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The flux problem for the Navier–Stokes equations

M. V. Korobkov, K. Pileckas, V. V. Pukhnachev, and R. Russo

Abstract. This is a survey of results on the Leray problem (1933) for the
Navier–Stokes equations of an incompressible fluid in a domain with mul-
tiple boundary components. Imposed on the boundary of the domain are
inhomogeneous boundary conditions which satisfy the necessary require-
ment of zero total flux. The authors have proved that the problem is solv-
able in arbitrary bounded planar or axially symmetric domains. The proof
uses Bernoulli’s law for weak solutions of the Euler equations and a gener-
alization of the Morse–Sard theorem for functions in Sobolev spaces. New
a priori bounds for the Dirichlet integral of the velocity vector field in sym-
metric flows, as well as estimates for the regular component of the velocity
in flows with singularities of source/sink type are presented.
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1. Introduction

We consider boundary-value problems for the Navier–Stokes equations in
domains with multiple boundary components. These equations are the basic
mathematical model used in hydrodynamics. For a steady flow of an incompressible
fluid they have the form

−ν∆u + (u · ∇)u +∇p = f , x ∈ Ω, (1.1)
div u = 0, x ∈ Ω. (1.2)

Here u(x) is the velocity vector, p(x) is the ratio of the pressure to the constant
density of the fluid, f is the acceleration of the external mass forces, ν = const > 0
is the kinematic viscosity coefficient, and Ω is a bounded domain in Rn (n = 2, 3).
On its boundary ∂Ω we impose the boundary condition

u = a(x), x ∈ ∂Ω. (1.3)

Assume that ∂Ω consists of N + 1 connected components Γi,

∂Ω = Γ0 ∪ Γ1 ∪ Γ2 ∪ · · · ∪ ΓN ,

and Γi ∩ Γj = ∅ for i ̸= j. Here the surface (curve) Γ0 bounds Ω from the outside,
while the other connected components of the boundary Γi, i = 1, . . . , N , lie inside
this surface, so that

Ω = Ω0 \
( N⋃
i=1

Ωi

)
, Ωi ⊂ Ω0, i = 1, . . . , N, (1.4)

and Γi = ∂Ωi (see Fig. 1). In view of the continuity equation (1.2), the function a
must satisfy the condition∫

∂Ω

a · n dS =
N∑
i=0

∫
Γi

a · n dS = 0 (1.5)
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Figure 1. The domain Ω

(here n is the unit outward normal to ∂Ω), which means that the flux of the
incompressible fluid across the boundary of the flow region is equal to zero. In
the case when Ω has a connected boundary (that is, N = 0) and certain smoothness
conditions are fulfilled, Leray proved the solvability of (1.1)–(1.3) in his famous 1933
paper [1]. The same result holds when the flux Fi of the velocity vector across each
connected component Γi of the boundary vanishes:∫

Γi

a · n dS ≡ Fi = 0, i = 0, 1, . . . , N. (1.6)

(This condition means that the flow region contains neither sources nor sinks.)
It remained an open question as to whether the necessary condition

∑N
i=1 Fi = 0

(see (1.5)) is sufficient for (1.1)–(1.3) to be solvable. We are interested in the
situation when (1.6) fails to hold. In that case we shall call the problem (1.1)–(1.3)
the steady flux problem for the Navier–Stokes equations. It is also called the Leray
problem because it actually goes back to his paper [1] cited above.

The Navier–Stokes equations have long attracted the interest of mathematicians:
suffice it to mention that Leray’s result on the solvability of (1.1)–(1.3), (1.6) was the
first example when the topological Leray–Schauder fixed point principle was applied
to a concrete problem in mechanics. The method of matching asymptotic expan-
sions was developed by Prandtl in his analysis of the flow problem for (1.1) as
ν → 0. The extension of the notion of an elliptic system of differential equations
was a by-product of Douglis and Nirenberg’s investigation of a linearized version
of (1.1).

Let us now consider a non-stationary analogue of (1.1)–(1.3). In it one must find
a solution u(x, t), p(x, t) of the system

ut + (u · ∇)u− ν∆u +∇p = f , x ∈ Ω, t ∈ (0, T ), (1.7)
div u = 0, x ∈ Ω, t ∈ (0, T ), (1.8)

which satisfies the boundary condition

u = a, x ∈ ∂Ω, t ∈ (0, T ), (1.9)

and the initial condition

u = u0(x), x ∈ Ω, t = 0. (1.10)



1068 M.V. Korobkov, K. Pileckas, V.V. Pukhnachev, and R. Russo

A generalized solution of (1.7)–(1.10) satisfies the energy identity, which implies
that the L2(Ω)-norm of u(x, t) is bounded for almost all t ∈ (0, T ). No restrictions
on the values of the partial fluxes across the connected boundary components Γi
of ∂Ω are imposed. This estimate can be improved using methods presented in
Ladyzhenskaya’s book [2], resulting eventually in a proof of the unique solvabil-
ity of the two-dimensional problem for any T > 0. As for the three-dimensional
problem, the unique solvability of the problem (1.7)–(1.10) in a suitable class of
generalized solutions could be proved only on a finite time interval whose length
tends to zero with increasing norm of u0. Hopf [3] proved the existence of a weak
generalized solution of the three-dimensional problem on each finite time interval.
To prove that the Hopf solution is smooth (and therefore unique) is one of the seven
Millenium Prize Problems. It is indisputably the central problem of mathematical
hydrodynamics, but its inclusion in the Millenium list had the consequence of over-
shadowing other problems connected with the Navier–Stokes equations. On the
other hand, there exist many other interesting current problems in this list; several
such problems were formulated by Yudovich [4]. The steady flux problem (1.1)–(1.3)
was among these.

Assume that the domain Ω has a Lipschitz boundary ∂Ω and that the function a
in (1.3) belongs to the class W 1/2,2(∂Ω). If the boundary vector field a satis-
fies (1.5), then it has a divergence-free extension A to Ω such that A ∈ W 1,2(Ω)
and

∥A∥W 1,2(Ω) 6 c∥a∥W 1/2,2(∂Ω) (1.11)

(see [5]; here and below, c denotes various positive constants). Let H(Ω) be the
Hilbert space equal to the completion of the set of divergence-free vector-valued
functions η ∈ C∞0 (Ω) in the metric corresponding to the inner product

[v,η] =
∫

Ω

∇v · ∇η dx, where ∇v · ∇η =
n∑

i,j=1

∂vi
∂xj

∂ηi
∂xj

.

We call a vector field u ∈ W 1,2(Ω) a generalized solution of (1.1)–(1.3) if the
following conditions hold:

(a) there exists a divergence-free vector-valued function A ∈W 1,2(Ω) such that
A

∣∣
∂Ω

= a and u−A = w ∈ H(Ω);
(b) w satisfies the integral identity

ν

∫
Ω

∇w · ∇η dx−
∫

Ω

((w + A) · ∇)η ·w dx−
∫

Ω

(w · ∇)η ·A dx

= −ν
∫

Ω

∇A · ∇η dx+
∫

Ω

(A · ∇)η ·A dx+
∫

Ω

f · η dx ∀η ∈ H(Ω).

(1.12)

This identity is equivalent to the operator equation

w = Tw (1.13)
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in the Hilbert space H(Ω), where T is the operator defined by

[Tw,η] = ν−1

∫
Ω

((w + A) · ∇)η ·w dx+ ν−1

∫
Ω

(w · ∇) η ·A dx

−
∫

Ω

∇A · ∇η dx+ ν−1

∫
Ω

(A · ∇)η ·A dx+ ν−1

∫
Ω

f · η dx ∀w,η ∈ H(Ω).

This operator is completely continuous, so we can use the Leray–Schauder fixed
point theorem [2] to prove that (1.13) is solvable. To do this it is sufficient to show
that all solutions of the equation

w(λ) = λTw(λ), λ ∈ [0, 1], (1.14)

are bounded in the norm of H(Ω), or in other words, they have a bounded Dirichlet
integral

I = [w,w] ≡
∫

Ω

∇w · ∇w dx. (1.15)

In his pathbreaking paper [1] Leray proved that all solutions of (1.1)–(1.3) sat-
isfying the additional condition (1.6) have a bounded Dirichlet integral. His proof
was by contradiction and did not give any a priori estimate for the Dirichlet inte-
gral (1.15) in terms of the problem data. Under the additional assumption (1.6)
such a bound was first obtained by Hopf [6] in 1941. Both these papers prompted
further investigations of the flux problem.

Hopf’s construction was also used to replace the restrictive condition (1.6) by
the assumption that the fluxes Fi are small [7]–[13]. Parts of this construction, in
combination with the notion of a virtual drain introduced in [10] and [14], underlie
the solvability proof for two-dimensional flux problems with the additional assump-
tions of symmetry of the flow region and the boundary vector field a (see [14]–[16]).
In the earlier paper [17] Amick proved the solvability of the planar symmetric flux
problem by contradiction. In [14]–[16] the proof was based on a priori bounds for
the Dirichlet integral of the velocity vector field. Important in themselves, these
bounds are also needed in justifying methods used for the numerical solution of the
flux problem, such as finite difference methods or the Galerkin method.

Leray’s argument, enriched with new methods from the theory of functions and
the theory of elliptic equations, resulted in the solution of the Leray problem in the
planar and axially symmetric cases: the planar and the axially symmetric flux
problems were proved to be solvable for any values of the fluxes of the velocity
vector across the connected boundary components of the flow region [18]–[24]. It
is important that no constraints were imposed on the topology of the flow region.
Results from [18]–[24] are central in this survey. The main result was proved by
three of the authors in the planar case [22], and it can be stated as follows.

Theorem 1.1. Let Ω ⊂ R2 be a bounded domain with C2-boundary ∂Ω. If f ∈
W 1,2(Ω) and the boundary data a ∈ W 3/2,2(∂Ω) satisfy the condition (1.5), then
the problem (1.1)–(1.3) has at least one generalized solution u ∈W 1,2(Ω).

Remark 1.1. It is well known (see, for instance, [2]) that under the assumptions of
Theorem 1.1 each weak solution u of (1.1)–(1.3) has enhanced smoothness: u ∈
W 2,2(Ω) ∩W 3,2

loc (Ω). That is, the solution is as regular as the problem data allow.
In particular, u is C∞-smooth if f , a, and ∂Ω are in the smoothness class C∞.
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The proof of the existence theorem is based on a priori bounds derived by means
of a reductio ad absurdum argument put forward already by Leray [1]. A novel
feature in the application of this argument is the use of Bernoulli’s law for Sobolev
solutions of the Euler equations, which was obtained in [18] (a proof with all details
was presented in [19]). The results on Bernoulli’s law are based on the recent version
of the Morse–Sard theorem established by Bourgain, Korobkov, and Kristensen in
the joint paper [25]. In particular, it follows from this theorem that for a function
ψ ∈ W 2,1(Ω) almost all its level sets are unions of finitely many C1-curves. This
enables one to construct an appropriate subregion (bounded by smooth streamlines)
and to find an estimate for the L2-norm of the total head pressure gradient. Some
ideas which are close (heuristically) to Hopf’s maximum principle for solutions of
elliptic systems of partial differential equations are used in the proof (see § 3.3.1 for
more details). Eventually, the desired contradiction is obtained with the use of the
co-area formula.

Apart from the main problem (1.1)–(1.3) we shall investigate here its singular
analogues: the axially symmetric problem with sources or sinks on the axis of sym-
metry and the planar problem with a source or a sink in the flow region. In addition,
we look at the axially symmetric flux problem in the ‘stream function–vorticity’ vari-
ables in a domain like a spherical layer. We conclude the paper by listing possible
generalizations of our results and by stating unsolved problems.

2. Historical survey

2.1. Hopf’s lemma. The flux problem for the Navier–Stokes equations has been
the subject of more than 100 papers by authors from 11 countries. We start by
presenting Hopf’s results from [6], where he gave an estimate of the Dirichlet integral
for generalized solutions of the problem (1.1)–(1.3), (1.6). Setting η = w in the
identity (1.12) and using the equalities∫

Ω

(A · ∇)w ·w dx = 0,
∫

Ω

(w · ∇)w ·w dx = 0 ∀w ∈ H(Ω),

we arrive at the equality

ν

∫
Ω

∇w · ∇w dx =
∫

Ω

A · (w · ∇)w dx− ν

∫
Ω

∇A · ∇w dx

+
∫

Ω

A · (A · ∇)w dx. (2.1)

The main difficulty in finding a priori estimates for solutions is to estimate the
first integral on the right-hand side of (2.1). If (1.6) holds, then we can use Hopf’s
lemma to this end.

Lemma 2.1 (Hopf). Let Ω be a domain with Lipschitz boundary ∂Ω and let a ∈
W 1/2,2(∂Ω). If (1.6) is satisfied, then for any ε > 0 the field a has a divergence-free
extension A( · , ε) ∈W 1,2(Ω) to Ω such that∣∣∣∣∫

Ω

A · (w · ∇)w dx

∣∣∣∣ 6 ε∥∇w∥2L2(Ω) ∀w ∈ H(Ω). (2.2)
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The proof of this lemma is carried out in two steps. First we extend the boundary
field a as B = curlD, where D ∈W 2,2(Ω), and then we modify this extension using
the Hopf cutoff function ζ(x, ε), which depends on the parameter ε > 0, in such
a way that A = curl(ζ(x, ε)D(x)) [6]. The function ζ has the following properties:
ζ = 1 for x ∈ Γi with i = 1, . . . , N ; the support of ζ lies in a small neighbourhood
of the surface ∂Ω; ζ decays rapidly away from this surface; finally,

|∇ζ(x, ε)| 6 cε

d(x)
,

where d(x) = dist(x, ∂Ω), and the constant c is independent of ε. A thorough proof
of Hopf’s lemma for a satisfying (1.6), provided that there exists a B = curlD such
that B

∣∣
∂Ω

= a, was presented by Ladyzhenskaya in [2]. An effective construction
of a vector field B = curlD for smooth surfaces Γi was given by Fujita [7] and
Finn [8]. We can extend the boundary field a to Ω as a curl only when all the
fluxes of a across the boundary components Γi are zero, that is, when (1.6) holds.

For planar or axially symmetric flows the required representation for the field B
can easily be obtained in terms of the stream function. For a planar flow the stream
function ψ(x1, x2) of a divergence-free vector field B is determined by the equations

∂ψ

∂x2
= B1,

∂ψ

∂x1
= −B2.

If (1.6) holds, then we can construct ψ as a solution of the problem

∆∆ψ = 0, x ∈ Ω,

ψ =
∫ s

0

a · n dS, ∂ψ

∂n
= a · s, x ∈ Γi, i = 1, . . . , N.

Here s and 0 are the current point and a fixed point on Γi and s is the unit tangent
vector to this curve. The solution of this problem is uniquely defined because
of (1.6).

Now we take a smooth function γ ∈ C∞(R) such that 0 6 γ(t) 6 1 and

γ(t) =

{
1, t > 1,
0, t 6 0,

(2.3)

and we let
ζ(x, δ) = γ

(
δ log

ρ

∆(x)

)
, (2.4)

where ρ is a sufficiently small positive number and ∆(x) is the generalized distance
from the point x ∈ Ω to the boundary ∂Ω. We recall that ∆(x) is an infinitely
differentiable function of x ∈ Rn \ ∂Ω with the following properties:

a1d(x) 6 ∆(x) 6 a2d(x), |Dα∆(x)| 6 a3(α)d1−|α|(x) (2.5)

(see [26]). It is easy to see that ζ is infinitely differentiable, ζ(x, δ)
∣∣
∂Ω

= 1, ζ vanishes
identically outside a small neighbourhood of the boundary,

ζ(x, δ) =

{
1, ∆(x) 6 e−1/δρ,

0, ∆(x) > ρ,
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and we have
|∇ζ(x, δ)| 6 cδ

d(x)
(2.6)

with a constant c independent of δ.
We set A(x, δ) = curl

(
ζ(x, δ)D(x)

)
. Clearly, A ∈W 1,2(Ω),

div A = 0, A
∣∣
∂Ω

= a, suppA ⊂ {x ∈ Ω: ∆(x) 6 ρ},

A(x, δ) = ∇ζ(x, δ)×D(x) + ζ(x, δ) curlD(x) =: A1(x, δ) + A2(x, δ),

and
|A1(x, δ)| 6

cδ

d(x)
, |A2(x, δ)| 6 | curlD(x)|. (2.7)

We can now estimate the integral
∫
Ω
(w · ∇)w ·A dx as follows:∫

Ω

(w · ∇)w ·A dx 6

(∫
Ω

|w|2|A|2 dx
)1/2(∫

Ω

|∇w|2 dx
)1/2

6 2
(∫

Ω

|w|2|A1|2 dx+
∫

Ω

|w|2|A2|2 dx
)1/2(∫

Ω

|∇w|2 dx
)1/2

6 c

(
δ2

∫
Ω

|w(x)|2

d2(x)
dx+

∫
{x∈Ω: ∆(x)6ρ}

|w|2| curlD|2 dx
)1/2(∫

Ω

|∇w|2 dx
)1/2

.

