) \ {ξ0, . . . , ξN} and for every x ∈ ψ−1(y). Thus, Theorem 2.1(ii) and

(iv) imply that for almost all y ∈ ψ(Ω) and for every x ∈ ψ−1(y), the equality

Kx ∩ Av = ∅ holds and the component Kx ⊂ Ω is a C1-curve homeomorphic

to the circle. We call such Kx an admissible cycle.

The next lemma was obtained in [17, Lemma 3.3].

Lemma 3.4. If conditions (E-NS) are satisfied, then there exists a subse-

quence Φkl such that Φkl |S converges to Φ|S uniformly Φkl |S ⇒ Φ|S on almost

all 9 admissible cycles S.

Below we assume (without loss of generality) that the subsequence Φkl

coincides with Φk. Admissible cycles S from Lemma 3.4 will be called regular

cycles.

3.3. Obtaining a contradiction. We consider the following two cases:

(a) The maximum of Φ is attained on the boundary ∂Ω:

(3.17) max
j=0,...,N

p̂j = ess sup
x∈Ω

Φ(x).

(b) The maximum of Φ is not attained10 on ∂Ω:

(3.18) max
j=0,...,N

p̂j < ess sup
x∈Ω

Φ(x).

9“Almost all cycles” means cycles in preimages ψ−1(y) for almost all values y ∈ ψ(Ω).
10The case ess sup

x∈Ω

Φ(x) = +∞ is not excluded.
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3.3.1. The maximum of Φ is attained on the boundary ∂Ω. Let (3.17) hold.

Adding a constant to the pressure we can assume, without loss of generality,

that

(3.19) max
j=0,...,N

p̂j = ess sup
x∈Ω

Φ(x) = 0.

In particular,

(3.20) Φ(x) ≤ 0 in Ω.

If p̂0 = p̂1 = · · · = p̂N , then by Corollary 3.1 and the flux condition (1.2),

we immediately obtain the required contradiction. Thus, assume that

(3.21) min
j=0,...,N

p̂j < 0.

Change (if necessary) the numbering of the boundary components Γ0, Γ1,

. . . , ΓN in such a way that

(3.22) p̂j < 0, j = 0, . . . ,M,

(3.23) p̂M+1 = · · · = p̂N = 0.

First, we introduce the main idea of the proof in a heuristic way. It is well

known that every Φk satisfies the linear elliptic equation

(3.24) ∆Φk = ω2
k +

1

νk
div(Φkuk)−

1

νk
fk · uk.

If fk = 0, then by Hopf’s maximum principle, in a subdomain Ω′ b Ω with C2-

smooth boundary ∂Ω′, the maximum of Φk is attained at the boundary ∂Ω′,

and if x∗ ∈ ∂Ω′ is a maximum point, then the normal derivative of Φk at x∗
is strictly positive. It is not sufficient to apply this property directly. Instead

we will use some “integral analogs” that lead to a contradiction by using the

Coarea formula (see Lemmas 3.8 and 3.9). For i ∈ N and sufficiently large

k ≥ k(i), we construct a set Ei ⊂ Ω consisting of level lines of Φk such that

Φk|Ei → 0 as i → ∞ and Ei separates the boundary component ΓN (where

Φ = 0) from the boundary components Γj with j = 0, . . . ,M (where Φ < 0).

On the one hand, the length of each of these level lines is bounded from below

by a positive constant (since they separate the boundary components), and

by the Coarea formula this implies the estimate from below for
∫
Ei
|∇Φk|. On

the other hand, elliptic equation (3.24) for Φk, the convergence fk → 0, and

boundary conditions (3.103) allow us to estimate
∫
Ei
|∇Φk|2 from above (see

Lemma 3.8), and this asymptotically contradicts the previous one.

The main idea of the proof for a general multiply connected domain is the

same as in the case of annulus-like domains (when ∂Ω = Γ0 ∪ Γ1). The proof

has an analytical nature, and unessential differences concern only well-known

geometrical properties of level sets of continuous functions of two variables.
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First of all, we need some information concerning the behavior of the

limit total head pressure Φ on stream lines. We do not know whether the

function Φ is continuous or not on Ω. But we shall prove that Φ has some

continuity properties on stream lines.

By Remark 2.4 and Lemma 3.3, we can apply Kronrod’s results to the

stream function ψ. Define the total head pressure on the Kronrod tree Tψ (see

Section 2.3 ) as follows. Let K ∈ Tψ with diamK > 0. Take any x ∈ K \ Av,

and put Φ(K) = Φ(x). This definition is correct by Bernoulli’s Law (see

Theorem 3.2).

Lemma 3.5. Let A,B ∈ Tψ , diamA > 0,diamB > 0. Consider the

corresponding arc [A,B] ⊂ Tψ joining A to B (see Lemmas 2.3 and 2.4).

Then the restriction Φ|[A,B] is a continuous function.

Proof. Put (A,B) = [A,B] \ {A,B}. Let Ci ∈ (A,B) and Ci → C0 in Tψ.

By construction, each Ci is a connected component of the level set of ψ and

the sets A,B lie in different connected components of R2 \ Ci. Therefore,

diam(Ci) ≥ min(diam(A), diam(B)) > 0.

By the definition of convergence in Tψ, we have

(3.25) sup
x∈Ci

dist(x,C0)→ 0 as i→∞.

By Theorem 3.2, there exist constants ci ∈ R such that Φ(x) ≡ ci for all

x ∈ Ci \Av, where H1(Av) = 0. Analogously, Φ(x) ≡ c0 for all x ∈ C0 \Av. If

ci 9 c0, then we can assume, without loss of generality, that

(3.26) ci → c∞ 6= c0 as i→∞

and the components Ci converge as i→∞ in the Hausdorff metric11 to some

set C ′0 ⊂ C0. Clearly, diam(C ′0) > 0. Take a straight line L such that the

projection of C ′0 on L is not a singleton. Since C ′0 is a connected set, this

projection is a segment. Let I0 be the interior of this segment. For z ∈
I0, denote by Lz the straight line such that z ∈ Lz and Lz ⊥ L. From

Lemma 3.2(i) and (iii) it follows that Lz ∩Av = ∅ for H1-almost all z ∈ I0, and

the restriction Φ|Ω∩Lz is continuous. Fix a point z ∈ I0 with above properties.

Then by construction, Ci∩Lz 6= ∅ for sufficiently large i. Now, take a sequence

11The Hausdorff distance dH between two compact sets A,B ⊂ Rn is defined as follows:

dH(A,B) = max
(
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
)

(see, e.g., [4, §7.3.1]). By Blaschke selection

theorem [ibid], for any uniformly bounded sequence of compact sets Ai ⊂ Rn, there exists

a subsequence Aij that converges to some compact set A0 with respect to the Hausdorff

distance. Of course, if all Ai are compact connected sets and diamAi ≥ δ for some δ > 0,

then the limit set A0 is also connected and diamA0 ≥ δ.
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yi ∈ Ci ∩ Lz, and extract a convergent subsequence yij → y0 ∈ C ′0. Since

Φ|Ω∩Lz is continuous, we have Φ(yij ) = cij → Φ(y0) = c0 as j → ∞. This

contradicts (3.26). �

For the velocities uk = (u1
k, u

2
k) and v = (v1, v2), denote by ωk and ω the

corresponding vorticities: ωk = ∂2u
1
k − ∂1u

2
k, ω = ∂2v

1 − ∂1v
2 = ∆ψ. The

following formulas are direct consequences of (3.11) and (3.10):

(3.27) ∇Φ ≡ ωv⊥ = ω∇ψ, ∇Φk ≡ −νk∇⊥ωk + ωku
⊥
k + fk in Ω.

We say that a set Z ⊂ Tψ has T -measure zero if H1({ψ(C) : C ∈ Z}) = 0.

The function Φ|Tψ has some analogs of Luzin’s N -property.

Lemma 3.6. Let A,B ∈ Tψ with diam(A) > 0, diam(B) > 0. If Z ⊂
[A,B] has T -measure zero, then H1({Φ(C) : C ∈ Z}) = 0.

Proof. Recall that the Coarea formula

(3.28)

∫
E

|∇f | dx =

∫
R

H1(E ∩ f−1(y)) dy

holds for a measurable set E and the best representative (see Lemma 2.1) of

any Sobolev function f ∈W 1,1(Ω) (see, e.g., [23]).

Now, let Z ⊂ [A,B] have T -measure zero. Set E = ∪C∈ZC. Then by

definition, H1(ψ(E)) = 0. Take a Borel set G ⊃ ψ(E) with H1(G) = 0, and

put Z ′ = {C ∈ [A,B] : ψ(C) ∈ G}, E′ = ∪C∈Z′C. Then E′ is a Borel set as

well and E′ ⊃ E. Hence, by Coarea formula (3.28) applied to ψ|E′ , we see that

∇ψ(x) = 0 for H2-almost all x ∈ E′. Then by (3.27), ∇Φ(x) = 0 for H2-almost

all x ∈ E. Applying the Coarea formula to Φ|E′ , we obtain

0 =

∫
E′

|∇Φ| dx =

∫
R

∑
C∈Z′ : Φ(C)=y

H1(C) dy.

Since H1(C) ≥ min
Ä
diam(A), diam(B)

ä
> 0 for every C ∈ [A,B], we have

H1({Φ(C) : C ∈ Z ′}) = 0, and this implies the assertion of Lemma 3.6. �

From Lemmas 3.4 and 3.6 we have

Corollary 3.2. If A,B ∈ Tψ with diam(A) > 0, diam(B) > 0, then

H1
Ä
{Φ(C) : C ∈ [A,B] and C is not a regular cycle}

ä
= 0.

Denote by B0, . . . , BN the elements of Tψ such that Bj ⊃ Γj , j = 0, . . . , N .

By virtue of Lemma 3.3, every element C ∈ [Bi, Bj ] \ {Bi, Bj} is a connected

component of a level set of ψ such that the sets Bi, Bj lie in different connected

components of R2 \ C.
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Put

α = max
j=0,...,M

min
C∈[Bj ,BN ]

Φ(C).

By (3.22), α < 0. Take a sequence of positive values ti ∈ (0,−α), i ∈ N, with

ti+1 = 1
2 ti and such that the implication

Φ(C) = −ti ⇒ C is a regular cycle

holds for every j = 0, . . . ,M and for all C ∈ [Bj , BN ]. The existence of the

above sequence follows from Corollary 3.2.

Consider the natural order on the arc [Cj , BN ], namely, C ′ < C ′′ if C ′′

is closer to BN than C ′. (That means, C ′ and BN lie in different connected

components of the set Tψ \ {C ′′}.) For j = 0, . . .M and i ∈ N, put

Aji = max{C ∈ [Bj , BN ] : Φ(C) = −ti}.

In other words, Aji is an element of the set {C ∈ [Bj , BN ] : Φ(C) = −ti} that

is closest to ΓN . By construction, each Aji is a regular cycle.12 (See Figure 1

for the case of annulus type domains (N = 1).)

By definition of regular cycles (see the commentary to Lemma 3.4), each

set Aji is a C1-curve homeomorphic to the unit circle and Aji ⊂ Ω. In par-

ticular, for each i ∈ N, the compact set ∪Mj=0A
j
i is separated from ∂Ω and

dist(∪Mj=0A
j
i , ∂Ω) > 0. Then for each i and for sufficiently small h > 0 (this

smallness depends on i), we have the inclusion {x ∈ Ω : dist(x,ΓN ) < h} ⊂
Ω \
Ä
∪Mj=0A

j
i

ä
. Of course, the set {x ∈ Ω : dist(x,ΓN ) < h} is connected for

small h. (It is homeomorphic to the open ring.) Hence, for small h, this set is

included in some connected component of the open set Ω \
Ä
∪Mj=0A

j
i

ä
. Denote

this component by Vi. In particular, there holds ΓN ⊂ ∂Vi.
We claim that

(3.29) Ω ∩ ∂Vi = A0
i ∪ · · · ∪AMi .

(We present this proof as typical for set identities. Below, similar proofs for

other set identities are omitted because of their simplicity.) Indeed, by con-

struction, Ω ∩ ∂Vi ⊂ A0
i ∪ · · · ∪ AMi (since Vi is a connected component of

the open set Ω \
Ä
∪Mj=0A

j
i

ä
). Suppose that (3.29) is false; i.e., Aj1i * ∂Vi for

some j1 ∈ {0, . . . ,M}. Then, obviously, Aj1i ∩ V i = ∅ (since the cycles Aji
are either disjoint or coincide) and there exists a cycle Aj2i 6= Aj1i such that

the sets Vi and Aj1i lie in different connected components of R2 \ Aj2i . In

particular, Aj2i separates ΓN from Aj1i . But the last assertion contradicts the

12Some of these cycles Aji could coincide — i.e., equalities of type Aj1i = Aj2i are possible

(if Kronrod arcs [Bj1 , BN ] and [Bj2 , BN ] have nontrivial intersection) — but this a priori

possibility has no influence on our arguments. Note also that by construction, the cycles Aji
are either disjoint or coincide; i.e., if Aj1i 6= Aj2i , then Aj1i ∩A

j2
i = ∅.
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definition of Aji : indeed, by construction Φ > ti = Φ(Aj2i ) at the interior points

of the Kronrod arc [Aj1i , BN ]. Consequently, Aj2i /∈ [Aj1i , BN ]. The obtained

contradiction finishes the proof of (3.29).

By construction, the sequence of domains Vi is decreasing; i.e., Vi ⊃ Vi+1.

Hence, the sequence of sets (∂Ω) ∩ (∂Vi) is nonincreasing:

(3.30) (∂Ω) ∩ (∂Vi) k (∂Ω) ∩ (∂Vi+1).

Every set (∂Ω) ∩ (∂Vi) consists of several components Γl with l > M (since

arcs ∪Mj=0A
j
i separate ΓN from Γ0, . . . ,ΓM , but not necessary from other Γl).

Since there are only finitely many components Γl, using the monotonicity prop-

erty (3.30) we conclude that for sufficiently large i, the set (∂Ω) ∩ (∂Vi)

is independent of i. So we may assume, without loss of generality, that

(∂Ω) ∩ (∂Vi) = ΓK ∪ · · · ∪ ΓN , where K ∈ {M + 1, . . . , N}. Therefore,

(3.31) ∂Vi = A0
i ∪ · · · ∪AMi ∪ ΓK ∪ · · · ∪ ΓN .

From Lemma 3.4 we have the uniform convergence Φk|Aji ⇒ Φ(Aji ) = −ti as

k →∞. Thus for every i ∈ N, there exists ki such that for all k ≥ ki,

(3.32) Φk|Aji < −
7

8
ti, Φk|Aji+1

> −5

8
ti ∀j = 0, . . . ,M.

Then

(3.33) ∀t ∈
î5
8
ti,

7

8
ti
ó
∀k ≥ ki Φk|Aji < −t, Φk|Aji+1

> −t ∀j = 0, . . . ,M.

For k ≥ ki, j = 0, . . . ,M , and t ∈ [5
8 ti,

7
8 ti], denote byW j

ik(t) the connected

component of the open set {x ∈ Vi \ V i+1 : Φk(x) > −t} such that ∂W j
ik(t) ⊃

Aji+1, and put

Wik(t) =
M⋃
j=0

W j
ik(t), Sik(t) = (∂Wik(t)) ∩ Vi \ V i+1.

Clearly, Φk ≡ −t on Sik(t). By construction,

(3.34) ∂Wik(t) = Sik(t) ∪A0
i+1 ∪ · · · ∪AMi+1;

see Figure 1. Since by (E–NS) each Φk belongs to W 2,2
loc (Ω), by the Morse-Sard

theorem for Sobolev functions (see Theorem 2.1) we have that for almost all

t ∈ [5
8 ti,

7
8 ti], the level set Sik(t) consists of finitely many C1-cycles and Φk is

differentiable (in classical sense) at every point x ∈ Sik(t) with ∇Φk(x) 6= 0.

The values t ∈ [5
8 ti,

7
8 ti] having the above property will be called (k, i)-regular.

By construction,

(3.35)

∫
Sik(t)

∇Φk · n ds = −
∫

Sik(t)

|∇Φk| ds < 0,

where n is the unit outward (with respect to Wik(t)) normal vector to ∂Wik(t).
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Figure 1. The case of an annulus-like domain (N = 1).

For h > 0, denote Γh = {x ∈ Ω : dist(x,ΓK ∪ · · · ∪ ΓN ) = h)}, Ωh = {x ∈
Ω : dist(x,ΓK ∪ · · · ∪ ΓN ) < h)}. By elementary results of analysis, there is a

positive constant

δ0 <
1

2
min{|x− y| : x ∈ Γj , y ∈ Γm, j,m ∈ {0, . . . , N}, j 6= m}

such that for each h ≤ δ0, the set Γh is a union of N − K + 1 C1-smooth

curves homeomorphic to the circle, and

(3.36) H1(Γh) ≤ C0 ∀h ∈ (0, δ0],

where C0 = 3H1(ΓK ∪ · · · ∪ ΓN ) is independent of h.