(2.8)

If the domain has a Lipschitz boundary, then we can use Hardy’s inequality to
prove the estimate ∫

Ω

|w(x)|2

d2(x)
dx 6 c

∫
Ω

|∇w(x)|2 dx

(see [2]). Furthermore, by embedding theorems and Friedrichs’ inequality,∫
{x∈Ω: ∆(x)6ρ}

|w|2| curlD|2 dx

6

(∫
{x∈Ω: ∆(x)6ρ}

|w|4 dx
)1/2(∫

{x∈Ω: ∆(x)6ρ}
| curlD|4 dx

)1/2

6 c

(∫
Ω

|∇w|2 dx
)
∥D∥2W 2,2({x : ∆(x)6ρ}).

Hence, we can rewrite (2.8) as∫
Ω

(u · ∇)u ·A dx 6 c
(
δ2 + ∥D∥2W 2,2({x : ∆(x)6ρ})

)1/2
∫

Ω

|∇w|2 dx. (2.9)

For any ε > 0 we take δ = ε/(2c) and choose a sufficiently small ρ > 0 so that

∥D∥W 2
2 ({x : ∆(x)6ρ}) 6

ε

2c
;

then we can deduce Hopf’s inequality (2.2) from (2.9).
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Now that we have at our disposal a vector field A( · , ε) ∈ W 1,2(Ω) such that
A

∣∣
∂Ω

= a and (2.2) holds with ε = ν/2, we can deduce from (2.1) the a priori
estimate

∥∇w∥2L2(Ω) 6 c
(
∥∇A∥2L2(Ω) + ∥A∥2L4(Ω)

)
, (2.10)

which ensures that the problem (1.1)–(1.3), (1.6) is solvable.
Thus, we see that the condition (1.6) is sufficient for the existence (for any ε > 0)

of a divergence-free extension A(x, ε) of a satisfying (2.2). But it turns out that
(1.6) is also a necessary condition. The first counterexample demonstrating this was
due to Takeshita [27] (1993). Here we present a simplified version of Takeshita’s
construction, which was presented in Galdi’s book [28]. Let Ω be an annulus:
Ω = {x ∈ R2 : R1 < |x| < R2}. Suppose that

F =
∫
SR2

a · n dS = −
∫
SR1

a · n dS < 0. (2.11)

Representing the vector field A in polar variables (r, θ) and using the fact that A
is divergence-free, that is,

∂(rAr)
∂r

+
∂Aθ
∂θ

= 0,

we deduce from (2.11) that

r

∫ 2π

0

Ar(r, θ, ε) dθ = F ∀ r ∈ (R1, R2).

Let us take a vector field w = u(r)eθ with u ∈ C∞0 [R1, R2]. Obviously, w ∈ H(Ω),
and for such w we have∫

Ω

A · (w · ∇)w dx = −
∫

Ω

(w · ∇)A ·w dx

= −
∫

Ω

(
1
r

∂Aθ
∂θ

+
Ar
r

)
u2(r) dx = −F

∫ R2

R

u2(r)
r

dr. (2.12)

If (2.2) holds, then (2.12) implies that

−F
∫ R

R1

u2(r)
r

dx 6 ε

∫
Ω

|∇w|2 dx

for any ε > 0. But this inequality is clearly impossible if F < 0.
More general counterexamples were constructed later by Farwig, Kozono, and

Yanagisawa [29] and by Heywood [30]. In particular, Heywood gave a counterex-
ample valid for F > 0 as well.

2.2. A method for proving an a priori bound by contradiction. If (1.6)
fails to hold, that is, the fluxes Fi are non-zero,1 then the method described above

1In view of the necessary condition (1.5), the total flux vanishes:∫
∂Ω

a · n dS =
N∑

i=0

∫
Γi

a · n dS =
N∑

i=0

Fi = 0.
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does not work. However, one can attempt to prove the required a priori bound by
contradiction. This idea was first proposed by Leray [1] and has been subsequently
used and modified by many authors (see, for instance, [2], [31]–[33], [17], [19]).

Let A ∈ W 1,2(Ω) be some extension of the boundary field a. We must show
that the solutions w(λ) of the operator equation (1.14) have norms bounded by
a constant independent of λ ∈ [0, 1]. Suppose not. Then there exist sequences
{λk}k∈N ⊂ [0, 1] and {wk = w(λk)}k∈N ∈ H(Ω) such that

ν

∫
Ω

∇wk · ∇η dx− λk

∫
Ω

(
(wk + A) · ∇

)
η ·wk dx− λk

∫
Ω

(
wk · ∇

)
η ·A dx

= −λkν
∫

Ω

∇A · ∇η dx+ λk

∫
Ω

(
A · ∇

)
η ·A dx+ λk

∫
Ω

f · η dx ∀η ∈ H(Ω)

(2.13)

and
lim
k→∞

λk = λ0 ∈ [0, 1], lim
k→∞

Jk = lim
k→∞

∥wk∥H(Ω) = ∞. (2.14)

Let ŵk = J−1
k wk. Since ∥ŵk∥H(Ω) = 1, there exists a subsequence {ŵkl} con-

verging weakly in H(Ω) to a vector field ŵ ∈ H(Ω). And since the embedding
H(Ω) ↪→ Lr(Ω) is compact for all r ∈ [1,∞) if n = 2 and for all r ∈ [1, 6) if n = 3,
the subsequence {ŵkl} converges strongly in Lr(Ω). We set η = J−1

kl
ŵkl in (2.13),

and, taking the limit as kl →∞ in the resulting equality, we get that

ν = λ0

∫
Ω

(ŵ · ∇)ŵ ·A dx. (2.15)

In particular, it follows from (2.15) that λ0 > 0. Hence the λk are bounded away
from zero.

Now we take η = J−2
kl

ξ in (2.13), where ξ is an arbitrary vector field in H(Ω).
Again we take the limit as kl →∞ and deduce the integral identity∫

Ω

(ŵ · ∇)ŵ · ξ dx = 0 ∀ ξ ∈ H(Ω). (2.16)

Thus, ŵ ∈ H(Ω) is a generalized solution of the boundary-value problem for the
Euler system 

(ŵ · ∇)ŵ +∇p̂ = 0, x ∈ Ω,
div ŵ = 0, x ∈ Ω,
ŵ = 0, x ∈ ∂Ω.

(2.17)

The function p̂ in (2.17) belongs toW 1,s(Ω), where s ∈ [1, 2) if n = 2 and s ∈ [1, 3/2]
if n = 3. Since ŵ = 0 on ∂Ω, we can use (2.17) to prove that the pressure p̂ takes
constant values p̂j on the connected components Γj of ∂Ω. The next result was
established in [33] (Lemma 4) and [17] (Theorem 2.2) (see also [19], Remark 3.2).

Lemma 2.2. For each solution (w, p) ∈ (H(Ω),W 1,s(Ω)) of (2.17) there exist
constants p̂i ∈ R such that

p̂(x)
∣∣
Γi

= p̂i, i = 0, 1, . . . , N. (2.18)
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Taking the inner product of the Euler system (2.17) with A, we integrate the
result by parts. Then by (2.18),∫

Ω

(ŵ · ∇)ŵ ·A dx = −
∫
∂Ω

p̂A · n dS = −
N∑
i=0

p̂i

∫
Γi

A · n dS = −
N∑
i=0

p̂iFi. (2.19)

If N = 1 or Fi = 0 for i = 0, 1, . . . , N (the condition (1.5) is fulfilled), then (2.19)
implies that ∫

Ω

(ŵ · ∇)ŵ ·A dx = 0. (2.20)

This contradicts (2.15). Hence, for λ ∈ [0, 1] our assumption fails and the norms of
the solutions w(λ) of the operator equation (1.14) are uniformly bounded, so that
(1.13) has at least one solution by the Leray–Schauder theorem.

We could make the analogous conclusion in the case when all the constants p̂j
are equal:

p̂0 = p̂1 = · · · = p̂N . (2.21)

Indeed, then by (1.5)
N∑
i=0

p̂iFi = p̂0

N∑
i=0

Fi = 0,

and (2.20) follows from (2.19) again. However, we cannot say that in the general
case all the p̂i are equal: Amick [17] constructed a solution of (2.17) for which
(2.21) fails to hold. Let Ω = {x ∈ R2 : 1 < |x| < 2} be a plane annulus and let
ψ ∈ C1([1, 2]), with ψ′(1) = ψ′(2) = 0 and ψ′′ ∈ L2((1, 2)). Then the solution of
the Euler problem (2.17) is given by

ŵ(x) =
(
x2

|x|
ψ′(|x|),− x1

|x|
ψ′(|x|)

)
∈ H(Ω), p̂(x) =

∫ |x|

1

|ψ′(s)|2

s
ds.

It is easy to see that

p̂(x)
∣∣
|x|=1

= 0, p̂(x)
∣∣
|x|=2

=
∫ 2

1

|ψ′(s)|2

s
ds > 0.

2.3. The symmetric planar flux problem. The global solvability of the flux
problem without the assumption (1.6) was first established by Amick [17] in 1984.
He considered planar flows, assuming that they were symmetric. Following Amick,
we give two definitions.

Definition 2.1. A bounded domain Ω ⊂ R2 is said to be admissible if it satisfies
the following conditions:

(a) ∂Ω consists of N + 1 > 2 connected components Γi;
(b) Ω is symmetric relative to the line {x2 = 0} (see Fig. 2);
(c) each component Γi intersects the line {x2 = 0}.

Definition 2.2. A function h = (h1, h2) mapping Ω or ∂Ω into R2 is said to be
symmetric relative to the line {x2 = 0} if h1 is an even function of x2, while h2 is
an odd function of x2.
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Figure 2. A symmetric plane domain

The planar Navier–Stokes equations are known to be invariant under reflections
in the coordinate axes. This property allows one to look for symmetric solutions
(u, p) of the given system in which the velocity u is symmetric relative to {x2 = 0}
and the pressure p is an even function of x2.

Theorem 2.1 (Amick [17]). Let Ω ⊂ R2 be an admissible domain with Lipschitz
boundary ∂Ω, and let a ∈ W 1/2,2(∂Ω) and f ∈ L2(Ω) be symmetric functions
relative to {x2 = 0}. Then for any ν > 0 the problem (1.1)–(1.3) has a generalized
solution u ∈W 1,2(Ω). In it the velocity vector u is symmetric relative to {x2 = 0}
and the corresponding pressure p is an even function of x2 .

Amick proved this result by contradiction. We reproduce his arguments showing
that all the constants p̂i = p̂(x)

∣∣
Γi

giving the pressure in the Euler problem (2.17)
are equal, that is, (2.21) holds. As shown in § 2.2, this is sufficient for a generalized
solution of the Navier–Stokes problem (1.1)–(1.3) to exist.

Let Γ0 be the outer boundary component of ∂Ω. We shall show that p̂0 = p̂i
for i = 1, . . . , N . The set {x : x2 = 0} ∩ Γi consists of two points, (αi, 0) and
(βi, 0), where αi < βi. In a neighbourhood of (α0, 0) the boundary component Γ0

can be represented as a graph Γ0 = {(h0(x2), x2) : x2 ∈ (−δ, δ)} for sufficiently
small δ > 0. Similarly, in a neighbourhood of (α1, 0) the component Γ1 has the
form Γ1 = {(h1(x2), x2) : x2 ∈ (−δ, δ)}. The functions hi, i = 0, 1, are Lipschitz
continuous. We set

B(δ) = {x : x1 ∈ (h0(x2), h1(x2)), x2 ∈ (0, δ)} ⊂ Ω

for sufficiently small δ.
Let Φ̂(x) = p̂(x) + |ŵ(x)|2/2 denote the total head pressure in the Euler prob-

lem (2.17). It is immediate that

∂

∂x1
Φ̂ = −ŵ2ω̂,
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where ω̂ =
∂ŵ1

∂x2
− ∂ŵ2

∂x1
is the curl of the velocity vector ŵ. Integrating this equality

over B(δ) and taking (2.18) into account, we find that∫ δ

0

(
p̂(h1(x2), x2)− p̂(h0(x2), x2)

)
dx2 = δ(p̂1 − p̂0) = −

∫
B(δ)

ŵ2ω̂ dx.

By symmetry, ŵ2(x1, 0) = 0 (in the sense of traces), and therefore by Hardy’s
inequality∫

B(δ)

|ŵ2(x1, x2)|2

x2
2

dx =
∫ ∞

−∞

∫ δ

0

|ŵ2(x1, x2)|2

x2
2

dx2 dx1

6 4
∫ ∞

−∞

∫ δ

0

∣∣∣∣∂ŵ2(x1, x2)
∂x2

∣∣∣∣2 dx2 dx1 6 4
∫
B(δ)

|∇ŵ(x)|2 dx.

Here we have assumed that ŵ2 is extended by zero to R× (0, δ) \ B(δ). It follows
from the last two relations that

|p̂0 − p̂1|2 6
1
δ2

(∫
B(δ)

x2
2

|ŵ2(x)|2

x2
2

dx

)(∫
B(δ)

|ω̂(x)|2 dx
)

6
1
δ2

(
4δ2

∫
B(δ)

|∇ŵ(x)|2 dx
)(

4
∫
B(δ)

|∇ŵ(x)|2 dx
)

6 16
(∫

B(δ)

|∇ŵ(x)|2 dx
)2

→ 0

as δ → 0. Hence p̂0 = p̂1. We can prove similarly that

p̂1 = p̂2, . . . , p̂N−1 = p̂N .

This completes the proof of (2.21).
Sazonov [10] in 1993 (and independently Fujita [14] in 1997) gave an effective

proof of the solvability of the symmetric planar flux problem, by constructing a sym-
metric extension of the boundary field a which satisfies Hopf’s inequality (2.2) for
symmetric vector fields. Pukhnachev proved a similar result in the spatial problem
with an axis of symmetry and a plane of symmetry orthogonal to the axis [15].

Apparently, Sazonov was not aware of Amick’s paper [17], but he proved Theo-
rem 2.1 in a simpler way, using the construction of a virtual drain [10]. The term
itself is due to Fujita [14], who also established an a priori bound for the Dirichlet
integral (1.15) in the symmetric planar flux problem. (Sazonov used an argument
by contradiction.) Below we use ideas due to Sazonov and Fujita to construct such
an extension. Let

HS(Ω) = {u ∈ H(Ω), u is symmetric}.

Lemma 2.3. Let Ω be an admissible domain with Lipschitz boundary and let a ∈
W 1/2,2(∂Ω) be a function symmetric relative to the line {x2 = 0}. Then for any
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ε > 0 the vector field a has a symmetric divergence-free extension A ∈ W 1,2(Ω)
to Ω such that ∣∣∣∣∫

Ω

A · (u · ∇)u dx
∣∣∣∣ 6 ε∥∇u∥2L2(Ω) ∀u ∈ HS(Ω). (2.22)

Furthermore, the support of A can lie in an arbitrarily narrow strip in Ω which
adjoins ∂Ω and the axis of symmetry x1 . Namely, for any δ > 0 the support of A
can be such that

suppA ⊆ ω(δ) := {x ∈ Ω: dist(x, ∂Ω ∪ {x2 = 0}) 6 δ}.

In order not to overburden the reader with technical details, we present the
proof of Lemma 2.3 in the case when ∂Ω consists of two connected components,
Γ0 and Γ1. We can assume without loss of generality that Ω does not contain the
origin, which lies in the domain bounded by Γ1. In view of (1.5), F0 = −F1 = F .

In the domain Ω(+)
+ = {x ∈ Ω: x1 > 0, x2 > 0} we take the cutoff function

ζ+(θ, δ) = ψ

(
δ log

δ

θ

)
, (2.23)

where ψ(t) is the function in (2.3), δ ∈ (0, 1) is sufficiently small, and (r, θ) are
polar coordinates in the plane. Obviously,

ζ+(θ, δ) =

{
1, θ 6 δe−1/δ,

0, θ > δ.
(2.24)

It is easy to see that ζ+(θ, δ) = 1 in a neighbourhood of the half-line {(x1, x2) ∈
R2 \ Ω1 : x1 > 0, x2 = 0}. Let ζ̂+(θ, δ) be the function defined in Ω+ = {x ∈ Ω:
x2 > 0} as the extension of ζ+(θ, δ) to Ω(−)

+ = {x ∈ Ω+ : x1 < 0} as an odd function
of x1:

ζ̂+(θ, δ) =

{
ζ+(θ, δ), θ ∈ (0, π/2],
−ζ+(π − θ, δ), θ ∈ [π/2, π).

(2.25)

Since ζ̂+(θ, δ) = 0 on the half-line {x ∈ R2 \ Ω1 : x1 = 0, x2 > 0}, the function ζ̂+
is smooth for x ∈ Ω+. Direct calculations show that∣∣∣∣dζ̂+(θ, δ)

dθ

∣∣∣∣ 6
c1δ

θ
, θ ∈

(
0,
π

2

)
,

∣∣∣∣dζ̂+(θ, δ)
dθ

∣∣∣∣ 6
c1δ

π − θ
, θ ∈

(
π

2
, π

)
, (2.26)∣∣∣∣∂ζ̂+(θ, δ)

∂xk

∣∣∣∣ 6
c(δ)
r

,

∣∣∣∣∂2ζ̂+(θ, δ)
∂xk ∂xr

∣∣∣∣ 6
c(δ)
r2

. (2.27)

The constant c1 in (2.26) is independent of δ, and c(δ) in (2.27) tends to ∞ as
δ → 0.