Since Φ 6= const on Vi, by (3.27) we have
∫
Vi

ω2 dx > 0 for each i. Hence,

from the weak convergence ωk ⇀ ω in L2(Ω), it follows

Lemma 3.7. For any i ∈ N, there exist constants εi > 0, δi ∈ (0, δ0), and

k′i ∈ N such that

Ωδi ∩A
j
i = Ωδi ∩A

j
i+1 = ∅, j = 0, . . . ,M,

and
∫

Vi+1\Ωδi

ω2
k dx > εi for all k ≥ k′i.

The key step is the following estimate.

Lemma 3.8. For any i ∈ N, there exists k(i) ∈ N such that the inequality

(3.37)

∫
Sik(t)

|∇Φk| ds < Ft

holds for every k ≥ k(i) and for almost all t ∈ [5
8 ti,

7
8 ti], where the constant F

is independent of t, k and i.
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Proof. Fix i ∈ N, and assume k ≥ ki (see (3.32)). Take a sufficiently small

σ > 0. (The exact value of σ will be specified below.) We choose the parameter

δσ ∈ (0, δi] (see Lemma 3.7) small enough to satisfy the following conditions:

(3.38)

∫
Γh

Φ2 ds <
1

3
σ2 ∀h ∈ (0, δσ],

(3.39) − 1

3
σ2 <

∫
Γh′

Φ2
k ds−

∫
Γh′′

Φ2
k ds <

1

3
σ2 ∀h′, h′′ ∈ (0, δσ] ∀k ∈ N.

The last estimate follows from the fact that for any q ∈ (1, 2), the norms

‖Φk‖W 1,q(Ω) are uniformly bounded. Consequently, the norms ‖Φk∇Φk‖Lq(Ω)

are uniformly bounded as well. In particular, for q = 6/5, we have∣∣∣∣∣
∫

Γh′

Φ2
k ds−

∫
Γh′′

Φ2
k ds

∣∣∣∣∣ ≤ 2

∫
Ωh′′\Ωh′

|Φk| · |∇Φk| dx

≤ 2

Ç ∫
Ωh′′\Ωh′

|Φk∇Φk|6/5 dx
å 5

6

meas(Ωh′′ \ Ωh′)
1
6 → 0 as h′, h′′ → 0.

From the weak convergence Φk ⇀ Φ in the space W 1,q(Ω), q ∈ (1, 2), it

follows that13 Φk|Γh ⇒ Φ|Γh as k →∞ for almost all h ∈ (0, δσ); see [1], [17].14

From the last fact and (3.38)–(3.39) we see that there exists k′ ∈ N such that

(3.40)

∫
Γh

Φ2
k ds < σ2 ∀h ∈ (0, δσ] ∀k ≥ k′.

Obviously, for a function g ∈W 2,2(Ω) and for an arbitrary C1-cycle S ⊂ Ω,

we have ∫
S

∇⊥g · n ds =

∫
S

∇g · l ds = 0,

where l is the tangent vector to S. Consequently, by (3.27),∫
S

∇Φk · n ds =

∫
S

ωku
⊥
k · n ds;

recall that by our assumptions, f = ∇⊥b.

13Really this uniform convergence hold for a subsequence Φkl (Lemma 3.4), which we

identify with Φk.
14In [1] Amick proved the uniform convergence Φk ⇒ Φ on almost all circles. However,

his method can be easily modified to prove the uniform convergence on almost all level lines

of every C1-smooth function with nonzero gradient. Such modification was done in the proof

of Lemma 3.3 of [17].
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Now, fix a sufficiently small ε > 0. (The exact value of ε will be specified

below.) Our next purpose is as follows. For a given sufficiently large k ≥ k′,

find a number h̄k ∈ (0, δσ) such that the estimates∣∣∣∣∣
∫

Γh̄k

∇Φk · n ds
∣∣∣∣∣ =

∣∣∣∣∣
∫

Γh̄k

ωku
⊥
k · n ds

∣∣∣∣∣ < ε,(3.41)

∫
Γh̄k

|uk|2 ds < Cεν
2
k(3.42)

hold, where the constant Cε is independent of k and σ. For this purpose, take

Γ = ΓK ∪ · · · ∪ΓN , and consider the function g(h) =
∫

Γh

|uk|2 ds. In particular,

g(0) =

∫
Γ

|uk|2 ds =
(λkνk)

2

ν2
‖a‖2L2(Γ),

where λk ∈ (0, 1]; see (3.103). Also denote f(h) =
∫

Γh

|∇uk| · |uk| ds. By the

classical formula of changing variables in the integral, there exists a C1-smooth

function J : Ωδi → (0,+∞) (not depending on k) such that JΓ ≡ 1 and15Ç∫
Γh

J |uk|2 ds
å′
h

≤ 2

∫
Γh

J |uk| · |∇uk| ds.

Consequently, there are constants C1, C2 > 0 (not depending on k, h) such that

for every h0 ∈ (0, δi], the following estimate holds:

(3.43) ln

Ç
C1g(h0)

ν2
k

å
≤ C2

h0∫
0

f(h)

g(h)
dh.

Put

Cε =
1

C1
exp
Ä2C2

ε

ä
.

15Here J(x) is the Jacobian of the following mapping: ϕ : Ωδi 3 x 7→ ϕ(x) =

(γ(x), dist(x,Γ)) ∈ Γ × [0, δi], where γ(x) ∈ Γ is a metric projection of x onto Γ:

|x − γ(x)| = dist(x,Γ). It is well known that C2-smoothness of Γ and smallness δi < δ0
guarantee that the mapping ϕ is C1-smooth diffeomorphism and, in particular, J(x) is sep-

arated from zero and infinity by positive constants. Note also that for every x ∈ Ωδi , the

segment [x, γ(x)] is perpendicular to curves Γh, and γ(y) ≡ γ(x) for all y ∈ [x, γ(x)]. In other

words, the mapping ϕ generates an orthogonal curvilinear system whose coordinate lines are

curves Γh and rectilinear segments of type [x, γ(x)].
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Consider two possible cases:

Case 1. g(h) ≤ Cεν
2
k ∀h ∈ [0, δσ]. Then by the Hölder inequality we

obtain

(3.44)
1

δσ

∫
Ωδσ

|∇uk| · |uk| dx ≤
1

δσ

»
δσCεν2

k

Ç ∫
Ωδσ

|∇uk|2 dx
å 1

2

<

√
2Cεν2

k

δσ
.

Here we have used the estimate

(3.45)

∫
Ω

|∇uk|2 dx < 2,

which is valid for sufficiently large k (because of the convergence
∫
Ω

|∇uk|2 dx

→ 1; see assumptions (E-NS)). Estimate (3.44) implies that there exists h̄k ∈
(0, δσ) such that

(3.46)

∫
Γh̄k

|∇uk| · |uk| ds <

√
2Cεν2

k

δσ
.

Then, taking into account that νk → 0 as k →∞, while Cε, δσ are independent

of k, we obtain the required estimates (3.41) and (3.42) for sufficiently large k.

Case 2. sup
h∈[0,δσ ]

g(h) > Cεν
2
k . Take h0 = min{h ∈ [0, δσ] : g(h) = Cεν

2
k}.

By choice of Cε and (3.43),

(3.47)
2

ε
≤

h0∫
0

f(h)

g(h)
dh.

We claim that there exists h̄k ∈ (0, h0) satisfying (3.41) and (3.42). Suppose

the contrary; then f(h) ≥ ε for all h ∈ (0, h0). By the Hölder inequality,

f2(h) ≤ g(h) ·
∫
Γh

|∇uk|2 ds.

Consequently, ∫
Γh

|∇uk|2 ds ≥
f2(h)

g(h)
≥ f(h)ε

g(h)
∀h ∈ (0, h0).

Hence ∫
Ωh0

|∇uk|2 dx =

h0∫
0

dh

∫
Γh

|∇uk|2 ds ≥
h0∫
0

f(h)ε

g(h)
dh ≥ 2.

(In the last inequality we have used (3.47), and in the first equality we have

used the well-known identity |∇ dist(x,Γ)| ≡ 1 on Ωδi .) We have obtained
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a contradiction with (3.45). This proves the existence of the required h̄k ∈
(0, δσ) satisfying (3.41) and (3.42) for sufficiently large k.

Now, for (k, i)-regular value t ∈ [5
8 ti,

7
8 ti], consider the domain

Ωih̄k
(t) = Wik(t) ∪ V i+1 \ Ωh̄k

.

By construction, ∂Ωih̄k
(t) = Γh̄k ∪ Sik(t) (see Figure 1). Integrating the equa-

tion

(3.48) ∆Φk = ω2
k +

1

νk
div(Φkuk)−

1

νk
fk · uk

over the domain Ωih̄k
(t), we have∫

Sik(t)

∇Φk · n ds+

∫
Γh̄k

∇Φk · n ds

=

∫
Ωih̄k

(t)

ω2
k dx−

1

νk

∫
Ωih̄k

(t)

fk · uk dx

+
1

νk

∫
Sik(t)

Φkuk · n ds+
1

νk

∫
Γh̄k

Φkuk · n ds

=

∫
Ωih̄k

(t)

ω2
k dx−

1

νk

∫
Ωih̄k

(t)

fk · uk dx− tλkF̄ +
1

νk

∫
Γh̄k

Φkuk · n ds,

(3.49)

where F̄ = 1
ν (F0 + · · ·+ FM ). In view of (3.35) and (3.41), we can estimate∫
Sik(t)

|∇Φk| ds ≤ tF + ε+
1

νk

∫
Ωih̄k

(t)

fk · uk dx−
∫

Ωih̄k
(t)

ω2
k dx

+
1

νk

Ç ∫
Γh̄k

Φ2
k ds

å 1
2
Ç ∫

Γh̄k

|uk|2 ds
å 1

2

,

(3.50)

with F = |F̄ |. By definition, 1
νk
‖fk‖L2(Ω) = λkνk

ν2 ‖f‖L2(Ω) → 0 as k → ∞.

Therefore, ∣∣∣∣ 1

νk

∫
Ωih̄k

(t)

fk · uk dx
∣∣∣∣ ≤ ε

for sufficiently large k. Using inequalities (3.40) and (3.42), we obtain∫
Sik(t)

|∇Φk| ds ≤ tF + 2ε+ σ
√
Cε −

∫
Ωih̄k

(t)

ω2
k dx

≤ tF + 2ε+ σ
√
Cε −

∫
Vi+1\Ωδi

ω2
k dx,

(3.51)
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where Cε is independent of k and σ. Choosing ε = 1
6εi, σ = 1

3
√
Cε
εi, and a

sufficiently large k, from Lemma 3.7 we obtain 2ε+σ
√
Cε−

∫
Vi+1\Ωδi

ω2
k dx ≤ 0.

Estimate (3.37) is proved. �

Now, we receive the required contradiction using the Coarea formula.

Lemma 3.9. Assume that Ω ⊂ R2 is a bounded domain of type (2.1)

with C2-smooth boundary ∂Ω, f ∈ W 1,2(Ω), and a ∈ W 3/2,2(∂Ω) satisfies

condition (1.2). Then assumptions (E-NS) and (3.17) lead to a contradiction.

Proof. For i ∈ N and k ≥ k(i) (see Lemma 3.8), put

Ei =
⋃

t∈[ 5
8
ti,

7
8
ti]

Sik(t).

By the Coarea formula (3.28) (see also [23]), for any integrable function g :

Ei → R, the equality

(3.52)

∫
Ei

g|∇Φk| dx =

7
8
ti∫

5
8
ti

∫
Sik(t)

g(x) dH1(x) dt

holds. In particular, taking g = |∇Φk| and using (3.37), we obtain

(3.53)

∫
Ei

|∇Φk|2 dx =

7
8
ti∫

5
8
ti

∫
Sik(t)

|∇Φk|(x) dH1(x) dt ≤

7
8
ti∫

5
8
ti

Ft dt = F ′t2i ,

where F ′ = 3
16F is independent of i. Now, taking g = 1 in (3.52) and using

the Hölder inequality, we have

7
8
ti∫

5
8
ti

H1
Ä
Sik(t)

ä
dt =

∫
Ei

|∇Φk| dx ≤
Ç∫
Ei

|∇Φk|2 dx
å 1

2 Ä
meas(Ei)

ä 1
2

≤
√
F ′ti
Ä
meas(Ei)

ä 1
2 .

(3.54)

By construction, for almost all t ∈ [5
8 ti,

7
8 ti], the set Sik(t) is a finite union of

smooth cycles and Sik(t) separates Aji from Aji+1 for j = 0, . . . ,M . Thus, each

set Sik(t) separates Γj from ΓN . In particular,

H1(Sik(t)) ≥ min
Ä
diam(Γj),diam(ΓN )

ä
.

Hence, the left integral in (3.54) is greater than Cti, where C > 0 does not

depend on i. On the other hand, evidently, meas(Ei) ≤ meas
Ä
Vi \ Vi+1

ä
→ 0

as i→∞. The obtained contradiction finishes the proof of Lemma 3.9. �



LERAY’S PROBLEM FOR STATIONARY NAVIER-STOKES EQUATIONS 791

3.3.2. The maximum of Φ is not attained at ∂Ω. In this subsection we

consider the case (b), when (3.18) holds. Adding a constant to the pressure,

we assume, without loss of generality, that

(3.55) max
j=0,...,N

p̂j < 0 < ess sup
x∈Ω

Φ(x).

(Here we do not exclude the case ess sup
x∈Ω

Φ(x)=+∞.) Denote σ= max
j=0,...,N

p̂j<0.

As in the previous subsection, we consider the behavior of Φ on the Kro-

nrod tree Tψ. In particular, Lemmas 3.5 and 3.6 hold.

Lemma 3.10. There exists F ∈ Tψ such that diamF > 0, F ∩ ∂Ω = ∅,
and Φ(F ) > σ.

Proof. By assumptions, Φ(x) ≤ σ for every x ∈ ∂Ω \ Av and there is a

set of a positive measure E ⊂ Ω such that Φ(x) > σ at each x ∈ E. In virtue

of Lemma 3.2(iii), there exists a straight-line segment I = [x0, y0] ⊂ Ω with

I ∩ Av = ∅, x0 ∈ ∂Ω, y0 ∈ E, such that Φ|I is a continuous function. By

construction, Φ(x0) ≤ σ, Φ(y0) ≥ σ+ δ0 with some δ0 > 0. Take a subinterval

I1 = [x1, y0] ⊂ Ω such that Φ(x1) = σ + 1
2δ0 and Φ(x) ≥ σ + 1

2δ0 for each

x ∈ [x1, y0]. Then by Bernoulli’s Law (see Theorem 3.2), ψ 6= const on I1.

Hence, we can take x ∈ I1 such that the preimage ψ−1(ψ(x)) consists of a

finite union of regular cycles (see Lemma 3.4). Denote by F the regular cycle

containing x. Then by construction, Φ(F ) ≥ σ + 1
2δ0, and by definition of

regular cycles, diamF > 0 and F ∩ ∂Ω = ∅. �

Fix F from above lemma and consider the behavior of Φ on the Kronrod

arcs [Bj , F ], j = 0, . . . N . (Recall that by Bj we denote the elements of Tψ
such that Γj ⊂ Bj .) The rest part of this subsection is similar to that of Sec-

tion 3.3.1 with the following difference: F now plays the role that was played

before by BN , and the calculations become easier since F lies strictly inside Ω.

Adding a constant to the pressure, we could assume, without loss of

generality, that Φ(F ) = 0. Then by construction, 0 > σ ≥ Φ(Bj) for each

j = 0, . . . , N So, using Lemmas 3.5, 3.6 and Corollary 3.2 we can find a se-

quence of positive numbers ti ∈ (0,−σ), i ∈ N, with ti+1 = 1
2 ti, and the

corresponding regular cycles Aji ∈ [Bj , F ], j = 0, . . . , N , with Φ(Aji ) = −ti and

Φ(C) > −ti for all C ∈ (Aji , F ]. Denote by Vi the connected component of the

set Ω\ (A0
i ∪ · · ·∪ANi ) containing F . By construction, V i ⊂ Ω, Vi ⊃ V i+1, and

(3.56) ∂Vi = A0
i ∪ · · · ∪ANi .

By definition of regular cycles (see Lemma 3.4), we again obtain esti-

mates (3.32) and (3.33) for k ≥ ki. Accordingly, for k ≥ ki and t ∈ [5
8 ti,

7
8 ti],
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we can define W j
ik(t) as the connected component of the open set

{x ∈ Vi \ V i+1 : Φk(x) > −t}

with ∂W j
ik(t) ⊃ A

j
i+1 and put

Wik(t) =
N⋃
j=0

W j
ik(t), Sik(t) = (∂Wik(t)) ∩ Vi \ V i+1.