Let

b(x) = ∇ log |x| =
(
x1

|x|2
,
x2

|x|2

)
.
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The vector field b is divergence-free and symmetric relative to the line {x2 = 0}.
In the polar coordinates it has the form

b(r, θ) =
(
br(r, θ), bθ(r, θ)

)
=

(
1
r
, 0

)
. (2.28)

In Ω+ we consider the vector field

B+(x, δ) =
(
B+,r(r, θ, δ), B+,θ(r, θ, δ)

)
= −F

4

(
1
r

dζ̂+(θ, δ)
dθ

, 0
)
, (2.29)

where
F =

∫
Γ0

a · n dS.

This field is divergence-free:

div B+ =
∂B+,r

∂r
+
B+,r

r
= −F

4
dζ̂+
dθ

div b(x) = 0.

Moreover, it is easy to verify that∫
Γ0∩R2

+

B+ · n dΓ = −
∫

Γ1∩R2
+

B+ · n dΓ =
F

2
(2.30)

(recall that n is the unit outward normal vector relative to Ω).
We claim that for any ε > 0 there exists a δ = δ(ε) such that the field B+(x, δ)

satisfies the inequality∣∣∣∣∫
Ω+

(u · ∇)u ·B+ dx

∣∣∣∣ 6
ε

2

∫
Ω+

|∇u|2 dx ∀u ∈ HS(Ω). (2.31)

The integral on the left here can be decomposed into a sum:

J =
∫

Ω+

(u · ∇)u ·B+ dx = −F
4

∫
Ω+

ur
∂ur
∂r

1
r

dζ̂+
dθ

dx

− F

4

∫
Ω+

uθ

(
∂ur
∂θ

− uθ

)
1
r2

dζ̂+
dθ

dx =: −F
4

(J1 + J2). (2.32)

Without loss of generality we assume that u is extended by zero to R2
+ \ Ω+. We

consider J1. Let

BR = {x : |x| < R} ⊃ Ω, B+,R = {x ∈ BR : x2 > 0}.

Then

J1 =
∫

Ω+

ur(x)
∂ur(x)
∂r

1
r

dζ̂+(θ, δ)
dθ

dx =
∫
B+,R

ur(x)
∂ur(x)
∂r

1
r

dζ̂+(θ, δ)
dθ

dx

=
∫ π

0

dζ̂+(θ, δ)
dθ

(∫ R

0

ur(r, θ)
∂ur(r, θ)

∂r
dr

)
dθ

=
1
2

∫ π

0

dζ̂+(θ, δ)
dθ

|ur(R, θ)|2 dθ = 0.
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By symmetry uθ(x)
∣∣
x2=0

= 0. Hence, it follows from (2.26) and from Hardy’s and
Friedrichs’ inequalities that∫

Ω+

|uθ(x)|2

r2

∣∣∣∣dζ̂+(θ, δ)
dθ

∣∣∣∣2 dx =
∫
B+,R

|uθ(x)|2

r2

∣∣∣∣dζ̂+(θ, δ)
dθ

∣∣∣∣2 dx
6 cδ2

(∫ R

0

dr

r

∫ π/2

0

|uθ(r, θ)|2

θ2
dθ +

∫ R

0

dr

r

∫ π

π/2

|uθ(r, θ)|2

(π − θ)2
dθ

)

6 cδ2
∫
B+,R

1
r2

∣∣∣∣∂uθ(x)∂θ

∣∣∣∣2 dx 6 cδ2
(∫

Ω+

|∇u(x)|2 dx+
∫

Ω+

|ur(x)|2

r2
dx

)

6 cδ2
(∫

Ω+

|∇u(x)|2 dx+
∫

Ω+

|ur(x)|2 dx
)

6 cδ2
∫

Ω+

|∇u(x)|2 dx.

Here we have also used the expression for the gradient ∇u of a vector-valued func-
tion in polar coordinates:

∇u =


∂ur
∂r

1
r

(
∂ur
∂θ

− uθ

)
∂uθ
∂r

1
r

(
∂uθ
∂θ

+ ur

)
 .

Similarly, J2 has the estimate

|J2| 6
(∫

Ω+

|uθ(x)|2

r2

∣∣∣∣dζ̂+(θ, δ)
dθ

∣∣∣∣2 dx)1/2(∫
Ω+

1
r2

∣∣∣∣∂ur(x)∂θ
− uθ(x)

∣∣∣∣2 dx)1/2

6 cδ

∫
Ω+

|∇u(x)|2 dx.

Taking δ sufficiently small, we deduce (2.31) from the estimates for J1 and J2.
Next we extend B+(x, δ) to Ω− = {x ∈ Ω: x2 < 0} as a symmetric field:

B(x, δ) =

{(
B+,1(x1, x2, δ), B+,2(x1, x2, δ)

)
, x ∈ Ω+,(

B+,1(x1,−x2, δ),−B+,2(x1,−x2, δ)
)
, x ∈ Ω−.

(2.33)

Clearly, div B = 0, ∫
Γ0

B · n dS = −
∫

Γ1

B · n dS = F, (2.34)

and B satisfies (2.31).
Let us now complete the proof of Lemma 2.3. We define a vector field â on the

boundary of Ω:
â = a−B

∣∣
∂Ω
.

By (2.34) the flux of the field â across each connected component of the boundary
of Ω is zero, so we can find a divergence-free extension B̂ ∈W 1,2(Ω) of â to Ω such
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that Hopf’s inequality holds:∣∣∣∣∫
Ω

B̂ · (u · ∇)u dx
∣∣∣∣ 6 ε∥∇u∥2L2(Ω) ∀u ∈ H(Ω). (2.35)

Furthermore, by construction the connected components of the support of B̂ lie in
arbitrarily narrow strips adjoining the surfaces Γi, i = 0, 1 (see § 2.1). However, B̂ is
not necessarily symmetric. We symmetrize it by introducing another vector field B̃
with components

B̃1(x, δ) =
1
2
(
B̂1(x1, x2, δ) + B̂1(x1,−x2, δ)

)
,

B̃2(x, δ) =
1
2
(
B̂2(x1, x2, δ)− B̂2(x1,−x2, δ)

)
.

Obviously, B̃ inherits all the required properties of B̂.
Let A be the vector field defined by

A(x, δ) = B(x, δ) + B̃(x, δ).

By construction A(x, δ)
∣∣
∂Ω

= a, and A has all the properties in Lemma 2.3.
Using Hopf’s inequality (2.22) for symmetric functions, we arrive at the a priori

bound ∥∇w∥L2(Ω) 6C with a positive constant C depending on ν and ∥a∥W 1/2,2(∂Ω).
Hence, the flux problem (1.1)–(1.3) is solvable in the class of symmetric generalized
solutions. Fujita [14] also proved that the pressure p can be recovered from the w
obtained, and p (which is defined up to an additive constant) is an even function
of x2.

Another way of proving that a symmetric planar flux problem is solvable was
proposed by Morimoto [16]. It is based on the use of the stream function ψ(x1, x2)
of the planar flow, which is determined by the equations

∂ψ

∂x2
= u1,

∂ψ

∂x1
= −u2. (2.36)

We note that when (1.6) fails to hold, the stream function determined by a given
divergence-free velocity vector field u = (u1, u2) is multivalued. However, if the
domain Ω+ = {x ∈ Ω: x2 > 0} has a connected boundary, then the stream function
can be recovered from (2.36) uniquely up to an additive constant.

As for classical solutions, the methods developed in [2] enable one to prove their
existence, provided that the problem data belong to Hölder classes: ∂Ω ∈ C2+α,
a ∈ C2+α(∂Ω). In that case u ∈ C2+α(Ω) and ∇p ∈ Cα(Ω), with 0 < α < 1.

2.4. Local results. The above results on solvability of the flux problem were
proved either under the assumption that all the fluxes Fi across the connected
components Γi of ∂Ω are zero (the condition (1.6)) or under the assumption that
the domain is symmetric. The first steps in the analysis of (1.1)–(1.3) without the
assumption (1.6) were made in 1961 by Fujita [7] and Finn [8]. Fujita proved
the solvability of (1.1)–(1.3) for small fluxes |Fi|. Finn [8] looked at a general-
ization of the flow problem. Let Ω ⊂ R3 be a bounded domain with connected



1082 M.V. Korobkov, K. Pileckas, V.V. Pukhnachev, and R. Russo

boundary ∂Ω. The classical statement of the flow problem for the Navier–Stokes
equations [34] asks about a solution u, p of the system (1.1), (1.2) in R3\Ω satisfying
the conditions

u = 0, x ∈ ∂Ω, (2.37)
u → u∞, x→∞, (2.38)

where u∞ is a given non-zero constant vector. The solvability of the flow problem
without the assumption that the data are small was first established by Leray [1].
Subsequently, the problem was investigated by many authors (see [28]). Finn’s gen-
eralization consisted in replacing the homogeneous condition (2.37) by the general
condition (1.3). Let F be the flux of the velocity across of the surface ∂Ω. It was
proved in [8] that the problem (1.1)–(1.3), (2.38) has a solution if |F | < c∗ν, where
c∗ > 0 is sufficiently small.

We now return to the case of a bounded domain Ω of the form (1.4). For
small fluxes the problem (1.1)–(1.3) has been investigated by many authors (for
instance, [9], [11]–[13]). In particular, Borchers and Pileckas [11] studied the flux
problem in the domain Ω between concentric spheres (or circles for n = 2) with
radii R1 and R2 > R1. They found effective bounds for the range of values of the
velocity flux F for which this problem is solvable. Other versions of effective bounds
for the values of the fluxes of the velocity vector across the boundary components
were proposed in [12] and [13].

We give a simple proof of the solvability of (1.1)–(1.3) for small fluxes, based on
deriving an a priori bound by a contradiction argument (see [13]). Let χi be the
solution of the following Dirichlet problem for the Laplace operator in the exterior
domain:

∆χi = 0, x ∈ R3 \ Ωi,
χi = 1, x ∈ Γi,

χi(x) → 0, |x| → ∞.

The maximum principle gives us that 0 6 χi(x) 6 1 for x ∈ R3 \ Ωi. By the
harmonic capacity of the compact set Ωi we mean the quantity

cap(Ωi) =
∫

Γi

∂χi
∂n

dS =
∫

Rn\Ωi
|∇χi(x)|2 dx.

Theorem 2.2. Let Ω ⊂ R3 be a bounded domain of the form (1.4) with Lipschitz
boundary ∂Ω. If f ∈ L2(Ω), the boundary values a ∈W 1/2,2(∂Ω) satisfy (1.5), and

N∑
i=0

|Fi|
cap(Ωi)

< ν, (2.39)

then the problem (1.1)–(1.3) has at least one generalized solution u ∈W 1,2(Ω).

Proof. We have already mentioned that to prove the solvability of (1.1)–(1.3) it is
sufficient to have an a priori bound for a solution. In § 2.2 we showed that if there
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is no such bound, then there exists a pair (ŵ, p̂) ∈ H(Ω)×W 1,s(Ω) with s ∈ [1, 3/2]
that satisfies the Euler system

(ŵ · ∇)ŵ +∇p̂ = 0, x ∈ Ω,
div ŵ = 0, x ∈ Ω,
ŵ = 0, x ∈ ∂Ω.

(2.40)

Furthermore, ∥∇ŵ∥L2(Ω) 6 1 and we have

ν = λ0

∫
Ω

(ŵ · ∇)ŵ ·A dx, λ0 ∈ (0, 1], (2.41)

and ∫
Ω

(ŵ · ∇)ŵ ·A dx = −
N∑
i=0

p̂iFi, (2.42)

where
p̂(x)

∣∣
Γi

= p̂i, p̂i ∈ R, i = 0, 1, . . . , N.

Taking the inner product of (2.40) with ∇χi, we integrate over R3 \Ωi, assuming
that ŵ is extended by zero to R3 \Ω, and we set p̂(x)

∣∣
R3\Ω0

= p̂0 and p̂(x)
∣∣
Ωi

= p̂i,
i = 1, . . . , N . Since cap(Ωi) is positive, integration by parts gives us that

|p̂i| cap(Ωi) = |p̂i cap(Ωi)| =
∣∣∣∣∫

Rn\Ωi
(ŵ · ∇)ŵ · ∇χi dx

∣∣∣∣
=

∣∣∣∣∫
Rn\Ωi

∇ŵ · ∇ŵχi dx
∣∣∣∣ 6 ∥∇ŵ∥2L2(Ω) = 1.

Using (2.42) and (2.39), we deduce the inequality∣∣∣∣∫
Ω

(ŵ · ∇)ŵ ·A dx

∣∣∣∣ =
∣∣∣∣ N∑
i=0

p̂iFi

∣∣∣∣ 6
N∑
i=0

|Fi|
cap(Ωi)

< ν,

which contradicts (2.41). This contradiction shows that at least one solution
of (1.1)–(1.3) must exist. �

2.5. Flows close to potential flows. Let Ω ⊂ Rn, n = 2, 3, be a bounded
domain of the form (1.4). It is well known that the system (1.1), (1.2) with a poten-
tial field of the external forces f has a family of solutions in which the velocity field
is a potential field, that is, u = ∇ϕ for some harmonic function ϕ, and the pres-
sure can be found from the Bernoulli integral: p + |∇ϕ|2/2 = const. Taking ϕ
to be a linear combination of fundamental solutions of the Laplace equation with
singularities in Ωi, we obtain a class of exact solutions of the flux problem for the
Navier–Stokes equations with certain special boundary conditions.

Fujita and Morimoto [35] investigated the problem (1.1)–(1.3) in a three- or
two-dimensional domain Ω with two smooth boundary components Γ0 and Γ1.
With the boundary conditions in the form

u = µ∇ϕ+ ãi, x ∈ Γi, i = 0, 1, (2.43)
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where µ ∈ R, ϕ is a fundamental solution of the Laplace equation, and the func-
tions ãi satisfy (1.6), they showed the existence of a countable set M ∈ R such
that if µ /∈ M and the corresponding norms of the functions ãi are small, then
(1.1)–(1.3) is solvable. Moreover, if Ω ⊂ R2 is a circular annulus, then M is empty.

Russo and Starita [36] relaxed the smoothness conditions imposed on the sur-
faces (curves) Γi and the functions ãi. In particular, they proved the following
theorem [35].

Theorem 2.3. Let f = 0, assume that the boundary values a have a representation
(2.43), where ϕ is a fundamental solution of the Laplace equation, and that the
functions ãi ∈W 1/2,2(Γi) satisfy∫

Γi

ãi · n dS = 0, i = 0, 1.

Then there exists a discrete countable set M ⊂ R and a positive constant ε∗ such
that for any µ ∈ R\M the problem (1.1)–(1.3) has at least one generalized solution
u ∈W 1,2(Ω) if

∥ã0∥W 1/2,2(Γ0) + ∥ã1∥W 1/2,2(Γ1) 6 ε∗. (2.44)
Proof. This theorem has a rather simple yet beautiful proof, so we present the
main points of the proof, without giving details. We seek a solution u in the form
of a sum u = w + µ∇ϕ + A, where w ∈ H(Ω) and A satisfies the boundary
condition A

∣∣
Γi

= ãi for i = 0, 1 and is a generalized solution of the homogeneous
linear Stokes problem, that is, A ∈W 1,2(Ω) satisfies the integral identity

ν

∫
Ω

∇A · ∇η dx = 0 ∀η ∈ H(Ω)

and the inequality

∥∇A∥L2(Ω) 6 c
(
∥ã0∥W 1/2,2(Γ0) + ∥ã1∥W 1/2,2(Γ1)

)
(see, for instance, [2]).

We find the vector field w ∈ H(Ω) using the integral identity

ν

∫
Ω

∇w · ∇η dx+ µ

∫
Ω

(
(∇ϕ · ∇)w + (w · ∇)∇ϕ

)
· η dx

+
∫

Ω

(
(A · ∇)w + (w · ∇)A

)
· η dx+

∫
Ω

(w · ∇)w · η dx

= −µ
∫

Ω

(
(∇ϕ · ∇)A + (A · ∇)∇ϕ

)
· η dx−

∫
Ω

(A · ∇)A · η dx, (2.45)

which holds for all η ∈ H(Ω). Here we have used the fact that the gradient of
the harmonic function ϕ and the corresponding pressure (found from the Bernoulli
integral) satisfy the Navier–Stokes system.

We claim that the integral identity (2.45) is equivalent to an operator equation.
For each b ∈ W 1,2(Ω) satisfying div b = 0 we define a linear operator L(b) from
H(Ω) to H(Ω)∗ by

⟨L(b)w,η⟩ =
∫

Ω

(
b · ∇)w + (w · ∇)b

)
· η dx ∀w,η ∈ H(Ω),
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where ⟨ · , · ⟩ denotes the pairing of H(Ω) and H(Ω)∗. Using standard embedding
theorems, we can show that L(b) is a compact operator.

Next we introduce the operator G which associates with any F ∈ H(Ω)∗ the
generalized solution v ∈ H(Ω) of the Stokes system:∫

Ω

∇v · ∇η dx = ⟨F,η⟩ ∀η ∈ H(Ω).

It is well known that G is a bounded linear operator (see, for instance, [2]).
Using the operators G, L(∇ϕ), and L(A), we can write the integral identity

(2.45) as an operator equation in H(Ω):

w +
µ

ν
GL(∇ϕ)w = −1

ν
GL(A)w − 1

ν
G(w · ∇)w +GΦ, (2.46)

where
Φ = −µ

ν
L(∇ϕ)A− 1

ν
(A · ∇)A.

SinceK = −(1/ν)GL(∇ϕ) is a compact operator onH(Ω), its spectrum σ(K) := M
is a discrete countable set which can have the limit point λ = 0. If 1/µ /∈M , then
there exists a bounded inverse (I − µK)−1, and we can rewrite (2.46) in the form

w = −1
ν

(I − µK)−1

(
−1
ν
GL(A)w − 1

ν
G(w · ∇)w +GΦ

)
=: Aw. (2.47)

For a sufficiently small ε∗ the condition (2.44) means that the operator A takes
some ball in the space into itself and is contracting on this ball. Hence, equation
(2.47) has a solution. �

2.6. The flux problem in a circular annulus. The cycle of papers [37]–[40]
is an investigation of flows in a circular annulus Ω = {x ∈ R2 : R1 < |x| < R0}.
Morimoto [37], [38] looked at this problem in the case when the values ai of the
velocity vector field on the boundary components have the form

ai = µR−1
i er + bieθ, x ∈ Γi = {x ∈ R2 : |x| = Ri}, i = 0, 1, (2.48)

where er and eθ are the unit vectors in the polar coordinate system (r, θ) and µ,
b0, and b1 are constants. The problem (1.1)–(1.3), (2.48) has an exact solution
u = u(r), p = p(r), which can be described by explicit formulae. If µ = 0, then
it becomes the well-known Couette solution [34]. It was proved in [38] that if
|µ| and |b1 − b0| are sufficiently small and µ ̸= −2ν, then this exact solution of
(1.1)–(1.3), (2.48) is unique. Uniqueness also holds for µ = −2ν if |µ|, |b0|, and |b1|
are sufficiently small. Moreover, if the viscosity ν is sufficiently large, then the
solution of (1.1)–(1.3), (2.48) is exponentially stable.

Now we look at a flow in an annulus with boundary conditions of the more
general form

ai = [µR−1
i + ϕi(θ)]er + [ωiRi + ψi(θ)]eθ,

x ∈ Γi = {x ∈ R2 : |x| = Ri}, i = 0, 1,
(2.49)

where theϕi andψi are 2π-periodic functions inW 1/2,2(R). The problem (1.1)–(1.3),
(2.49) was considered by Morimoto and Ukai [39]. Their main result was as follows.
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Theorem 2.4. Assume that

|ω1 − ω0|
R2

0R
2
1

R2
1 −R2

0

(
log

R1

R0

)2

< 2ν. (2.50)

Then there exists a finite or countable set M such that for any µ ∈ R \ M the
problem (1.1)–(1.3), (2.49) is solvable for sufficiently small ϕi and ψi (i = 0, 1).

Note that under the assumptions of this theorem the value of |µ| can be arbi-
trarily large in comparison with ν. It could be interesting to single out a class of
conditions (2.49) for which M is an empty set. Fujita, Morimoto, and Okamoto [40]
showed that it is empty for ω1 = ω0. In this case (2.50) automatically holds. The
special case when b1 = b0 = 0 in (2.48) corresponds to a purely radial flow with
the velocity field ur = µr−1, uθ = 0. As shown in [40], the radial flow in a cir-
cular annulus is isolated in the class of steady-state solutions of the Navier–Stokes
equations, whatever the Reynolds number µ/ν and the ratio R0/R1 of the radii
are. (We remark that it is only for small values of µ/ν that we can prove unique-
ness of the radial solution of the flow problem in an annulus.) If b1R1 = b0R0,
then (1.1)–(1.3), (2.48) has the self-similar solution ur = µr−1, uθ = λr−1, where
λ = b0R0. A numerical analysis of the problem of non-stationary perturbations of
the self-similar solution showed [40] that when the Reynolds number attains a cer-
tain critical value, which depends on the ratios λ/ν and R0/R1, a time-periodic
solution splits off, that is, a Hopf bifurcation occurs.

2.7. Axially symmetric problems. The planar symmetric problem considered
in [10], [14], [16], [17] has an axially symmetric analogue [15]. In what follows we
let

r = (x2
1 + x2

2)
1/2, θ = arctan

x2

x1
, z = x3

denote the cylindrical coordinates, and ur, uθ, uz the projections of the velocity
vector u on the r-, θ-, and z-axes. In the cylindrical coordinates the equations
of a stationary motion of a viscous incompressible fluid have the following form
(see [34]):

ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ uz
∂ur
∂z

− u2
θ

r

= −∂p
∂r

+ ν

(
∂2ur
∂r2

+
1
r

∂ur
∂r

+
1
r2

∂2ur
∂θ2

+
∂2ur
∂z2

− 2
r2

∂uθ
∂θ

− ur
r2

)
,

ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+ uz
∂uθ
∂z

+
uruθ
r

= −1
r

∂p

∂r
+ ν

(
∂2uθ
∂r2

+
1
r

∂uθ
∂r

+
1
r2

∂2uθ
∂θ2

+
∂2uθ
∂z2

+
2
r2

∂ur
∂θ

− uθ
r2

)
,

ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

= −∂p
∂z

+ ν

(
∂2uz
∂r2

+
1
r

∂uz
∂r

+
1
r2

∂2uz
∂θ2

+
∂2uz
∂z2

)
,

1
r

∂(rvr)
∂r

+
1
r

∂uθ
∂θ

+
∂vz
∂z

= 0.

(2.51)
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A motion is said to be axially symmetric without swirl if uθ = 0 and the func-
tions ur, uz, and p are independent of θ. Under these assumptions (2.51) becomes
the following system:

ur
∂ur
∂r

+ uz
∂ur
∂z

= −∂p
∂r

+ ν

(
∂2ur
∂r2

+
1
r

∂ur
∂r

+
∂2ur
∂z2

− ur
r2

)
,

ur
∂uz
∂r

+ uz
∂uz
∂z

= −∂p
∂z

+ ν

(
∂2uz
∂r2

+
1
r

∂uz
∂r

+
∂2uz
∂z2

)
,

1
r

∂(rvr)
∂r

+
∂vz
∂z

= 0.

(2.52)

Definition 2.3. A bounded domain Ω ⊂ R3 is said to be admissible if the following
conditions hold:

(a) ∂Ω ∈ C∞;
(b) ∂Ω consists of N + 1 > 2 connected components Γi;
(c) Ω has the axis of symmetry r = 0 and the plane of symmetry z = 0;
(d) each Γi intersects the plane z = 0.
A function h = (hr, hθ, hz) from Ω or ∂Ω to R3 is said to be axially symmetric

without swirl if hθ = 0, while hr and hz are independent of θ. A function h =
(hr, hθ, hz) from Ω or ∂Ω to R3 is said to be symmetric relative to the plane z = 0
if hr and hθ are even functions of z, while hz is an odd function of z.

Definition 2.4. A vector a is said to be admissible if the following conditions are
satisfied:

(a) a ∈W 1/2,2(∂Ω);
(b) a is axially symmetric without swirl and symmetric relative to the plane

z = 0.

Theorem 2.5. Let Ω ⊂ R3 be an admissible domain and a an admissible vector in
the sense of Definitions 2.3 and 2.4. Then for any ν > 0 the problem (1.1)–(1.3)
has a generalized solution u ∈W 1,2(Ω). The velocity vector u is axially symmetric
without swirl and symmetric relative to the plane z = 0. Furthermore, ∥u∥W 1,2(Ω) 6
C with a positive constant C depending on ν and ∥a∥W 1/2,2(∂Ω) .

The proof of Theorem 2.4 was given in [15]. It is based on the construction of
an axially symmetric analogue of a virtual drain.

Along with the boundary-value problem (1.1)–(1.3), the statement of the prob-
lem in ‘vorticity–stream function’ terms is used extensively in the axially symmetric
case (see, for instance, [41] and the references there). The stream function ψ of an
axially symmetric flow and the vorticity ω of the flow are introduced by the equal-
ities

∂ψ

∂r
= −ruz,

∂ψ

∂z
= rur, ω =

∂uz
∂r

− ∂ur
∂z

. (2.53)

It is often more convenient to work with the reduced vorticity λ = r−1ω. In these
terms the equations of a steady axially symmetric flow of a viscous incompressible
fluid have the form

Eψ = −r2λ, u · ∇λ = νLλ, (2.54)
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where u = (ur, uz), ∇ = (∂r, ∂z), and E and L are linear elliptic operators defined
by

E =
∂2

∂r2
− 1
r

∂

∂r
+

∂2

∂z2
, L =

∂2

∂r2
+

3
r

∂

∂r
+

∂2

∂z2
.

The elliptic system (2.54) has a much simpler structure than the original sys-
tem (2.52), and moreover, it contains fewer unknown functions. Therefore, the
variables ψ, ω have turned out to be very convenient for the numerical solution of
axially symmetric problems. So far no author has investigated the flux problem
for this system. In [42] such a problem was considered in an axially symmetric
domain Q of the spherical layer type.

Let S1 and S0 denote the outer and inner boundary components of Q. For
simplicity assume that S1, S0 ∈ C∞. The meridional section of Q will be denoted
by Ω. It has the form of a horseshoe, with boundary formed by two arcs Σ1 and Σ0

that are the meridional sections of S1 and S0, respectively, and two intervals Λ1

and Λ0 of the z-axis (see Fig. 3).

Figure 3. The meridional section of the flow region Q

For the system (2.54) we impose the boundary conditions

ψ = ai(s), λ = bi(s), (r, z) ∈ Σi, i = 0, 1, (2.55)

corresponding to the values of the normal component of the velocity and the vor-
ticity given on the boundary of the domain. For a parameter s on the curve Σi it
is convenient to take the arc length measured from the left-hand endpoint of the
interval Λi of the z-axis (i = 0, 1).

If the function ai takes equal values at the endpoints of Σi (which we denote
by zil and zir), then (1.6) is satisfied: the flux of the fluid across each surface
Si (i = 0, 1) is equal to zero. Then we can prove the solvability of the problem
(2.54), (2.55) for sufficiently smooth input data using standard arguments. We are
interested in the case when this condition is violated:

a1(l1)− a1(0) = a0(l0)− a0(0) ̸= 0.

Here li denotes the length of Σi. The coinciding quantities in the last relation are
equal to (2π)−1F , where F is the flux across S1. It was proved in [42] that the
problem (2.54), (2.55) is solvable without constraints on the magnitude of |F |.

Note that for a fixed velocity field the stream function is determined up to an
additive constant. Making the natural assumption that ur → 0 as r → 0, we
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conclude that the intervals Λ1 and Λ0 of the z-axis are streamlines. Without loss
of generality we can set ψ = 0 on Λ1 (that is, a1(0) = a0(0) = 0). Then ψ takes
the value a1(l1) = a0(l0) = (2π)−1F on Λ0.

Let us transform the problem (2.54), (2.55) into a problem with homogeneous
boundary conditions. To do this we construct a function χ as a solution of the
following boundary-value problem:

Eχ = 0, (r, z) ∈ Ω;
χ = ai(s), (r, z) ∈ Σi, i = 0, 1;
χ = 0, (r, z) ∈ Λ1;

χ = (2π)−1q, (r, z) ∈ Λ0.

(2.56)

For simplicity assume that ai and bi (i = 0, 1) are functions in the Hölder classes
C2+α([0, li]), 0 < α < 1. Also assume that, as s→ 0,

a1 = a21s
2 +O(s2+α), a0 = (2π)−1q + a20s

2 +O(s2+α),

bi = b1i + b2is
2 +O(s2+α), i = 0, 1.

(2.57)

Under these assumptions the problem (2.56) has a classical solution, which is more-
over unique and satisfies the estimates

1
r

∂χ

∂r
= O(r),

1
r

∂χ

∂z
= O(r), (r, z) ∈ Ω, r → 0. (2.58)

The function χ extends the boundary values of the stream function inside Ω. To
extend the boundary values of the reduced vorticity, we introduce local curvilinear
orthogonal coordinates s and n associated with the curves Σ1 and Σ0. We have
already introduced the s-variable, and as n we take the distance from a point
(r, z) ∈ ∆i ⊂ Ω to the curve Σi (i = 0, 1). Here ∆i is a curved strip of width δ
which adjoins Σi. We take δ small enough so that the point on Σi which is closest
to (r, z) is well defined. Such curvilinear (von Mises) variables are well known in
boundary layer theory [34]. Next we define a function ϑ(x) by

ϑ = bi(s)ξ(n, ε), (r, z) ∈ ∆i, i = 0, 1,

ϑ = 0, (r, z) ∈ Ω \∆1 ∪∆2,
(2.59)

where ξ(n, ε) is the Hopf cutoff function. From (2.56) and the properties of the
Hopf function we conclude that:

ϑ ∈ C2+α(Ω); ϑ = bi(s), (r, z) ∈ Σi;∣∣∣∣∂ϑ∂n
∣∣∣∣ 6

cε

n
;

∂ϑ

∂r
= 0, (r, z) ∈ Λi;

(2.60)

here ε > 0 can be arbitrarily small.
In the problem (2.54), (2.55) we go over to the new unknown functions

φ = ψ − χ, µ = λ− ϑ.
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The functions φ and µ form a solution of the following boundary-value problem:{
Eφ = −r2(µ+ ϑ), (r, z) ∈ Ω,
U · ∇µ+ W · ∇µ+ U · ∇ϑ+ W · ∇ϑ = νLµ+ νLϑ, (r, z) ∈ Ω,

(2.61)

φ = 0, (r, z) ∈ ∂Ω; µ = 0, (r, z) ∈ Σi;
∂µ

∂r
= 0, (r, z) ∈ Λi; i = 0, 1.

(2.62)

Here we have set

U =
(
−1
r

∂φ

∂z
,
1
r

∂φ

∂r

)
, W =

(
−1
r

∂χ

∂z
,
1
r

∂χ

∂r

)
.

By (2.55), (2.56), and (2.62) the vector-valued functions U and W satisfy the
conditions

U · ni = 0, W · ni = 0, (r, z) ∈ Σi (i = 0, 1),
U · n0 = 0, W · n0 = 0, (r, z) ∈ Λi (i = 0, 1),

(2.63)

where the ni denote the outward unit normals to the curves Σi, i = 0, 1 (relative
to Ω), and n0 = (−1, 0) is the normal to the straight parts Λ1 and Λ0 of the
boundary of Ω.

The equations of the system (2.61) are degenerate on the line r = 0, and we
require weighted function classes for investigating the solutions of it. Let Ω− be
the domain in the (r,z)-plane obtained by reflecting Ω ≡ Ω+ in the z-axis, and let

Ω∗ = Ω+ ∪ Ω− ∪ Γ1 ∪ Γ0.

Now let H l(Ω; r) denote the closure of the set of functions ϕ ∈ C∞0 (Ω∗) in the norm
of the Sobolev space of functions having in the domain Ω∗ derivatives of order up
to l that are square-integrable with weight r over this domain. The subspaces of
even and odd functions ϕ ∈ H l(Ω; r) will be denoted by H l

e(Ω; r) and H l
o(Ω; r),

respectively. The space L2(Ω; r) coincides with H0(Ω; r). The spaces L2
e(Ω; r)

and L2
o(Ω; r) are defined similarly.

Then we have the following results.

Lemma 2.4. Suppose that ρ ∈ L2
e(Ω; r), ∂ρ/∂r ∈ L2

o(Ω; r), and ∂ρ/∂z ∈ L2
e(Ω; r).

Then the problem

Eφ = −r2ρ for (r, z) ∈ Ω, φ = 0 for (r, z) ∈ ∂Ω (2.64)

has a unique solution φ ∈ H3
e (Ω; r) with r−1∂φ/∂r ∈ H2

e (Ω; r), and the following
estimates hold:∥∥∥∥1

r

∂φ

∂r

∥∥∥∥
L2(Ω;r)

6 c∥ρ∥L2(Ω;r),

∥∥∥∥1
r

∂ φ

∂z

∥∥∥∥
L2(Ω;r)

6 c∥ρ∥L2(Ω;r),∥∥∥∥1
r

∂φ

∂r

∥∥∥∥
H2(Ω;r)

6 c∥ρ∥H1(Ω;r), ∥φ∥H3(Ω;r) 6 c∥ρ∥H1(Ω;r).