By construction,

∂Wik(t) = Sik(t) ∪A0
i+1 ∪ · · · ∪ANi+1,

and the set Sik(t) separates A0
i ∪ · · · ∪ ANi from A0

i+1 ∪ · · · ∪ ANi+1. By the

Morse-Sard theorem (see Theorem 2.1) applied to Φk ∈W 2,2
loc (Ω), for almost all

t ∈ [5
8 ti,

7
8 ti], the level set Sik(t) consists of finitely many C1-cycles. Moreover,

by construction,

(3.57)

∫
Sik(t)

∇Φk · n ds = −
∫

Sik(t)

|∇Φk| ds < 0,

where n is the unit outward normal vector to ∂Wik(t). As before, we call such

values t ∈ [5
8 ti,

7
8 ti] (k, i)-regular.

Since Φ 6= const on Vi, from (3.27) it follows that
∫
Vi

ω2 dx > 0 for each i,

and taking into account the weak convergence ωk ⇀ ω in L2(Ω), we get

Lemma 3.11. For every i ∈ N, there exist constants εi > 0, δi ∈ (0, δ0)

and k′i ∈ N such that
∫

Vi+1

ω2
k dx > εi for all k ≥ k′i.

Now, we can prove

Lemma 3.12. Assume that Ω ⊂ R2 is a bounded domain of type (2.1)

with C2-smooth boundary ∂Ω, f ∈ W 1,2(Ω), and a ∈ W 3/2,2(∂Ω) satisfies

condition (1.2). Then assumptions (E-NS) and (3.18) lead to a contradiction.

Proof. The proof of this lemma is similar to that of Lemma 3.8. However,

now the situation is easier since we separate Vi from the whole boundary ∂Ω.

Fix i ∈ N, and assume that k ≥ ki (see (3.32)). For a (k, i)-regular value

t ∈ [5
8 ti,

7
8 ti], consider the domain

Ωik(t) = Wik(t) ∪ V i+1.
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By construction, ∂Ωik(t) = Sik(t). Integrating identity (3.48) over Ωik(t), we

obtain

0 >

∫
Sik(t)

∇Φk · n ds =

∫
Ωik(t)

ω2
k dx+

1

νk

∫
Sik(t)

Φkuk · n ds

− 1

νk

∫
Ωik(t)

fk · uk dx =

∫
Ωik(t)

ω2
k dx−

t

νk

∫
Sik(t)

uk · n ds

− 1

νk

∫
Ωik(t)

fk · uk dx =

∫
Ωik(t)

ω2
k dx−

1

νk

∫
Ωik(t)

fk · uk dx

(3.58)

and, as before, we have a contradiction with Lemma 3.11. �

Proof of Theorem 1.1. Let the hypotheses of Theorem 1.1 be satisfied.

Suppose that its assertion fails. Then, by Lemma 3.1, there exist v, p and

a sequence (uk, pk) satisfying (E-NS), and by Lemmas 3.12 and 3.9 these as-

sumptions lead to a contradiction. �

4. Axially symmetric case

First, let us specify some notation. Let Ox1 , Ox2 , Ox3 be coordinate axes

in R3 and θ = arctg(x2/x1), r = (x2
1+x2

2)1/2, z = x3 be cylindrical coordinates.

Denote by vθ, vr, vz the projections of the vector v on the axes θ, r, z.

A function f is said to be axially symmetric if it does not depend on θ.

A vector-valued function h = (hr, hθ, hz) is called axially symmetric if hr, hθ
and hz do not depend on θ. A vector-valued function h′ = (hr, hθ, hz) is called

axially symmetric with no swirl if hθ = 0 while hr and hz do not depend on θ.

The main result of this section is as follows.

Theorem 4.1. Assume that Ω ⊂ R3 is a bounded axially symmetric

domain of type (2.1) with C2-smooth boundary ∂Ω. If f ∈ W 1,2(Ω), a ∈
W 3/2,2(∂Ω) are axially symmetric and a satisfies condition (1.2), then (1.1)

admits at least one weak axially symmetric solution. Moreover, if f and a are

axially symmetric with no swirl, then (1.1) admits at least one weak axially

symmetric solution with no swirl.

Using the “reductio ad absurdum” Leray argument (the main idea is pre-

sented in Section 3.1 for the plane case; specific details concerning the axially

symmetric case can be found in [15]), it is possible to prove the following

Lemma 4.1. Assume that Ω ⊂ R3 is a bounded axially symmetric do-

main of type (2.1) with C2-smooth boundary ∂Ω, f = curl b, b ∈ W 2,2(Ω),

a ∈ W 3/2,2(∂Ω) are axially symmetric, and a satisfies condition (1.2). If the
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assertion of Theorem 4.1 is false, then there exist v, p with the following prop-

erties :

(E-AX) The axially symmetric functions v ∈ W̊ 1,2(Ω), p ∈ W 1,3/2(Ω)

satisfy the Euler system (3.11).

(E-NS-AX) Condition (E-AX) is satisfied, and there exist a sequences of ax-

ially symmetric functions uk ∈ W 1,2(Ω), pk ∈ W 1,3/2(Ω) and

numbers νk → 0+, λk → λ0 > 0 such that the norms ‖uk‖W 1,2(Ω),

‖pk‖W 1,3/2(Ω) are uniformly bounded, the pair (uk, pk) satisfies

(3.10) with fk =
λkν

2
k

ν2 f , ak = λkνk
ν a, and

(4.1) ‖∇uk‖L2(Ω) → 1, uk ⇀ v in W 1,2(Ω), pk ⇀ p in W 1,3/2(Ω).

Moreover, uk ∈W 3,2
loc (Ω) and pk ∈W 2,2

loc (Ω).

As in the previous section, in order to prove existence Theorem 4.1, we

need to show that conditions (E-NS-AX) lead to a contradiction.

Assume that

Γj ∩Ox3 6= ∅, j = 0, . . . ,M ′,

Γj ∩Ox3 = ∅, j = M ′ + 1, . . . , N.

Let P+ = {(0, x2, x3) : x2 > 0, x3 ∈ R}, D = Ω ∩ P+. Obviously, on P+

the coordinates x2, x3 coincide with the coordinates r, z.

For a set A ⊂ R3, put Ă := A∩P+, and for B ⊂ P+, denote by ‹B the set

in R3 obtained by rotation of B around Oz-axis.

One can easily see that

(S1) D is a bounded plane domain with Lipschitz boundary. Moreover, Γ̆j
(Ă is defined just above) is a connected set for every j = 0, . . . , N .

In other words, {Γ̆j : j = 0, . . . , N} coincides with the family of all

connected components of the set P+ ∩ ∂D.

Hence, v and p satisfy the following system in the plane domain D:

(4.2)



∂p

∂r
− (vθ)

2

r
+ vr

∂vr
∂r

+ vz
∂vr
∂z

= 0,

∂p

∂z
+ vr

∂vz
∂r

+ vz
∂vz
∂z

= 0,

vθvr
r

+ vr
∂vθ
∂r

+ vz
∂vθ
∂z

= 0,

∂(rvr)

∂r
+
∂(rvz)

∂z
= 0

(these equations are satisfied for almost all x ∈ D) and

(4.3) v(x) = 0 for H1-almost all x ∈ P+ ∩ ∂D.
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We have the following integral estimates: v ∈W 1,2
loc (D),

(4.4)

∫
D

r|∇v(r, z)|2 drdz <∞

and, by the Sobolev embedding theorem for three-dimensional domains,

v ∈ L6(Ω), i.e.,

(4.5)

∫
D

r|v(r, z)|6 drdz <∞.

Also, the condition ∇p ∈ L3/2(Ω) can be written as

(4.6)

∫
D

r|∇p(r, z)|3/2 drdz <∞.

4.1. Some previous results on Euler equations. The next statement was

proved in [13, Lemma 4] and in [1, Th. 2.2].

Theorem 4.2. If conditions (E-AX) are satisfied, then

(4.7) ∀j ∈ {0, 1, . . . , N} ∃ p̂j ∈ R : p(x) ≡ p̂j for H2-almost all x ∈ Γj .

In particular, by axial symmetry,

(4.8) p(x) ≡ p̂j for H1-almost all x ∈ Γ̆j .

The following result was obtained in [15].

Theorem 4.3. If conditions (E-AX) are satisfied, then p̂0 = · · · = p̂M ′ ,

where p̂j are the constants from Theorem 4.2.

We need a weak version of Bernoulli’s law for a Sobolev solution (v, p) to

the Euler equations (4.2) (see Theorem 4.4 below).

From the last equality in (4.2) and from (4.4) it follows that there exists

a stream function ψ ∈W 2,2
loc (D) such that

(4.9)
∂ψ

∂r
= −rvz,

∂ψ

∂z
= rvr.