(2.65)
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Lemma 2.5. Let ai, bi ∈ C2+α([0, li]), 0 < α < 1, i = 0, 1, and assume the
conditions (2.57). Then a generalized solution φ, µ of the problem (2.61), (2.62)
has the estimate

∥φ∥H3(Ω;r) + ∥µ∥H1(Ω;r) 6 C (2.66)

with a constant C = C(ν, F,Ω, ai, bi) > 0.

The following theorem was established in [42] by using the a priori bounds in
Lemmas 2.4 and 2.5.

Theorem 2.6. If the conditions of Lemma 2.4 hold, then the problem (2.61), (2.62)
has a solution φ ∈ H3

e (Ω; r), µ ∈ H1
e (Ω; r).

We do not give the proof here; it follows the classical scheme as presented in [2].
In conclusion we note that we can replace the smoothness condition ∂Ω ∈ C∞

of the boundary of the flow region by the condition ∂Ω ∈ C2+α, 0 < α < 1. The-
orem 2.6 ensures that the problem (2.61), (2.62) will have at least one generalized
solution. However, the smoothness and matching conditions imposed above on the
functions ai and bi (i = 0, 1) enable us to prove that in fact this solution is a classical
solution.

For simplicity we confined ourselves above to the case when the boundary of an
axially symmetric flow region has two connected components. However, the line of
argument will be the same if the boundary consists of arbitrarily many connected
components: it is only important that each of these surfaces of revolution intersect
the rotation axis in two points. No restrictions are imposed on the fluxes across the
boundary components.

Now we consider the Galerkin approximations to the solution of (2.61), (2.62).
They also have an a priori bound similar to (2.66), so we can justify the convergence
of the Galerkin method to the solution of the axially symmetric flux problem in the
‘vorticity-stream function’ variables.

3. An existence theorem in the general planar case

In this section we look at the boundary-value problem for the Navier–Stokes
system of equations (1.1)–(1.3) in a bounded domain Ω ⊂ R2 with C2-smooth
boundary ∂Ω =

⋃N
j=0 Γj consisting of N + 1 disjoint connected components Γj ,

that is,

Ω = Ω0 \
( N⋃
j=1

Ωj

)
, Ωj ⊂ Ω0, j = 1, . . . , N, (3.1)

where Γj = ∂Ωj . We assume that a ∈ W 3/2,2(∂Ω) and f ∈ W 1,2(Ω). Without
loss of generality we can also assume that f = ∇⊥b with b ∈ W 2,2(Ω), where
(x, y)⊥ = (−y, x).2

2According to the Helmholtz–Weyl decomposition, each vector-valued function f ∈ W 1,2(Ω)
on a bounded domain Ω ⊂ Rn with C2-boundary, n = 2, 3, can be represented as a sum f =
curlb + ∇ϕ for n = 3 or f = ∇⊥b + ∇ϕ for n = 2, where b, b, ϕ ∈ W 2,2(Ω), and the gradient
component can be included in the term containing the pressure (see, for instance, [2]).
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3.1. Auxiliary results.

3.1.1. Analogues of the Morse–Sard theorem and the Luzin N -property for Sobolev
functions in W 2,1(R2). We start by recalling several classical differentiability prop-
erties of Sobolev functions. In treating Sobolev functions we shall always assume
that we have chosen their ‘best representatives’. For w ∈ L1

loc(Ω) the best repre-
sentative w∗ is defined as follows:

w∗(x) =

{
limr→0 −

∫
Br(x)

w(z) dz if the limit exists and is finite,
0 otherwise,

where
−
∫
Br(x)

w(z) dz =
1

meas(Br(x))

∫
Br(x)

w(z) dz

and Br(x) = {y : |y − x| < r} is a ball with radius r and centre x. It is well
known that if w ∈ W 1,q

loc (Ω) and Ω ⊂ R2, then H1-almost all points x ∈ Ω are
Lebesgue points of w, so that the above limits exist H1-almost everywhere. Here
and throughout we let H1 denote the one-dimensional Hausdorff measure: H1(F ) =
limt→0+ H1

t (F ), where

H1
t (F ) = inf

{ ∞∑
i=1

diamFi : diamFi 6 t, F ⊂
∞⋃
i=1

Fi

}
.

Lemma 3.1 (see [43], Proposition 1). If ψ ∈ W 2,1(R2), then ψ is a continuous
function, and there is a set Aψ ⊂ R2 such that H1(Aψ) = 0 and ψ is differentiable
(in the classical sense) at all points x ∈ R2\Aψ . Furthermore, its classical derivative
coincides with the value of ∇ψ(x), and

lim
r→0

−
∫
Br(x)

|∇ψ(z)−∇ψ(x)|2 dz = 0

(so that x is a Lebesgue point of ∇ψ( · )).

The next result was obtained by Bourgain, Korobkov, and Kristensen [25] (see
also [44] and [45] for several dimensions).

Theorem 3.1. Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary. If ψ ∈
W 2,1(Ω), then the following hold.

(i) H1({ψ(x) : x ∈ Ω \Aψ & ∇ψ(x) = 0}) = 0.
(ii) For any ε > 0 there exists a δ > 0 such that H1(ψ(U)) < ε for each set

U ⊂ Ω whenever H1
∞(U) < δ .

(iii) For any ε > 0 there exist an open set V ⊂ R with H1(V ) < ε and a function
g ∈ C1(R2) such that if x ∈ Ω and ψ(x) /∈ V , then x /∈ Aψ , ψ(x) = g(x), and
∇ψ(x) = ∇g(x) ̸= 0.

(iv) For H1-almost all y ∈ ψ(Ω) ⊂ R the inverse image ψ−1(y) is the union of
finitely many C1-smooth curves Sj , j = 1, . . . , N(y). Each Sj is either a cycle in
Ω (so that Sj ⊂ Ω is homeomorphic to the unit circle S1) or a simple arc with
endpoints on ∂Ω (and then Sj is transversal to ∂Ω).
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3.1.2. Some topological facts. We need several definitions and results from general
topology. By a continuum we mean a compact connected set, where connectedness
is treated in the usual sense of general topology. A subset of a topological space is
called an arc if it is homeomorphic to the closed unit interval [0, 1].

We start by recalling several results from Kronrod’s classical paper [46] on level
sets of continuous functions. Let Q = [0, 1]× [0, 1] be a square in R2, f a continuous
function on Q, and Et = {x ∈ Q : f(x) = t} a level set of f . By the connected
component K of Et containing a point x0 we mean the maximal connected subset
of Et containing x0. Let Tf be the set of connected components of level sets of f . We
take this set in its natural topology, where a system of neighbourhoods is defined as
follows. For a component C ∈ Tf and an open set U ⊃ C the set {B ∈ Tf : B ⊂ U}
is called a neighbourhood of C. Accordingly, convergence in Tf is defined as follows:
Tf ∋ Ci → C if and only if supx∈Ci dist(x,C) → 0. It was proved in [46] that Tf
is a one-dimensional topological tree. (A locally connected continuum T is called
a topological tree if it contains no curve homeomorphic to a circle, or equivalently,
if any two points in T can be joined by a unique arc.) Hence T has topological
dimension 1. Endpoints of this tree3 are points C ∈ Tf which do not separate Q,
that is, the difference Q \ C is connected. The branch points of this tree are the
components C ∈ Tf such thatQ\C has more than 2 connected components (see [46],
Theorem 5). According to Lemma 1 in [46] (see also [47] and [48]) Tf can have
only countably many branch points. The main property of the tree is that any two
points in it can be joined by a unique arc. Thus, we have the following lemma.

Lemma 3.2 (see Lemma 13 in [46]). If f ∈ C(Q), then for any pair of distinct
elements A ∈ Tf and B ∈ Tf there is a unique arc J = J(A,B) ⊂ Tf joining A
with B . Moreover, for each interior point C of this arc A and B lie in different
connected components of the set Tf \ {C}.

Remark 3.1. The assertion of Lemma 3.2 also holds for level sets of a continuous
function f : Ω → R, where Ω is a bounded multiply connected domain of type (3.1),
provided that f ≡ ξj = const on each inner boundary component Γj , j = 1, . . . , N .
In fact, we can extend f to the whole of Ω0 by setting f(x) = ξj for x ∈ Ωj ,
j = 1, . . . , N . The extended function f is continuous on the set Ω0, which is
homeomorphic to the unit square Q = [0, 1]2.

3.2. Leray’s argument by contradiction. If (1.5) holds for the boundary val-
ues a ∈W 3/2,2(∂Ω), then the boundary function a has a divergence-free extension
A ∈W 2,2(Ω) (see, for instance, [2], [28]). Using this fact and some standard results
[2], we can find a generalized solution U ∈ W 2,2(Ω) of the linear Stokes problem
such that

U−A ∈ H(Ω) ∩W 2,2(Ω)

and
ν

∫
Ω

∇U · ∇η dx =
∫

Ω

f · η dx ∀η ∈ H(Ω). (3.2)

3A point in a continuum K is called an endpoint (a branch point) of K if it has topological
index 1 (topological index at least 3, respectively). For a topological tree T this definition is
equivalent to the following one: C ∈ T is an endpoint (a branch point) of T if T \{C} is connected
(if T \ {C} has three or more connected components, respectively).
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Moreover,
∥U∥W 2,2(Ω) 6 c(∥a∥W 3/2,2(∂Ω) + ∥f∥L2(Ω)). (3.3)

Obviously, U extends the boundary value a into Ω. Hence, it follows from the defini-
tion (1.12) that a generalized solution u = w+U, w ∈ H(Ω), of the boundary-value
problem (1.1)–(1.3) for the system of Navier–Stokes equations satisfies the integral
identity

ν

∫
Ω

∇w · ∇η dx−
∫

Ω

(
(w + U) · ∇

)
η ·w dx−

∫
Ω

(w · ∇)η ·U dx

=
∫

Ω

(U · ∇)η ·U dx ∀η ∈ H(Ω). (3.4)

In § 2.2 we described Leray’s method for establishing an a priori bound, which
is based on an argument by contradiction. The following lemma is an important
element of the proof.

Lemma 3.3. Let Ω ⊂ R2 be a bounded domain of the form (3.1) with C2-smooth
boundary ∂Ω, let f = ∇⊥b with b ∈W 2,2(Ω), and let a ∈W 3/2,2(∂Ω) satisfy (1.5).
If the system (1.1)–(1.3) does not have generalized solutions, then there exists a pair
of functions ŵ, p̂ with the following properties.

(E) ŵ ∈W 1,2(Ω), p̂ ∈W 1,q(Ω), q ∈ (1, 2), and the pair (ŵ, p̂) satisfies the Euler
system of equations

(ŵ · ∇)ŵ +∇p̂ = 0, x ∈ Ω, (3.5a)
div ŵ = 0, x ∈ Ω, (3.5b)

ŵ = 0, x ∈ ∂Ω. (3.5c)

(E-NS) The conditions (E) hold and there exist sequences of functions uk ∈
W 1,2(Ω) and pk ∈ W 1,q(Ω) and sequences of numbers νk → 0+ and λk → λ0 > 0
such that the norms ∥uk∥W 1,2(Ω) and ∥pk∥W 1,q(Ω) are uniformly bounded for each
q ∈ [1, 2), the pairs (uk, pk) satisfy the system of equations

−νk∆uk + (uk · ∇)uk +∇pk = fk, x ∈ Ω, (3.6a)
div uk = 0, x ∈ Ω, (3.6b)

uk = ak, x ∈ ∂Ω, (3.6c)

with fk =
λkν

2
k

ν2
f and ak =

λkνk
ν

a, and

∥∇uk∥L2(Ω) → 1, uk ⇀ ŵ in W 1,2(Ω),

pk ⇀ p̂ in W 1,q(Ω) ∀ q ∈ [1, 2).

In addition, uk ∈W 3,2
loc (Ω) and pk ∈W 2,2

loc (Ω).

We shall assume in what follows that the conditions (E-NS) are satisfied. As we
showed in § 2.2, if all the fluxes Fi are zero (see (1.6)), then the conditions (E-NS)
lead to a contradiction, thereby proving that (1.1)–(1.3) is solvable. In this section
our goal is to demonstrate that these conditions also lead to a contradiction in the
general case when the boundary data a satisfy only the necessary condition (1.5).
This will justify the existence Theorem 1.1.
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Some results on the Euler equations. Here we collect results on the properties
obtained in papers before [22] for the limiting solution (ŵ, p̂) of (3.5).

As already mentioned in Lemma 2.2, it follows from the conditions (E) that there
exist constants p̂0, . . . , p̂N such that

p̂(x) ≡ p̂j for H1-almost all x ∈ Γj . (3.7)

Furthermore, it follows from (2.15) and (2.19) that

− ν

λ0
=

N∑
j=0

p̂j

∫
Γj

a · n ds =
N∑
j=0

p̂jFj . (3.8)

Assuming that (1.6) holds and that all the fluxes Fi, i = 0, 1, . . . , N , are zero,
we now get the desired contradiction from the relation (3.8). For the same rea-
sons we arrive at a contradiction when each flux Fj is ‘sufficiently small’. Thus, in
these cases the proof of the existence theorem is complete. However, the case when
Fj ̸= 0 is more delicate and the argument must be more refined.

It follows from (3.5b) and (3.5c) that there exists a stream function ψ ∈W 2,2(Ω)
such that

∇ψ ≡ ŵ⊥ in Ω. (3.9)

(Recall that (a, b)⊥ = (−b, a) by our definition.)
Let Φ̂ denote the total head pressure corresponding to the solution (ŵ, p̂) : Φ̂ =

p̂+ |ŵ|2/2. The next formula is an immediate consequence of (3.5):

∇Φ̂ ≡ ω̂ŵ⊥ = ω̂∇ψ in Ω, (3.10)

where ω̂ denotes the corresponding vorticity

ω̂ =
∂ŵ1

∂x2
− ∂ŵ2

∂x1
= ∆ψ.

In our case streamlines coincide with level sets of ψ, so from (3.10) we immediately
deduce the classical Bernoulli law for smooth ψ and Φ̂:

The total head pressure is constant on each streamline.

However, the Sobolev case is more delicate: the stream function ψ ∈ W 2,1(Ω) is
now not C1-smooth and the total head pressure Φ̂ belongs to the space W 1,q(Ω)
with q < 2, in which functions are not necessarily continuous but are ‘well defined’
outside some ‘bad’ subset of zero length (one-dimensional Hausdorff measure) (see,
for instance, [49], Theorem 1 in § 4.8 or Theorem 2 in § 4.9.2). Thus, Bernoulli’s
law for solutions in Sobolev spaces must be formulated ‘modulo’ a negligible ‘bad’
subset Aŵ with zero Hausdorff H1-measure. Such a version of Bernoulli’s law was
established in [18], Theorem 1 (see also [19], Theorem 3.2, where more details of
the proof were given).

Theorem 3.2 (Bernoulli’s law). Assume the conditions (E). Then there is a set
Aŵ with H1(Aŵ) = 0 such that each point x ∈ Ω \ Aŵ is a Lebesgue point4 of the

4To define a Lebesgue point on ∂Ω we take the natural extensions of the functions ŵ and Φ̂
to the whole of R2 by the constants 0 and p̂j , respectively.
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functions ŵ and Φ̂, and the following property holds for compact connected subsets
K ⊂ Ω: if

ψ
∣∣
K

= const, (3.11)

then
Φ̂(x1) = Φ̂(x2) for all x1, x2 ∈ K \Aŵ. (3.12)

Lemma 3.4. If the conditions (E) hold, then there exist constants ξ0, . . . , ξN ∈ R
such that ψ(x) ≡ ξj on the component Γj , j = 0, 1, . . . , N .

Proof. This can easily be deduced from the fact that, extending ŵ by zero outside Ω,
we obtain a function in H(R2) ⊂ W 1,2

loc (R2), so that the stream function ψ ∈
W 2,2

loc (R2) is ‘well defined’ in the whole of the plane R2, with ∇ψ = 0 in R2 \ Ω. �

For x ∈ Ω letKx denote the connected component of the level set {z ∈ Ω: ψ(z) =
ψ(x)} which contains x. By Lemma 3.4, Kx ∩ ∂Ω = ∅ for each y ∈ ψ(Ω) \
{ξ0, . . . , ξN} and for any x ∈ ψ−1(y). Thus, Theorem 3.1 (ii), (iv) means that for
almost all y ∈ ψ(Ω) and each x ∈ ψ−1(y) we have Kx ∩ Aŵ = ∅, and hence the
component Kx ⊂ Ω is a C1-curve homeomorphic to a circle. We call such curves Kx

admissible cycles.
The following lemma was proved in [19], Lemma 3.3.

Lemma 3.5. If the conditions (E-NS) are satisfied, then there exists a subse-
quence Φkl such that Φkl

∣∣
S

converges uniformly to Φ̂
∣∣
S
, Φkl

∣∣
S

⇒ Φ̂
∣∣
S
, on almost

all5 admissible cycles S .

In connection with Lemma 3.5 we remark that Amick [17] proved the uniform
convergence Φk ⇒ Φ̂ on almost all circles. However, his method can easily be
modified to prove uniform convergence on almost all level sets of any C1-smooth
function with non-vanishing gradient. Such a modification was carried out in the
proof of Lemma 3.3 in [19].