Fix a point x∗ ∈ D. For ε > 0, denote by Dε the connected component of

D ∩ {(r, z) : r > ε} containing x∗. Since

(4.10) ψ ∈W 2,2(Dε) ∀ε > 0,

by Sobolev embedding theorem, ψ ∈ C(D̄ε). Hence ψ is continuous at points

of D̄ \Oz = D̄ \ {(0, z) : z ∈ R}.

Lemma 4.2 (cf. Lemma 3.3). If conditions (E-AX) are satisfied, then

there exist constants ξ0, . . . , ξN ∈ R such that ψ(x) ≡ ξj on each curve Γ̆j ,

j = 0, . . . , N .
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Proof. In virtue of (4.3) and (4.9), we have ∇ψ(x) = 0 for H1-almost all

x ∈ ∂D \Oz. Then the Morse-Sard property (see Theorem 2.1) implies that

for any connected set C ⊂ ∂D \Oz, ∃α = α(C) ∈ R : ψ(x) ≡ α ∀x ∈ C.

Hence, since Γ̆j are connected (see (S1)), the lemma follows. �

Denote by Φ = p +
|v|2

2
the total head pressure corresponding to the

solution (v, p). Obviously,

(4.11)

∫
D

r|∇Φ(r, z)|3/2 drdz <∞.

Hence,

(4.12) Φ ∈W 1,3/2(Dε) ∀ε > 0.

Applying Lemmas 2.1, 2.2, and Remark 2.2 to the functions v, ψ,Φ, we

get the following

Lemma 4.3. If conditions (E-AX) hold, then there exists a set Av ⊂ D
such that

(i) H1(Av) = 0.

(ii) For all x = (r, z) ∈ D \Av,

lim
ρ→0
−
∫
Bρ(x)

|v(y)− v(x)|2dy = lim
ρ→0
−
∫
Bρ(x)

|Φ(y)− Φ(x)|2dy = 0;

moreover, the function ψ is differentiable at x, and

∇ψ(x) = (−rvz(x), rvr(x)).

(iii) For every ε > 0, there exists a set U ⊂ R2 with H1
∞(U) < ε, Av ⊂ U ,

and such that the functions v,Φ are continuous on D \ (U ∪Oz).

The next two results were obtained in [15].

Theorem 4.4 (Bernoulli’s Law). Let conditions (E-AX) be valid, and let

Av be a set from Lemma 4.3. For any compact connected set K ⊂ D̄ \Oz , the

following property holds : if

(4.13) ψ
∣∣∣
K

= const,

then

(4.14) Φ(x1) = Φ(x2) for all x1, x2 ∈ K \Av.

We also need the following assertion from [15] concerning the behavior of

the total head pressure near the singularity axis Oz.
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Lemma 4.4. Assume that conditions (E-AX) are satisfied. Let Ki be a

sequence of compact sets with the following properties : Ki ⊂ D̄ \ Oz , ψ|Ki =

const, and lim
i→∞

inf
(r,z)∈Ki

r = 0, lim
i→∞

sup
(r,z)∈Ki

r > 0. Then Φ(Ki)→ p̂0 as i→∞.

Here we denote by Φ(Ki) the corresponding constant ci ∈ R such that

Φ(x) = ci for all x ∈ Ki \Av (see Theorem 4.4).

4.2. Obtaining a contradiction. We consider three possible cases.

(a) The maximum of Φ is attained on the boundary component intersect-

ing the symmetry axis:

(4.15) p̂0 = max
j=0,...,N

p̂j = ess sup
x∈Ω

Φ(x).

(b) The maximum of Φ is attained on a boundary component that does

not intersect the symmetry axis:

(4.16) p̂0 < p̂N = max
j=0,...,N

p̂j = ess sup
x∈Ω

Φ(x).

(c) The maximum of Φ is not attained on ∂Ω:

(4.17) max
j=0,...,N

p̂j < ess sup
x∈Ω

Φ(x).

4.2.1. The case ess sup
x∈Ω

Φ(x) = p̂0. Let us consider case (4.15). Adding a

constant to the pressure p, we can assume, without loss of generality, that

(4.18) p̂0 = ess sup
x∈Ω

Φ(x) = 0.

Since the identity p̂0 = p̂1 = · · · = p̂N is impossible (see Corollary 3.1,

which is valid also for the axial-symmetric case), we have that p̂j < 0 for some

j ∈ {M ′ + 1, . . . , N}. (Recall that by Theorem 4.3, p̂0 = · · · = p̂M ′ = 0.)

Now, we receive a contradiction following the arguments of [15], [16]. For

the reader’s convenience, we recall these arguments. From equation (3.111) we

obtain the identity

0 = x · ∇p(x) + x ·
Ä
v(x) · ∇

ä
v(x)

= div
î
x p(x) +

Ä
v(x) · x

ä
v(x)

ó
− p(x) div x− |v(x)|2

= div
î
x p(x) +

Ä
v(x) · x

ä
v(x)

ó
− 3Φ(x) +

1

2
|v(x)|2.

(4.19)
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Integrating it over Ω and using (4.18), we derive

0 ≥
∫
Ω

î
3Φ(x)− 1

2
|v(x)|2

ó
dx =

∫
∂Ω

p(x)
Ä
x · n

ä
ds =

N∑
j=0

p̂j

∫
Γj

Ä
x · n

ä
ds

= −
N∑
j=1

p̂j

∫
Ωj

div x dx = −3
N∑
j=1

p̂j |Ωj | > 0.

The obtained contradiction finishes the proof for case (4.15).

4.2.2. The case p̂0 < p̂N = ess sup
x∈Ω̄

Φ(x). Suppose that (4.16) holds. We

may assume, without loss of generality, that the maximum value is zero; i.e.,

(4.20) p̂0 < p̂N = max
j=0,...,N

p̂j = ess sup
x∈Ω̄

Φ(x) = 0.

From Theorem 4.3, we have

(4.21) p̂0 = · · · = p̂M ′ < 0.

Change (if necessary) the numbering of the boundary components ΓM ′+1, . . . ,

ΓN−1 so that

p̂j < 0, j = 0, . . . ,M, M ≥M ′,(4.22)

p̂M+1 = · · · = p̂N = 0.(4.23)

The first goal is to remove a neighborhood of the singularity line Oz from

our considerations. Then we can reduce the proof to the plane case considered

in Section 3.3.1.

Take r0 > 0 such that the open set Dε = {(r, z) ∈ D : r > ε} is connected

for every ε ≤ r0 (i.e., Dε is a domain), and

Γ̆j ⊂ Dr0 and inf
(r,z)∈Γ̆j

r ≥ 2r0, j = M ′ + 1, . . . , N,

Γ̆j ∩Dε is a connected set

and sup
(r,z)∈Γ̆j∩Dε

r ≥ 2r0, j = 0, . . . ,M ′, ε ∈ (0, r0].

(4.24)

Let a set C ⊂ Dε separate Γ̆i and Γ̆j in Dε for some different indexes i, j ∈
{0, . . . , N}; i.e., Γ̆i ∩ Dε and Γ̆j ∩ Dε lie in different connected components of

Dε \ C. Obviously, for ε ∈ (0, r0], there exists a constant δ(ε) > 0 (not

depending on i, j, C) such that the uniform estimate sup
(r,z)∈C

r ≥ δ(ε) holds (see

Figure 2). Moreover, the function δ(ε) is nondecreasing. In particular,

(4.25) δ(ε) ≥ δ(r0), ε ∈ (0, r0].

By Remark 2.4 and Lemma 4.2, we can apply Kronrod’s results to the

stream function ψ|D̄ε , ε ∈ (0, r0]. Accordingly, Tψ,ε means the corresponding
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Kronrod tree for the restriction ψ|D̄ε . Define the total head pressure on Tψ,ε
as we did in Section 3.3.1. Then the following analog of Lemma 3.5 holds.

Lemma 4.5. Let A,B ∈ Tψ,ε, where ε ∈ (0, r0], diamA > 0, and diamB

> 0. Consider the corresponding arc [A,B] ⊂ Tψ,ε joining A to B (see Lem-

mas 2.3 and 2.4). Then the restriction Φ|[A,B] is a continuous function.

The lemma is proved using the argument of Lemma 3.5 and taking into

account the above definitions, Theorem 4.4, and the continuity properties of

Φ; see Lemma 4.3(iii).