In what follows we assume (without loss of generality) that the sequence Φkl in
Lemma 3.5 coincides with Φk. We shall call the admissible cycles S in the lemma
regular cycles.

3.3. Arriving at a contradiction. We look at two cases.

(a) Φ̂ attains its maximum on ∂Ω:

max
j=0,...,N

p̂j = ess sup
x∈Ω

Φ̂(x). (3.13)

(b) Φ̂ does not attain its maximum on ∂Ω (the case when ess supx∈Ω Φ̂(x) = +∞
is also possible):

max
j=0,...,N

p̂j < ess sup
x∈Ω

Φ̂(x). (3.14)

5By almost all cycles we mean the cycles in the inverse images ψ−1(y) of almost all y ∈ ψ(Ω).
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3.3.1. Φ̂ attains a maximum on ∂Ω. Assume that (3.13) holds. By adding a con-
stant to the pressure we can assume without loss of generality that

max
j=0,...,N

p̂j = ess sup
x∈Ω

Φ̂(x) = 0. (3.15)

In particular,
Φ̂(x) 6 0 in Ω. (3.16)

If p̂0 = p̂1 = · · · = p̂N , then since the total flux vanishes (1.5), we immediately
obtain the desired contradiction by (3.8). Thus, we assume in what follows that

min
j=0,...,N

p̂j < 0. (3.17)

We change (if needed) the numbering of the boundary components Γ0,Γ1, . . . ,ΓN
so that

p̂j < 0, j = 0, 1, . . . ,M, (3.18)
p̂M+1 = · · · = p̂N = 0. (3.19)

First of all we explain heuristically the central idea of the proof. It is well known
that each function Φk satisfies the linear elliptic equation

∆Φk = ω2
k +

1
νk

div(Φkuk)−
1
νk

fk · uk. (3.20)

If fk = 0, then by Hopf’s maximum principle, for a subdomain Ω′ b Ω with
C2-boundary ∂Ω′ the maximum of Φk in Ω′ is attained on ∂Ω′, and if x∗ ∈ ∂Ω′

is a maximum point, then the normal derivative of Φk at x∗ is strictly positive.
However, it is not sufficient to apply this property as such: we instead use certain
‘integral analogues’ of it which will bring us to a contradiction with the co-area
formula (see (3.36), (3.37)). For i ∈ N and sufficiently large k > k(i) we construct
a set Ei ⊂ Ω formed by level curves of Φk such that Φk

∣∣
Ei
→ 0 as i → ∞ and

Ei separates the boundary component ΓN (on which Φ̂ = 0) from the boundary
components Γj with j = 0, 1, . . . ,M (on which Φ̂ < 0). On the one hand, each
of these level curves has length bounded below by a positive constant (because
they separate the boundary components), and by the co-area formula this gives
a lower bound for the integral

∫
Ei
|∇Φk|. On the other hand, using the elliptic

equation (3.20) for Φk, the convergence fk → 0, and the boundary condition (3.6c),
we can find an upper bound for

∫
Ei
|∇Φk|2 (see Lemma 3.6 below), and this latter

bound will asymptotically be in contradiction with the previous bound.
For a multiply connected domain of general form the proof is essentially the same

as for an annular domain (when ∂Ω = Γ0 ∪ Γ1). The proof is analytic in nature,
and the inessential differences concern only well-known geometric properties of level
sets of continuous functions of two variables.

Using Kronrod’s results (see § 3.1.2), we can construct a decreasing sequence of
domains Vi+1 b Vi ⊂ Ω with the properties

∂Vi = A0
i ∪ · · · ∪AMi ∪ ΓK ∪ · · · ∪ ΓN , (3.21)
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where K ∈ {M + 1, . . . , N} is a fixed integer and each set Aji with j = 0, 1, . . . ,M
and i ∈ N is a regular cycle separating Γj from ΓN such that

Φ̂(Aji ) = −ti = 2−it0 (3.22)

(see Fig. 4; some details of the construction are explained, for instance, in § 5).
By the definition of a regular cycle (see the comments to Lemma 3.5) we have

the uniform convergence Φk
∣∣
Aji

⇒ Φ̂(Aji ) = −ti as k → ∞. Thus, for each i ∈ N
there is a ki such that for all k > ki,

Φk
∣∣
Aji

< −7
8
ti, Φk

∣∣
Aji+1

> −5
8
ti ∀ j = 0, 1, . . . ,M. (3.23)

Then

∀ t ∈
[
5
8
ti,

7
8
ti

]
∀ k > ki Φk

∣∣
Aji

< −t, Φk
∣∣
Aji+1

> −t ∀ j = 0, 1, . . . ,M.

(3.24)
For k > ki, j = 0, 1, . . . ,M , and t ∈ [5ti/8, 7ti/8] let W j

ik(t) denote the connected
component of the open set {x ∈ Vi \V i+1 : Φk(x) > −t} such that ∂W j

ik(t) ⊃ Aji+1,
and let

Wik(t) =
M⋃
j=0

W j
ik(t), Sik(t) = (∂Wik(t)) ∩ Vi \ V i+1.

Clearly, Φk ≡ −t on Sik(t). By construction

∂Wik(t) = Sik(t) ∪A0
i+1 ∪ · · · ∪AMi+1 (3.25)

(see Fig. 4). In view of the properties (E-NS), each function Φk belongs to the
Sobolev class W 2,2

loc (Ω), and hence the Morse–Sard theorem for Sobolev functions
(see Theorem 3.1) gives us that for almost all t ∈ [5ti/8, 7ti/8] the level set Sik(t)
consists of finitely many C1-smooth cycles, and Φk is differentiable (in the clas-
sical sense) at each point x ∈ Sik(t) such that ∇Φk(x) ̸= 0. We call values
t ∈ [5ti/8, 7ti/8] with this property (k, i)-regular values. By construction∫

Sik(t)

∇Φk · n ds = −
∫
Sik(t)

|∇Φk| ds < 0, (3.26)

where n is the unit outward normal vector to ∂Wik(t) (relative to Wik(t)).
The following estimate is the key step.

Lemma 3.6. For each i ∈ N there is an index k(i) ∈ N such that∫
Sik(t)

|∇Φk| ds < F t (3.27)

for all k > k(i) and almost all t ∈ [5ti/8, 7ti/8], where the constant F is indepen-
dent of t, k , and i.
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Figure 4. The case of an annular domain (N = 1)

We discuss only the main steps of the proof. For h > 0 let

Γh = {x ∈ Ω: dist(x,ΓK ∪ · · · ∪ ΓN ) = h)},
Ωh = {x ∈ Ω: dist(x,ΓK ∪ · · · ∪ ΓN ) < h)}.

In the first step of the proof we find for sufficiently large k a small number hk such
that Ωh̄k ⊂ Vi+2 and ∫

Γhk

Φ2
k ds < σ2, (3.28)∣∣∣∣ ∫

Γhk

∇Φk · n ds
∣∣∣∣ =

∣∣∣∣∫
Γhk

ωku⊥k · n ds
∣∣∣∣ < ε, (3.29)∫

Γhk

|uk|2 ds < Cεν
2
k , (3.30)

where σ and ε are arbitrary (but fixed) small numbers, and the constant Cε is
independent of k and σ. We can find such a value of hk on the basis of the assump-
tion (E-NS), by using the weak convergence Φk ⇀ Φ̂ and uk ⇀ ŵ and the boundary
conditions ∥uk∥L2(∂Ω) = O(νk) for νk → 0 and ŵ ≡ 0 and Φ̂ ≡ 0 on ΓK ∪ · · · ∪ ΓN
(see (3.6c) and (3.5c)).

Now for a (k, i)-regular value t ∈ [5ti/8, 7ti/8] we take the domain

Ωihk(t) = Wik(t) ∪ V i+1 \ Ωhk .

By construction ∂Ωihk(t) = Γhk ∪ Sik(t) (see Fig. 4). Integrating the identity

∆Φk = ω2
k +

1
νk

div(Φkuk)−
1
νk

fk · uk (3.31)
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over Ωihk(t), we get that∫
Sik(t)

∇Φk · n ds+
∫

Γhk

∇Φk · n ds =
∫

Ωihk
(t)

ω2
k dx−

1
νk

∫
Ωihk

(t)

fk · uk dx

+
1
νk

∫
Sik(t)

Φkuk · n ds+
1
νk

∫
Γhk

Φkuk · n ds

=
∫

Ωihk
(t)

ω2
k dx−

1
νk

∫
Ωihk

(t)

fk · uk dx− tλkF +
1
νk

∫
Γhk

Φkuk · n ds,

(3.32)

where F = (F1 + · · ·+ FM )/ν. In view of (3.26) and (3.29),∫
Sik(t)

|∇Φk| ds 6 tF + ε+
1
νk

∫
Ωihk

(t)

fk · uk dx−
∫

Ωihk
(t)

ω2
k dx

+
1
νk

(∫
Γhk

Φ2
k ds

)1/2(∫
Γhk

|uk|2 ds
)1/2

, (3.33)

where F = |F |. By definition,

1
νk
∥fk∥L2(Ω) =

λkνk
ν2

∥f∥L2(Ω) → 0 as k →∞.

Consequently, ∣∣∣∣ 1
νk

∫
Ωihk

(t)

fk · uk dx
∣∣∣∣ 6 ε

for sufficiently large k. Using the inequalities (3.28) and (3.30), we find that∫
Sik(t)

|∇Φk| ds 6 tF + 2ε+ σ
√
Cε −

∫
Ωihk

(t)

ω2
k dx, (3.34)

where Cε is independent of k and σ. We can show that for sufficiently large k the
last term satisfies the inequality∫

Ωihk
(t)

ω2
k dx > εi (3.35)

with a parameter εi > 0 which is independent of k (otherwise ω(x) ≡ 0, and
accordingly Φ(x) ≡ const on the set Vi+1 \ Vi+2 ⊂ Ωih̄k(t), which is impossible by
construction). Taking ε = εi/6, σ = εi/(3

√
Cε ), and a sufficiently large k, we get

from (3.35) that

2ε+ σ
√
Cε −

∫
Ωihk

(t)

ω2
k dx 6 0.

In combination with (3.34) this inequality yields the required estimate (3.27).
We can now obtain the desired contradiction using the co-area formula.
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Lemma 3.7. Let Ω ⊂ R2 be a bounded domain of type (3.1) with C2-smooth bound-
ary ∂Ω, let f ∈W 1,2(Ω), and assume that the boundary data a ∈W 3/2,2(∂Ω) satisfy
the condition of zero total flux (1.5). Then the assumptions (E-NS) and (3.13) lead
to a contradiction.

Proof. For i ∈ N and k > k(i) (see Lemma 3.6) let

Ei =
⋃

t∈[5ti/8,7ti/8]

Sik(t).

By the co-area formula (see, for instance, [50]), for each integrable function g : Ei →
R we have ∫

Ei

g|∇Φk| dx =
∫ 7ti/8

5ti/8

∫
Sik(t)

g(x) dH1(x) dt. (3.36)

In particular, for g = |∇Φk| we get from (3.27) that∫
Ei

|∇Φk|2 dx =
∫ 7ti/8

5ti/8

∫
Sik(t)

|∇Φk|(x) dH1(x) dt 6
∫ 7ti/8

5ti/8

F t dt = F ′t2i , (3.37)

where the parameter F ′ = 3F/16 is independent of i. Setting g = 1 in (3.36) and
using Hölder’s inequality, we now find that∫ 7ti/8

5ti/8

H1
(
Sik(t)

)
dt =

∫
Ei

|∇Φk| dx 6

(∫
Ei

|∇Φk|2 dx
)1/2(

meas(Ei)
)1/2

6
√

F ′ ti
(
meas(Ei)

)1/2
. (3.38)

By construction, for almost all t ∈ [5ti/8, 7ti/8] the set Sik(t) is a finite union of
smooth cycles, and Sik(t) separates Aji from Aji+1 for j = 0, 1, . . . ,M . Thus, each
set Sik(t) separates the component Γj from ΓN . In particular,

H1(Sik(t)) > min
(
diam Γj ,diam ΓN

)
.

Hence, the left-hand integral in (3.38) is greater than Cti, where the positive con-
stant C is independent of i. On the other hand, it is obvious that

meas(Ei) 6 meas
(
Vi \ Vi+1

)
→ 0 as i→∞,

a contradiction. �

3.3.2. Φ̂ does not attain a maximum on ∂Ω. In this subsection we look at the
case (b), when the assumption (3.14) holds (here ess supx∈Ω Φ̂(x) can = +∞). Let
σ = maxj=0,...,N p̂j .

First, [22] establishes the following technical result.

Lemma 3.8. There exists a regular cycle F ⊂ Ω such that Φ̂(F ) > σ .

The rest of the proof in the case (3.14) under consideration is similar to the
argument in § 3.3.1 for the case (3.13) already covered. The differences are as
follows: now M = N , the set F plays the role of the component ΓN in the above
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argument, and the calculations become even simpler because F lies strictly inside Ω.
Namely, for some t < Φ(F ) and sufficiently large k we can construct a subdomain
Ωk(t) b Ω such that

F b Ωk(t), ∂Ωk(t) = Sk(t), Φk
∣∣
Sk(t)

≡ t,

and Sk(t) is a finite union of C1-smooth cycles such that the gradient of Φk at
points of Sk(t) is directed strictly inside Ωk(t), that is,∫

Sk(t)

∇Φk · n ds = −
∫
Sk(t)

|∇Φk| ds < 0, (3.39)

where n is the unit outward normal vector to Sk(t) (relative to Ωk(t)). Integrating
the identity (3.31) over Ωk(t), we get that

0 >
∫
Sk(t)

∇Φk · n ds =
∫

Ωk(t)

ω2
k dx+

1
νk

∫
Sk(t)

Φkuk · n ds−
1
νk

∫
Ωk(t)

fk · uk dx

=
∫

Ωk(t)

ω2
k dx+

t

νk

∫
Sk(t)

uk · n ds−
νk
ν2

∫
Ωk(t)

f · uk dx

=
∫

Ωk(t)

ω2
k dx−

νk
ν2

∫
Ωk(t)

f · uk dx. (3.40)

As previously, we can show that the first term on the right-hand side of the last
formula satisfies

∫
Ωk(t)

ω2
k dx > εt with a positive constant εt independent of k, while

the second term νk
ν2

∫
Ωk(t)

f ·uk dx tends to zero as k →∞, which is a contradiction.
(The reader can find details in [22], § 3.3.2.) Thus, we have established the following
result.

Lemma 3.9. Let Ω ⊂ R2 be a bounded domain of type (3.1) with C2-smooth bound-
ary ∂Ω, let f ∈W 1,2(Ω), and assume that the boundary data a ∈W 3/2,2(∂Ω) satisfy
the condition of zero total flux (1.5). Then the assumptions (E-NS) and (3.14) lead
to a contradiction.

Proof of Theorem 1.1. Assume that the hypotheses of Theorem 1.1 hold, but its
assertion fails to hold. Then by Lemma 3.3 there exist functions ŵ, p̂ and a sequence
(uk, pk) satisfying the set of conditions (E-NS). However, by Lemmas 3.9 and 3.7
these assumptions lead to a contradiction. �

4. The axially symmetric case

We start by refining some notation. Let Ox1 , Ox2 , Ox3 be the coordinate axes
in R3 and let

θ = arctan
x2

x1
, r = (x2

1 + x2
2)

1/2, z = x3

be the cylindrical system of coordinates. Denote by vθ, vr, vz the projections of
a vector v on the θ-, r-, and z-axes.

Recall that a scalar function f is axially symmetric if it does not depend on θ.
In turn, a vector-valued function h = (hr, hθ, hz) is said to be axially symmetric
if hr, hθ, and hz are independent of θ. A vector-valued function h′ = (hr, hθ, hz) is
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said to be axially symmetric without swirl if hθ = 0 and hr and hz are independent
of θ.

The central result in this section is as follows.

Theorem 4.1. Let Ω ⊂ R3 be a bounded axially symmetric domain (see, for
instance, Fig. 5) with C2-smooth boundary ∂Ω consisting of N + 1 connected com-
ponents Γi . If f ∈ W 1,2(Ω) and a ∈ W 3/2,2(∂Ω) are axially symmetric and the
boundary values a satisfy the condition (1.5) of zero total flux, then the system
(1.1)–(1.3) has at least one generalized axially symmetric solution. Moreover, if f
and a are axially symmetric functions without swirl, then (1.1)–(1.3) also has at
least one generalized axially symmetric solution without swirl.

Figure 5. An axially symmetric domain (N = 3)

Using Leray’s argument by contradiction (whose main idea was presented in
§ 3.2 in the planar case; the reader can find details reflecting the peculiarities of the
axially symmetric case, for instance, in [23]), we can prove the following.

Lemma 4.1. Let Ω ⊂ R3 be a bounded axially symmetric domain with a C2-smooth
boundary ∂Ω consisting of N + 1 connected components Γi , and let f = curlb,
b ∈ W 2,2(Ω), and a ∈ W 3/2,2(∂Ω) be axially symmetric vector-valued functions
such that the boundary data a satisfy the condition (1.5) of zero total flux. If
the assertion of Theorem 4.1 is false, then there exist ŵ and p̂ with the following
properties.