Denote by Bε
0, . . . , B

ε
N the elements of Tψ,ε such that Bε

j ⊃ Γ̆j ∩ D̄ε, j =

0, . . . ,M ′, and Bε
j ⊃ Γ̆j , j = M ′ + 1, . . . , N . By construction, Φ(Bε

j ) < 0 for

j = 0, . . . ,M , and Φ(Bε
j ) = 0 for j = M + 1, . . . , N . For r > 0, let Lr be the

horizontal straight line Lr = {(r, z) : z ∈ R}. We have

Lemma 4.6. There exist r∗ ∈ (0, r0] and Cj ∈ [Br∗
j , B

r∗
N ], j = 0, . . . ,M ,

such that Φ(Cj) < 0 and C ∩ Lr∗ = ∅ for all C ∈ [Cj , B
r∗
N ].

Proof. Suppose that the lemma fails for some j = 0, . . . ,M . Then it is easy

to construct ri → 0 and Ci ∈ [Bri
j , B

ri
N ] such that Ci ∩Lri 6= ∅ and Φ(Ci)→ 0.

Since by (4.22), p̂0 < 0, we have Φ(Ci) 9 p̂0. By (4.25), sup
(r,z)∈Ci

r ≥ δ(r0).

Thus, we have a contradiction with Lemma 4.4, and the result is proved. �

Lemma 4.6 allows us to remove a neighborhood of the singularity line

Oz from our argument. Thus, we can apply the approach developed in Sec-

tion 3.3.1 for the plane case. Put, for simplicity, Tψ = Tψ,r∗ and Bj = Br∗
j .

Since ∂Dr∗ ⊂ B0 ∪ · · · ∪ BN ∪ Lr∗ and the set {B0, . . . , BN} ⊂ Tψ is finite,

we can change Cj (if necessary) so that the assertion of Lemma 4.6 takes the

following stronger form:

(4.26) ∀j = 0, . . . ,M Cj ∈ [Bj , BN ], Φ(Cj) < 0,

and

(4.27) C ∩ ∂Dr∗ = ∅ ∀C ∈ [Cj , BN ).

Observe that Γj ∩Lr∗ 6= ∅ for j = 0, . . . ,M ′. Therefore, if a cycle C ∈ Tψ
separates ΓN from Γ0 and C ∩ ∂Dr∗ = ∅, then C separates ΓN from Γj for all

j = 1, . . . ,M ′. So we can take C0 = · · · = CM ′ (see Figure 2) and consider

only the Kronrod arcs [CM ′ , BN ], . . . , [CM , BN ].

Recall that a set Z ⊂ Tψ has T -measure zero if H1({ψ(C) : C ∈ Z}) = 0.

Lemma 4.7. For every j = M ′, . . . ,M , T -almost all C ∈ [Cj , BN ] are

C1-curves homeomorphic to the circle. Moreover, there exists a subsequence

Φkl such that the sequence Φkl |C converges to Φ|C uniformly Φk|C ⇒ Φ|C on

T -almost all cycles C ∈ [Cj , BN ].
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Figure 2. The domain D for the case M ′ = M = 1, N = 2.

The first assertion of the lemma follows from Theorem 2.1(iv) and (4.27).

The validity of the second one for T -almost all C ∈ [Cj , BN ] was proved in [17,

Lemma 3.3].

Below we assume (without loss of generality) that the subsequence Φkl

coincides with Φk. Besides, cycles satisfying the assertion of Lemma 4.7 will

be called regular cycles.

From Lemmas 4.7 and 3.6 (which is also valid for the axially symmetric

case), we obtain

Corollary 4.1. For each j = M ′, . . . ,M , we have

H1
Ä
{Φ(C) : C ∈ [Cj , BN ] and C is not a regular cycle}

ä
= 0.

As in the plane case (see Section 3.3.1), we can take a sequence of positive

values ti with ti+1 = 1
2 ti, the corresponding regular cycles Aji ∈ [Cj , BN ] with

Φ(Aji ) = −ti, and the sequence of domains Vi ⊂ Dr∗ with

(4.28) ∂Vi = AM
′

i ∪ · · · ∪AMi ∪ Γ̆K ∪ · · · ∪ Γ̆N ,

where K ≥M + 1 is independent of i.

By the definition of regular cycles, we have again estimates (3.32) and

(3.33) for k ≥ ki. Accordingly, for k ≥ ki and t ∈ [5
8 ti,

7
8 ti], we can define W j

ik(t)

as the connected component of the open set {x ∈ Vi \V i+1 : Φk(x) > −t} with

∂W j
ik(t) ⊃ A

j
i+1 and put

Wik(t) =
M⋃

j=M ′
W j
ik(t), Sik(t) = (∂Wik(t)) ∩ Vi \ V i+1.

By construction,

∂Wik(t) = Sik(t) ∪AM
′

i+1 ∪ · · · ∪AMi+1,
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and the set Sik(t) separates AM
′

i ∪ · · · ∪ AMi from AM
′

i+1 ∪ · · · ∪ AMi+1. Since

Φk ∈W 2,2
loc (Ω) (see (E-NS-AX)), by the Morse-Sard theorem (see Theorem 2.1),

for almost all t ∈ [5
8 ti,

7
8 ti], the level set Sik(t) consists of finitely many C1-cycles

and Φk is differentiable (in classical sense) at every point x ∈ Sik(t) with

∇Φk(x) 6= 0. Therefore, S̃ik(t) is a finite union of smooth surfaces (tori), and

by construction,

(4.29)

∫
S̃ik(t)

∇Φk · n dS = −
∫

S̃ik(t)

|∇Φk| dS < 0,

where n is the unit outward normal vector to ∂W̃ik(t). (Recall that for a set

B ⊂ P+, we denote by ‹B the set in R3 obtaining by rotation of B around

Oz-axis.)

For h > 0, denote Γh = {x ∈ Ω : dist(x,ΓK ∪ · · · ∪ ΓN ) = h)}, Ωh = {x ∈
Ω : dist(x,ΓK ∪ · · · ∪ ΓN ) < h)}. Since the distance function dist(x, ∂Ω) is

C1-regular and the norm of its gradient is equal to one in the neighborhood of

∂Ω, there is a constant δ0 > 0 such that for every h ≤ δ0, the set Γh is a union

of N −K + 1 C1-smooth surfaces homeomorphic to the torus, and

(4.30) H2(Γh) ≤ c0 ∀h ∈ (0, δ0],

where the constant c0 = 3H2(ΓK ∪ · · · ∪ ΓN ) is independent of h.

By a direct calculation, (4.2) implies

(4.31) ∇Φ = v × ω in Ω,

where ω = curlv; i.e.,

ω = (ωr, ωθ, ωz) =
Ä
−∂vθ
∂z

,
∂vr
∂z
− ∂vz

∂r
,
vθ
r

+
∂vθ
∂r

ä
.

Set ωk = curluk, ω(x) = |ω(x)|, ωk(x) = |ωk(x)|. Since Φ 6= const on Vi,

(4.31) implies
∫
Ṽi
ω2 dx > 0 for every i. Hence, from the weak convergence

ωk ⇀ ω in L2(Ω) it follows

Lemma 4.8. For any i ∈ N, there exist constants εi > 0, δi ∈ (0, δ0) and

k′i ∈ N such that

Ωδi ∩A
j
i = Ωδi ∩A

j
i+1 = ∅, j = M ′, . . . ,M,

and
∫

Ṽi+1\Ωδi

ω2
k dx > εi for all k ≥ k′i.

Now we are ready to prove the key estimate.
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Lemma 4.9. For any i ∈ N, there exists k(i) ∈ N such that for every

k ≥ k(i) and for almost all t ∈ [5
8 ti,

7
8 ti], the inequality

(4.32)

∫
S̃ik(t)

|∇Φk| dS < Ft,

holds with the constant F independent of t, k and i.

Proof. Since the proof of this lemma is similar to that of Lemma 3.8 for

the plane case, we comment only some key steps.

Fix i ∈ N. Below we always assume that k ≥ ki (see (3.32)). Since

we have removed a neighborhood of the singularity line Oz, we can use the

Sobolev embedding theorem in the plane domain Dr∗ . In particular, from

the uniform estimate ‖Φk‖W 1,3/2(Dr∗ ) ≤ const, we deduce that the norms

‖Φk‖L6(Dr∗ ) are uniformly bounded. Consequently, by the Hölder inequality,

‖Φk∇Φk‖L6/5(Dr∗ ) ≤ const, and this implies

(4.33) ‖Φk∇Φk‖L6/5(D̃r∗ )
≤ const.

Fix a sufficiently small σ > 0 (the exact value of σ will be specified below),

and take the parameter δσ ∈ (0, δi] (see Lemma 4.8) small enough to satisfy

the following conditions:

(4.34) Ωδσ ∩ ‹Aji = Ωδσ ∩ ‹Aji+1 = ∅, j = M ′, . . . ,M,

(4.35)

∫
Γh

Φ2
k dS < σ2 ∀h ∈ (0, δσ] ∀k ≥ k′.

(The last estimate follows from the identity Φ|ΓK∪···∪ΓN ≡ 0, the weak conver-

gence Φk ⇀ Φ in the space W 1,3/2(Ω), and (4.33).)

By a direct calculation, (3.10) implies

∇Φk = −νkcurl ωk + ωk × uk + fk = −νkcurl ωk + ωk × uk +
λkν

2
k

ν2
curl b.

By the Stokes theorem, for any C1-smooth closed surface S ⊂ Ω and g ∈
W 2,2(Ω), we have ∫

S

curlg · n dS = 0.

So, in particular, ∫
S

∇Φk · n dS =

∫
S

(ωk × uk) · n dS.

Now, fix a sufficiently small ε > 0. (The exact value of ε will be specified

below.) For a given sufficiently large k ≥ k′, we make a special procedure to
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find a number h̄k ∈ (0, δσ) such that the estimates∣∣∣∣∣
∫

Γh̄k

∇Φk · n dS
∣∣∣∣∣ ≤ 2

∫
Γh̄k

|uk| · |∇uk| dS < ε,(4.36)

∫
Γh̄k

|uk|2 dS ≤ Cεν2
k(4.37)

hold, where Cε is independent of k and σ. This procedure exactly repeats the

argument lines of the proof of Lemma 3.8.

The final part of the proof is identical to that of Lemma 3.8. We have to

integrate formula (3.48) (which is valid for the axially symmetric case as well)

over the three-dimensional domain Ωih̄k
(t) with ∂Ωih̄k

(t) = Γh̄k ∪ S̃ik(t). This

means that we have only to replace the curves Sik(t) by the surfaces S̃ik(t) in

the corresponding integrals. �

Now, we obtain a contradiction by repeating word-by-word the proof of

Lemma 3.9 and replacing the one-dimensional Hausdorff measure by the two-

dimensional one, and the curves Sik(t) by the surfaces S̃ik(t) in the correspond-

ing integrals.

4.2.3. The case ess sup
x∈Ω

Φ(x) > max
j=0,...,N

p̂j . Assume that (4.17) is satisfied,

and set σ = max
j=0,...,N

p̂j . Then, as in the proof of Lemma 3.10, we can find

a compact connected set F ⊂ D \ Av such that diam(F ) > 0, ψ|F = const,

and Φ(F ) > σ. Without loss of generality, we may assume that σ < 0 and

Φ(F ) = 0. Since now it is more difficult to separate F from ∂D by regular

cycles (than in Lemma 3.10), we have to apply the method of Section 4.2.2.

Namely, take a number r0 > 0 such that F ⊂ Dr0 , the open set Dε = {(r, z) ∈
D : r > ε} is connected for every ε ≤ r0, and conditions (4.24) are satisfied.

Then for ε ∈ (0, r0], we can consider the behavior of Φ on the Kronrod trees

Tψ,ε corresponding to the restrictions ψ|D̄ε . Denote by F ε the element of

Tψ,ε containing F . Using the same procedure as in Section 4.2.2, we can find

r∗ ∈ (0, r0] such that the following lemma holds.

Lemma 4.10. There exist Cj ∈ [Br∗
j , F

r∗ ], j = 0, . . . , N , such that Φ(Cj)

< 0 and C ∩ Lr∗ = ∅ for all C ∈ [Cj , F
r∗ ].

Set Tψ = Tψ,r∗ , F
∗ = F r∗ , and Bj = Br∗

j , i.e., Bj ∈ Tψ and Bj ⊃ Γ̆j ∩Dr∗ .
As above, we can change Cj (if necessary) so that Lemma 4.10 takes the

following stronger form:

∀j = 0, . . . , N Cj ∈ [Bj , F
∗], Φ(Cj) < 0,

C ∩ ∂Dr∗ = ∅ ∀C ∈ [Cj , F
∗], and C0 = · · · = CM ′ .
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The rest of the procedure of obtaining a contradiction is done in the same way

as in Section 3.3.2. Namely, we need to take positive numbers ti = 2−it0, reg-

ular cycles Aji ∈ [Cj , F
∗] with Φ(Aji ) = −ti, and the set Sik(t) with Φk|Sik(t) ≡

−t separating AM
′

i ∪ · · · ∪ANi from AM
′

i+1 ∪ · · · ∪ANi+1, etc. The only difference

is that we have to integrate identity (3.48) over the three-dimensional domains

Ωik(t) with ∂Ωik(t) = S̃ik(t).

Proof of Theorem 4.1. Let the hypotheses of Theorem 4.1 be satisfied.

Suppose that its assertion fails. Then by Lemma 4.1 there exist v, p and

a sequence (uk, pk) satisfying (E-NS-AX). However, in Sections 4.2.1–4.2.3 we

have shown that assumptions (E-NS-AX) lead to a contradiction in all possible

cases (4.15)–(4.17). This finishes the proof of Theorem 4.1. �

Remark 4.1. In Lemma 4.1, let the data f and a be axially symmetric

with no swirl. If the corresponding assertion of Theorem 4.1 fails, then it can

be shown (see [15]) that conditions (E-NS-AX) are satisfied with uk axially

symmetric with no swirl as well. But since we have proved that assumptions

(E-NS-AX) lead to a contradiction in the more general case with possible swirl,

we get the validity of both assertions of Theorem 4.1.

Remark 4.2. It is well known (see [21]) that under the hypothesis of

Theorem 4.1, every weak solution u of problem (1.1) is more regular; i.e,

u ∈W 2,2(Ω) ∩W 3,2
loc (Ω).
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[13] L. V. Kapitanskĭı and K. I. Piletskas, Spaces of solenoidal vector fields

and boundary value problems for the Navier-Stokes equations in domains with

noncompact boundaries, Trudy Mat. Inst. Steklov. 159 (1983), 5–36, in Rus-

sian; translated in Proc. Math. Inst. Steklov 159 (1984), 3–34 Zbl 0585.76038.

MR 0720205. Zbl 0528.76029.

[14] M. V. Korobkov, Bernoulli’s law under minimal smoothness assumptions, Dokl.

Math. 83 (2011), 107–110. MR 2848783. Zbl 1245.35088. http://dx.doi.org/10.

1134/S1064562411010327.

[15] M. V. Korobkov, K. Pileckas, and R. Russo, Steady Navier-Stokes sys-

tem with nonhomogeneous boundary conditions in the axially symmetric case,

http://www.ams.org/mathscinet-getitem?mr=1308742
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0814.76029
http://dx.doi.org/10.1007/BF00995126
http://www.ams.org/mathscinet-getitem?mr=3010119
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1273.26017
http://dx.doi.org/10.4171/RMI/710
http://www.ams.org/mathscinet-getitem?mr=1835418
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0981.51016
http://www.ams.org/mathscinet-getitem?mr=1225511
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0864.42009
http://www.ams.org/mathscinet-getitem?mr=1029687
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0691.42017
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0691.42017
http://dx.doi.org/10.1512/iumj.1989.38.38047
http://www.ams.org/mathscinet-getitem?mr=1158660
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0804.28001
http://www.ams.org/mathscinet-getitem?mr=0166498
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0126.42203
http://dx.doi.org/10.1007/BF02559590
http://dx.doi.org/10.1007/BF02559590
http://www.ams.org/mathscinet-getitem?mr=0132307
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0111.38502
http://www.ams.org/mathscinet-getitem?mr=1773581
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0946.35063
http://www.ams.org/mathscinet-getitem?mr=1228739
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0780.76018
http://www.ams.org/mathscinet-getitem?mr=1284206
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0949.35005
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0585.76038
http://www.ams.org/mathscinet-getitem?mr=0720205
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0528.76029
http://www.ams.org/mathscinet-getitem?mr=2848783
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1245.35088
http://dx.doi.org/10.1134/S1064562411010327
http://dx.doi.org/10.1134/S1064562411010327


806 MIKHAIL V. KOROBKOV, KONSTANTIN PILECKAS, and REMIGIO RUSSO

to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2015). arXiv 1110.6301.

http://dx.doi.org/10.2422/2036-2145.201204 003.

[16] M. V. Korobkov, K. Pileckas, and R. Russo, Steady Navier-Stokes sys-

tem with nonhomogeneous boundary conditions in the axially symmetric case,
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