(E-AX) The functions ŵ ∈ W̊ 1,2(Ω) and p̂ ∈ W 1,3/2(Ω) are axially symmetric
and satisfy the Euler system of equations (3.5).

(E-NS-AX) The condition (E-AX) is satisfied and there exist sequences of axially
symmetric functions uk ∈ W 1,2(Ω) and pk ∈ W 1,3/2(Ω) and sequences of numbers
νk → 0+ and λk → λ0 > 0 such that the norms ∥uk∥W 1,2(Ω) and ∥pk∥W 1,3/2(Ω)

are uniformly bounded, the pairs (uk, pk) satisfy the system of equations (3.6) with
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fk =
λkν

2
k

ν2
f and ak =

λkνk
ν

a, and

∥∇uk∥L2(Ω) → 1, uk ⇀ ŵ in W 1,2(Ω), pk ⇀ p̂ in W 1,3/2(Ω). (4.1)

Furthermore, uk ∈W 3,2
loc (Ω) and pk ∈W 2,2

loc (Ω).

As in the previous section, to prove the existence theorem (Theorem 4.1) we
must show that the conditions (E-NS-AX) lead to a contradiction.

We define the sets P+ = {(0, x2, x3) : x2 > 0, x3 ∈ R} and D = Ω ∩ P+. In the
half-plane P+ the variables x2, x3 obviously coincide with r, z.

For a set A ⊂ R3 let Ă := A∩P+, and for a set B ⊂ P+ let B̃ denote the subset
of R3 obtained by rotating B about the axis Oz.

The following properties are easy to see.
(S1) D is a bounded plane domain with Lipschitz boundary. Moreover, each

set Γ̆j , j = 0, 1, . . . , N , is connected. In other words, {Γ̆j : j = 0, 1, . . . , N} is the
family of all connected components of the set P+ ∩ ∂D .

Thus, ŵ and p̂ satisfy the following system in D :

∂p̂

∂r
− (ŵθ)2

r
+ ŵr

∂ŵr
∂r

+ ŵz
∂ŵr
∂z

= 0,

∂p̂

∂z
+ ŵr

∂ŵz
∂r

+ ŵz
∂ŵz
∂z

= 0,

ŵθŵr
r

+ ŵr
∂ŵθ
∂r

+ ŵz
∂ŵθ
∂z

= 0,

∂(rŵr)
∂r

+
∂(rŵz)
∂z

= 0

(4.2)

(these equations hold for almost all x ∈ D) and

ŵ(x) = 0 for H1-almost all x ∈ P+ ∩ ∂D . (4.3)

We have the following integral estimates: ŵ ∈W 1,2
loc (D),∫

D

r|∇ŵ(r, z)|2 dr dz <∞, (4.4)

and by the Sobolev embedding theorem for three-dimensional domains, ŵ ∈ L6(Ω),
that is, ∫

D

r|ŵ(r, z)|6 dr dz <∞. (4.5)

In addition, the condition ∇p̂ ∈ L3/2(Ω) can be written as∫
D

r|∇p̂(r, z)|3/2 dr dz <∞. (4.6)
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4.1. Some results on the Euler equations. Here we have collected results
from papers before [22] for the limiting solution (ŵ, p̂) of the system (4.2), (4.3).

The following result was proved in [33] (Lemma 4) and [17] (Theorem 2.2).

Theorem 4.2. If the conditions (E-AX) are satisfied, then

∀j ∈ {0, 1, . . . , N} ∃p̂j ∈ R : p̂(x) ≡ p̂j for H2-almost all x ∈ Γj . (4.7)

In particular, by axial symmetry

p̂(x) ≡ p̂j for H1-almost all x ∈ Γ̆j . (4.8)

We need a weak version of Bernoulli’s law for Sobolev solutions (ŵ, p̂) of the
Euler equations (4.2) (see Theorem 4.3 below).

It follows from the last equality in (4.2) and from (4.4) that there exists a stream
function ψ ∈W 2,2

loc (D) such that

∂ψ

∂r
= −rŵz,

∂ψ

∂z
= rŵr. (4.9)

It is easy to see that ψ is continuous at points of the set

D \Oz = D \ {(0, z) : z ∈ R}.

Lemma 4.2 (cf. Lemma 3.4). If the conditions (E-AX) are satisfied, then there
exist constants ξ0, ξ1, . . . , ξN ∈ R such that ψ(x) ≡ ξj on each curve Γ̆j , j =
0, 1, . . . , N .

Let Φ̂ = p̂+ |ŵ|2/2 denote the total head pressure corresponding to the solution
(ŵ, p̂).

Theorem 4.3 (Bernoulli’s law [23]). If the conditions (E-AX) are satisfied, then
there exists a set Aŵ with H1(Aŵ) = 0 such that each x ∈ D \ (Oz ∪ Aŵ) is
a Lebesgue point6 of ŵ and Φ̂, and the following property holds for each compact
connected set K ⊂ D \Oz : if

ψ
∣∣
K

= const, (4.10)

then
Φ̂(x1) = Φ̂(x2) for all x1, x2 ∈ K \Aŵ. (4.11)

4.2. Arriving at a contradiction. Assume that

Γj ∩Ox3 ̸= ∅, j = 0, 1, . . . ,M ′,

Γj ∩Ox3 = ∅, j = M ′ + 1, . . . , N.

The following result was proved in [23].

Theorem 4.4. If the conditions (E-AX) are satisfied, then p̂0 = · · · = p̂M ′ , where
the p̂j are the constants in Theorem 4.2.

6In the definition of a Lebesgue point on (∂D) \ (Oz ∪ Aŵ) we take the natural extensions of
the functions ŵ and Φ̂ to the whole of P+ by the constants 0 and p̂j , respectively.
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This is connected with the fact that the symmetry axis can be approximated
by streamlines, and the total head pressure is constant on streamlines (see Theo-
rem 4.4).

Now we look at three possible cases.
(a) Φ̂ attains its maximum on a boundary component intersecting the axis of

symmetry:
p̂0 = max

j=0,...,N
p̂j = ess sup

x∈Ω
Φ̂(x). (4.12)

(b) Φ̂ attains its maximum on a boundary component disjoint from the axis of
symmetry:

p̂0 < p̂N = max
j=0,...,N

p̂j = ess sup
x∈Ω

Φ̂(x). (4.13)

(c) Φ̂ does not attain its maximum on ∂Ω:

max
j=0,...,N

p̂j < ess sup
x∈Ω

Φ̂(x). (4.14)

We consider the case (4.12). By adding a constant to the pressure p we can
assume without loss of generality that

p̂0 = ess sup
x∈Ω

Φ̂(x) = 0. (4.15)

Since p̂0 = p̂1 = · · · = p̂N is impossible, we have p̂j < 0 for some j ∈ {M ′ + 1,
. . . , N} (recall that p̂0 = · · · = p̂M ′ = 0 by Theorem 4.4).

Now we can obtain a contradiction by repeating the arguments in [23] and [20].
From (3.5a) and (3.5b),

0 = x · ∇p̂(x) + x ·
(
ŵ(x) · ∇

)
ŵ(x)

= div
[
x p̂(x) +

(
ŵ(x) · x

)
ŵ(x)

]
− p̂(x) div x− |ŵ(x)|2

= div
[
x p̂(x) +

(
ŵ(x) · x

)
ŵ(x)

]
− 3Φ̂(x) +

1
2
|ŵ(x)|2. (4.16)

Integrating over Ω, we have

0 >
∫

Ω

[
3Φ̂(x)− 1

2
|ŵ(x)|2

]
dx =

∫
∂Ω

p̂(x)
(
x · n

)
ds =

N∑
j=0

p̂j

∫
Γj

(
x · n

)
ds

= −
N∑
j=1

p̂j

∫
Ωj

div x dx = −3
N∑
j=1

p̂j |Ωj | > 0.

This contradiction completes the proof in the case (4.12).
In the second case, (4.13), we surround the maximum component ΓN by a regular

cycle separating ΓN from the axis of symmetry Oz such that Φ̂ ≡ c ∈ (p̂0, p̂N ) on
this cycle. We thereby eliminate a neighbourhood of the singular line Oz from
consideration. Now we can reduce the proof to the planar case we examined in
§ 3.3.1. We can also make a similar reduction in the third case, (4.14). We have
therefore shown that the assumptions (E-NS-AX) lead to a contradiction in all
three possible cases (4.12)–(4.14). This completes the proof of Theorem 4.1.
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5. Supplement to §§ 3 and 4

In this section we describe the construction of subdomains Vi with the prop-
erty (3.21). By Remark 3.1 and Lemma 3.4, Kronrod’s results hold for the stream
function ψ. On the Kronrod tree Tψ (see § 3.1.2) we define the total head pres-
sure as follows. Let K ∈ Tψ be such that diamK > 0, take an arbitrary point
x ∈ K \ Aŵ, and let Φ̂(K) = Φ̂(x). This definition is consistent by Bernoulli’s law
(see Theorem 3.2). We have the following result.

Lemma 5.1 [22]. Let A,B ∈ Tψ , with diamA > 0 and diamB > 0. Let [A,B] ⊂
Tψ be the arc joining A and B (see Lemma 3.2). Then the restriction Φ̂

∣∣
[A,B]

is
a continuous function.

We note that the proof of the lemma is based on Bernoulli’s law (see Theorem 3.2)
and the well-known quasi-continuity7 of Sobolev functions (see, for instance, [49],
Theorem 1 in § 4.8 and Theorem 2 in § 4.9.2).

We say that a subset Z of Tψ has T -measure zero if H1({ψ(C) : C ∈ Z }) = 0.
The function Φ̂

∣∣
Tψ

turns out to have an analogue of the Luzin N -property.

Lemma 5.2 [22]. Let A,B ∈ Tψ , with diamA > 0 and diamB > 0. If a set
Z ⊂ [A,B] has T -measure zero, then H1({Φ̂(C) : C ∈ Z }) = 0.

The corresponding proof is based on the co-area formula (see, for instance, [50]).
From Lemmas 3.5 and 5.2 we obtain the following result.

Corollary 5.1. If A,B ∈ Tψ , diamA > 0, and diamB > 0, then

H1
(
{Φ̂(C) : C ∈ [A,B] and C is not a regular cycle}

)
= 0.

Let B0, B1, . . . , BN be elements of Tψ such that Bj ⊃ Γj , j = 0, 1, . . . , N . By
Lemma 3.4 each element C ∈ [Bi, Bj ]\{Bi, Bj} is a connected component of a level
set of ψ such that Bi and Bj lie in different connected components of R2 \ C.

We set
α = max

j=0,...,M
min

C∈[Bj ,BN ]
Φ̂(C)

and note that α < 0 by (3.18). Now we take a sequence of positive numbers
ti ∈ (0,−α), i ∈ N, with ti+1 = ti/2 such that the implication

Φ̂(C) = −ti ⇒ C is a regular cycle

holds for each j = 0, 1, . . . ,M and all C ∈ [Bj , BN ]. Corollary 5.1 ensures that
there is such a sequence.

We introduce the natural ordering on the arc [Bj , BN ], namely, we write C ′ < C ′′

if C ′′ is closer to BN than C ′ (this means that C ′ and BN belong to different
connected components of the set Tψ \ {C ′′}). For j = 0, 1, . . . ,M and i ∈ N let

Aji = max{C ∈ [Bj , BN ] : Φ̂(C) = −ti}.

7The property of quasi-continuity of a function Φ̂ means the following: for any ε > 0 there
exists an open set U ⊂ R2 such that H1

∞(U) < ε and the restriction Φ̂
∣∣
Ω\U

is continuous.
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In other words, Aji is the element of {C ∈ [Bj , BN ] : Φ̂(C) = −ti} closest to ΓN .
By construction each set Aji is a regular cycle (see Fig. 4 for the case of an

annular domain, with N = 1). Some of these cycles Aji may coincide, that is, it
is possible that Aj1i = Aj2i (when the arcs [Bj1 , BN ] and [Bj2 , BN ] of the Kronrod
tree have a non-trivial intersection), but this a priori possibility does not affect our
argument. By construction the cycles Aji are either disjoint or coincide, that is, if
Aj1i ̸= Aj2i , then Aj1i ∩A

j2
i = ∅.

By the definition of a regular cycle (see the comments on Lemma 3.5) each Aji
is a C1-curve homeomorphic to the unit circle. Furthermore, Aji ⊂ Ω, and in
particular, for each i ∈ N the compact set

⋃M
j=0A

j
i is separated from ∂Ω and

dist
( M⋃
j=0

Aji , ∂Ω
)
> 0.

Then for each i and for sufficiently small h > 0 (how small depends on i) we have
the inclusion

{x ∈ Ω: dist(x,ΓN ) < h} ⊂ Ω \
( M⋃
j=0

Aji

)
.

Of course, for small h the set {x ∈ Ω: dist(x,ΓN ) < h} is connected (it is home-
omorphic to an open annulus). Hence, for small h this set lies in a connected
component of the open set Ω \

(⋃M
j=0A

j
i

)
. Let Vi be this component. In particular,

ΓN ⊂ ∂Vi and
Ω ∩ ∂Vi = A0

i ∪ · · · ∪AMi . (5.1)

By construction the sequence of domains Vi is decreasing: Vi ⊃ Vi+1. Therefore,
the sequence of sets (∂Ω) ∩ (∂Vi) is non-increasing:

(∂Ω) ∩ (∂Vi) ⊇ (∂Ω) ∩ (∂Vi+1). (5.2)

Each set (∂Ω) ∩ (∂Vi) consists of several components Γl with l > M (because the
arcs

⋃M
j=0A

j
i separate ΓN from Γ0, . . . ,ΓM but not necessarily from the other Γl).

Since there are only finitely many components Γl, we conclude from the mono-
tonicity (5.2) that the set (∂Ω) ∩ (∂Vi) is independent of i for large i. Thus, we
can assume without loss of generality that (∂Ω) ∩ (∂Vi) = ΓK ∪ · · · ∪ ΓN , where
K ∈ {M + 1, . . . , N}. Consequently,

∂Vi = A0
i ∪ · · · ∪AMi ∪ ΓK ∪ · · · ∪ ΓN . (5.3)

6. Solutions with singularities in the flow region

6.1. Planar flows. In this section we deal with planar solutions and axially sym-
metric solutions of the flux problem which are generated by sources or sinks in the
flow region. We start with a planar problem. Let Γ be a smooth Jordan curve in
the plane which bounds a domain Ω and encloses the origin O. There is a source or
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sink with intensity F at O. We must find a solution of (1.1), (1.2) in Ω \O which
satisfies the conditions (1.3) and

ur =
F

2πr
[1 + o(1)], uϕ = o(1), r → 0, (6.1)

where ur and uϕ are the radial and the tangential components of the velocity.
Assume that the origin is the only singular point of the velocity field. Then it
follows from (1.2) and the conditions (1.3) and (6.1) that∫

Γ

a · n dS = F (6.2)

(n is the unit outward normal vector to Γ).
The problem (1.1)–(1.3), (6.1) is the limiting case of the problem of a steady

flow of a viscous incompressible fluid in a curvilinear annulus with flux conditions
at the boundary components. It was first considered in [51], where its solvability
for small values of the parameter |F |/ν was announced. Details of the proof were
presented in [52]. Another proof was given by Russo and Tartaglione [53]. A specific
feature of the problem (1.1)–(1.3), (6.1) is the fact that the Dirichlet integral of the
unknown vector-valued function u(x) is infinite in view of the representation (6.1).
Moreover, a solution of this problem has infinite energy. However, there are hopes
that in the regularized problem obtained by separating out the singular components
of the functions u and p we can obtain an a priori estimate ensuring its solvability.

The equations of planar motion in the polar coordinate system (r, ϕ) are obtained
from (2.51), where we must replace θ by ϕ, let uz = 0, and assume that ur, uϕ,
and p are independent of z. Let us introduce the new unknown functions

wr = ur −
F

2πr
, wϕ = uϕ, p = p+

F 2

8π2r2
. (6.3)

By (2.51), the vector w and the function p satisfy the system of equations

wr
∂wr
∂r

+
1
r
wϕ

∂wr
∂ϕ

− 1
r
w2
ϕ +

F

2πr
∂wr
∂r

− F

2πr2
wr

= −∂p
∂r

+ ν

(
∂2wr
∂r2

+
1
r

∂wr
∂r

+
1
r2

∂2wr
∂ϕ2

− 1
r2
wr −

2
r2

∂wϕ
∂ϕ

)
,

wr
∂wϕ
∂r

+
1
r
wϕ

∂wϕ
∂ϕ

+
1
r
wrwϕ +

F

2πr
∂wϕ
∂r

+
F

2πr2
wϕ

= −1
r

∂p

∂ϕ
+ ν

(
∂2wϕ
∂r2

+
1
r

∂wϕ
∂r

+
1
r2

∂2wϕ
∂ϕ2

− 1
r2
wϕ +

2
r2

∂wr
∂ϕ

)
,

∂wr
∂r

+
1
r
wr +

1
r

∂wϕ
∂ϕ

= 0.

(6.4)

In the new terms the condition (1.3) can be rewritten as

w = ã(x), x ∈ Γ, (6.5)

where the vector ã has components ãr = ar − F/(2πr) and ãϕ = aϕ. By (6.2) this
vector satisfies the zero flux condition:∫

Γ

ã · n dS = 0. (6.6)
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Using (6.6), we can reformulate the problem (6.4), (6.5) in terms of the stream
function ψ(r, ϕ), which is connected with the components of w by the relations

wr =
1
r

∂ψ

∂ϕ
, wϕ = −∂ψ

∂r
. (6.7)

(Passing to the stream function before separating out the singular component of
the velocity field would not help, because the stream function of a point source in
the planar problem is multivalued.) The stream function satisfies the equation

ν∆2ψ − 1
r

∂(∆ψ,ψ)
∂(r, ϕ)

− F

2πr
∂∆ψ
∂r

= 0. (6.8)

We can rewrite the boundary condition (6.5) in terms of the stream function as

ψ = a(x),
∂ψ

∂n
= b(x), x ∈ Γ. (6.9)

The functions a and b can be expressed in terms of the components of the vector ã.
If these components are in the class W 1/2,2(Γ), then we have

a ∈W 3/2,2(Γ), b ∈W 1/2,2(Γ). (6.10)

We make these assumptions in what follows.
In the problem (6.8), (6.9) we now pass to a new unknown function χ = ψ − f

such that
f = a,

∂f

∂n
= b, x ∈ Γ. (6.11)

We shall specify our choice of f below. The function χ is a solution of the
boundary-value problem

ν∆2χ− 1
r

∂(∆χ, χ)
∂(r, ϕ)

− 1
r

∂(∆χ, f)
∂(r, ϕ)

− 1
r

∂(∆f, χ)
∂(r, ϕ)

− F

2πr
∂∆χ
∂r

= g, x ∈ Ω \ {0},

(6.12)

χ = 0,
∂χ

∂n
= 0, x ∈ Γ, (6.13)

where
g = −ν∆2f +

1
r

∂(∆f, f)
∂(r, ϕ)

+
F

2πr
∂∆f
∂r

. (6.14)

Let 0 < γ < dist(Γ, {0}), and denote by Ωγ the domain bounded by the curve Γ
and the circle Cγ = {x : r = γ}. Let H̊2(Ωγ ; r) be the Hilbert space equal to the
closure of the set of functions in C∞0 (Ωγ) with respect to the norm

∥η∥2
H̊2(Ωγ ;r)

=
∫

Ωγ

(
η2
rr +

2
r2
η2
rϕ +

1
r4
η2
ϕϕ +

1
r2
η2
r

)
r dr dϕ.

Letting γ approach zero, we obtain a Hilbert space V̊ (Ω; r) with norm defined
by the same equality as above, but with Ω as the domain of integration. The
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functions η ∈ V̊ (Ω; r) are continuous in Ω and vanish for r = 0, and the inequality
|η| 6 C0r

α∥η∥H̊2(Ω;r) holds for (r, ϕ) ∈ Ω and 0 < α < 1, with a positive constant
C0 depending on Ω and the exponent α.

We call a function χ ∈ V̊ (Ω; r) a generalized solution of the problem (6.12), (6.13)
if for any η ∈ V̊ (Ω; r)

ν

∫
Ω

(
χrrηrr +

2
r2
χrϕηrϕ +

1
r4
χϕϕηϕϕ +

1
r2
χrηr

)
r dr dϕ

+
∫

Ω

[
∆χ
r

∂(χ, η)
∂(r, ϕ)

+
∆χ
r

∂(f, η)
∂(r, ϕ)

+
∆f
r

∂(χ, η)
∂(r, ϕ)

+
F∆χ
2πr

ηr

]
r dr dϕ

=
∫

Ω

gηr dr dϕ. (6.15)

The next statement is an analogue of Hopf’s lemma (see Lemma 2.1).

Lemma 6.1. Let Γ ∈ C∞ be a Jordan curve enclosing the origin. Let a and b
be functions on this curve which satisfy (6.10). Then for any ε > 0 there exists
a function f ∈W 2,2(Ω) such that the conditions (6.11) hold and∣∣∣∣∫

Ω

∆χ
∂(f, χ)
∂(r, ϕ)

dx

∣∣∣∣ 6 ε∥χ∥2
H̊2(Ω;r)

∀χ ∈ V̊ (Ω; r). (6.16)

The proof of Lemma 6.1 was presented in [52].

Lemma 6.2. Assume the hypotheses of Lemma 6.1. If F satisfies

|F | < 2πν, (6.17)

then each generalized solution χ of the problem (6.12), (6.13) has the estimate

∥χ∥H̊2(Ω;r) 6 C∗ (6.18)

with a constant C∗ = C∗(ν, F,Ω, a, b).

Proof. Let η = χ in the identity (6.15). Then it takes the form∫
Ω

[
ν

(
χ2
rr +

2
r2
χ2
rϕ +

1
r4
χ2
ϕϕ +

1
r2
χ2
r

)
+
F

2π

(
χ2
r

r2
−
χ2
ϕ

r4

)
+

∆χ
r

∂(f, χ)
∂(r, ϕ)

]
r dr dϕ

=
∫

Ω

gχr dr dϕ.

Choosing f given by Lemma 6.1 and taking account of the representation (6.14)
of g in terms of f and its derivatives, we then have∫

Ω

[
ν

(
χ2
rr +

2
r2
χ2
rϕ +

1
r4
χ2
ϕϕ +

1
r2
χ2
r

)
− |F |

2π

(
χ2
r

r2
+
χ2
ϕ

r4

)]
r dr dϕ

6 ε∥χ∥2
H̊2(Ω;r)

+
(
ν∥f∥W 2,2(Ω) + c∥f∥2W 2,2(Ω)

)
∥χ∥H̊2(Ω;r),

where the constant c depends only on Ω. To finish the proof of the lemma it suffices
to set

ε =
ν

2
− |F |

4π
,
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which yields the required a priori bound for the norm of χ:

∥χ∥H̊2(Ω;r) 6 4π(2πν − |F |)−1
(
ν∥f∥W 2,2(Ω) + c∥f∥2W 2,2(Ω)

)
= C∗ (6.19)

(here we bear in mind that the derivative of a periodic function has zero mean value
over the period). �

Theorem 6.1. Under the conditions of Lemmas 6.1 and 6.2 the problem
(6.12), (6.13) has at least one generalized solution χ ∈ V̊ (Ω; r), which has the
estimate (6.19).

The proof of Theorem 6.1 is based on the natural regularization of the problem
(6.12), (6.13) (see [52]). We give a brief sketch of the proof. Consider the following
auxiliary problem: find a solution of (6.12) in Ωγ satisfying (6.13) and

ψ = 0,
∂ψ

∂r
= 0, x ∈ Cγ . (6.20)

In the problem (6.12), (6.13), (6.20) we pass to a new unknown function χ(γ) =
ψ − f (γ), where f (γ) is a function such that

f (γ) = a(x),
∂f (γ)

∂n
= b(x), x ∈ Γ,

f (γ) = 0,
∂f (γ)

∂r
= 0, x ∈ Cγ .

(6.21)

The function χ(γ) is a solution of the equation

ν∆2χ(γ) − 1
r

∂(∆χ(γ), χ(γ))
∂(r, ϕ)

− 1
r

∂(∆χ(γ), f (γ))
∂(r, ϕ)

− 1
r

∂(∆f (γ), χ(γ))
∂(r, ϕ)

− F

2πr
∂∆χ(γ)

∂r
= g(γ) (6.22)

and satisfies the boundary conditions

χ(γ) = 0,
∂χ(γ)

∂n
= 0, x ∈ Γ,

χ(γ) = 0,
∂χ(γ)

∂r
= 0, x ∈ Cγ ,

(6.23)

where

g(γ) = −ν∆2f (γ) +
1
r

∂(∆f (γ), f (γ))
∂(r, ϕ)

+
F

2πr
∂∆f (γ)

∂r
. (6.24)
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We call χ(γ) ∈ H̊2(Ωγ ; r) a generalized solution of the problem (6.22), (6.23) if
for any η(γ) ∈ H̊2(Ωγ ; r)

ν

∫
Ωγ

(
χ(γ)
rr η

(γ)
rr +

2
r2
χ(γ)
rϕ η

(γ)
rϕ +

1
r4
χ(γ)
ϕϕη

(γ)
ϕϕ +

1
r2
χ(γ)
r χ(γ)

r

)
r dr dϕ

+
∫

Ωγ

[
∆χ(γ)

r

∂(χ(γ), η(γ))
∂(r, ϕ)

+
∆χ(γ)

r

∂(f (γ), η(γ))
∂(r, ϕ)

+
∆f (γ)

r

∂(χ(γ), η(γ))
∂(r, ϕ)

+
F∆χ(γ)

2πr
η(γ)
r

]
r dr dϕ

=
∫

Ωγ

g(γ)η(γ)r dr dϕ. (6.25)

Let us now consider the family of problems (6.22), (6.23) with γ ∈ (0, γ0].
For each of them we can prove its solvability using well-known methods (see, for
instance, [2] and [7]). The proof is based on analogues of Lemmas 6.1 and 6.2. For
each γ ∈ (0, γ0] and for any ε > 0 there exists an f (γ) ∈ H̊2(Ωγ ; r) satisfying (6.21)
such that ∣∣∣∣∫

Ωγ

∆χ(γ) ∂(f (γ), χ(γ))
∂(r, ϕ)

dr dϕ

∣∣∣∣ 6 ε∥χ(γ)∥2
H̊2(Ωγ ;r)

(6.26)

for any χ(γ) ∈ H̊2(Ωγ ; r). The proof of (6.26) repeats the proof of Lemma 6.1
almost word for word. It is important to see that we can take the same ε in (6.26)
for all γ ∈ (0, γ0].

Next we prove an assertion similar to Lemma 6.2. Assume the hypotheses of
Lemma 6.1 and let F satisfy (6.17). Then each generalized solution χ(γ) of (6.22),
(6.23) has a bound

∥χ(γ)∥H̊2(Ωγ ;r) 6 C (6.27)

with a constant C independent of γ for 0 < γ < γ0. Now it remains to pass to the
limit as γ → 0 in the problem (6.22), (6.20). To do this we extend χ(γ) and f (γ)

to Ω \Ωγ by zero, keeping the same notation for them. The extended functions are
defined in the whole of Ω and have finite norms in H̊2(Ω; r). By (6.27), the norms
of the functions χ(γ) (for 0 < γ 6 γ0) are bounded in this space. The family of
functions χ(γ), γ ∈ (0, γ0], has a weak limit χ as γ → 0. The limit function belongs
to V̊ (Ω; r). The set of functions χ(γ), γ ∈ [0, γ0], is weakly compact in H̊2(Ω; r) and
compact in W 1,4(Ω), so we can carry out a passage to the limit in (6.25) as γ → 0.
The limit function χ satisfies (6.15), which completes the proof of Theorem 6.1.

6.2. Axially symmetric flows. Now let us consider the axially symmetric prob-
lem in a bounded domain Q ⊂ R3 whose boundary is a surface of revolution
S ∈ C∞. We denote the meridional section of Q by Ω. The boundary of Ω is
formed by an arc Γ and a line segment Λ = {r, z : r = 0, z1 < z < z2} which
contains sources or sinks distributed with constant linear density F (see Fig. 6).
We must find a solution u = (ur, uz), p of the system (2.51) in Ω which satisfies
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Figure 6. Meridional section of the domain Q with sinks on the axis of
symmetry

the conditions

ur =
F

2πr
+ ar, uz = az, (r, z) ∈ Γ, (6.28)

ur =
F

2πr
[1 + o(1)], uz = o(1), r → 0, z ∈ (z1, z2), (6.29)∫

Γ

a · n dS = 0. (6.30)

Assume that the vector field a has a divergence-free extension b to Ω with finite
Dirichlet integral. We introduce new unknown functions

wr = ur −
q

2πr
− br, wz = uz − bz, p = p+

q2

8π2r2
. (6.31)

The vector w = (wr, wz) and the function p satisfy in Ω the system of equations

wr
∂wr
∂r

+ wz
∂wr
∂z

+
F

2πr
∂wr
∂r

− F

2πr2
wr + br

∂wr
∂r

+ bz
∂wr
∂z

+ wr
∂br
∂r

+ bz
∂wr
∂z

= −∂p
∂r

+ ν

(
∂2wr
∂r2

+
1
r

∂wr
∂r

+
∂2wr
∂z2

− wr
r2

)
+ gr,

ur
∂uz
∂r

+ uz
∂uz
∂z

+
F

2πr
∂uz
∂r

+ br
∂uz
∂r

+ bz
∂uz
∂z

+ ur
∂bz
∂r

+ bz
∂uz
∂z

− ∂p

∂z
+ ν

(
∂2wr
∂r2

+
1
r

∂wr
∂r

+
∂2wr
∂z2

)
+ gz,

1
r

∂(rwr)
∂r

+
∂wz
∂z

= 0

(6.32)
and the boundary condition

w = 0, (r, z) ∈ Γ, (6.33)

where gr and gz are the components of the vector

g = ν∆b− b · ∇b− F

2π
∇

(
b
r

)
.
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Consider now the function space H(Ω; r) equal to the closure of the set of
divergence-free axially symmetric vector-valued functions v ∈ C∞0 (Ω) with respect
to the norm defined by the Dirichlet integral

∥v∥2H(Ω,r) =
∫

Ω

[(
∂vr
∂r

)2

+
(
∂vr
∂z

)2

+
(
∂vz
∂r

)2

+
(
∂vz
∂z

)2

+
v2
r

r2

]
r dr dz.

We call a vector-valued function w ∈ H(Ω; r) a generalized solution of the prob-
lem (6.32), (6.33) if the integral identity∫

Ω

[
ν

(
∇w · ∇η +

urhr
r2

)
−w · (w · ∇)η −w · (b · ∇)η − b · (w · ∇)η

+
F

2πr

(
∂u
∂r

· η − urhr
r

)]
r dr dz =

∫
Ω

g · ηr dr dz

holds for any η ∈ H(Ω; r). Setting η = u here, we get that∫
Ω

[
ν

(
∇w · ∇w +

u2
r

r2

)
− Fu2

r

2πr2
− b · (w · ∇)w

]
r dr dz =

∫
Ω

g ·wr dr dz. (6.34)

We now observe that for any ε > 0 we can construct an extension b of an
arbitrary vector field a to Ω such that∣∣∣∣∫

Ω

b · (w · ∇)wr dr dz
∣∣∣∣ 6 ε∥w∥2H(Ω;r) ∀w ∈ H(Ω; r). (6.35)

Such an extension was constructed in [52] in terms of the stream function of an
axially symmetric flow. Taking ε = (4π)−1(2πν − F ) and assuming that

F < 2πν, (6.36)

we obtain from (6.34) and (6.35) the a priori estimate

∥w∥H(Ω;r) 6 C1

(
ν∥b∥H(Ω;r) + C2∥b∥2H(Ω;r)

)
, (6.37)

where C2 depends only on Ω and where we can take C1 equal to 4π(2πν − F )−1

for 0 6 F < 2πν and to 2/ν for F 6 0. The estimate (6.37) is crucial for the proof
of the next theorem [52].

Theorem 6.2. Let b be a divergence-free extension, with finite Dirichlet integral,
of the vector field a in (6.28) to the domain Ω. If F satisfies (6.36), then the
problem (6.32), (6.33) has a generalized solution w ∈ H(Ω; r), and the norm of w
has the estimate (6.37).

Remarkably, we impose here a one-sided restriction on the parameter F : the
distribution of sinks can have an arbitrary linear density. On the other hand,
the solvability of the planar problem with a source or sink has been proved only
when the absolute value of F satisfies (6.17) [51], [52]. By contrast, there are no
restrictions on the norm of the function a in both problems.
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7. Conclusion

The methods presented above cannot be generalized to three-dimensional prob-
lems. The Leray problem has been solved only in axially symmetric domains and
remains open for an arbitrary three-dimensional domain with multiple boundary
components. We believe that, as a first step in this direction, one can look at
the flux problem with additional symmetry relative to a plane or relative to two
mutually orthogonal planes (without the condition of axial symmetry). The main
difficulties arising in the analysis of such a problem can be understood in the case
when the flow region is a spherical layer. The idea of considering symmetric solu-
tions of the flux problem (which is due to Amick [17], who realized it for planar
flows) makes it possible to reduce the flux problem to a problem in a domain with
simply connected boundary by ‘cutting’ the original domain along the line of sym-
metry. The following conjecture appears plausible. Assume that the flow has two
planes of symmetry, which intersect all the boundary components of the flow region.
Then (under the natural assumptions of smoothness for the input data) the flux
problem has at least one solution.

The planar symmetric exterior problem (1.1)–(1.3) and the three-dimensional
axially symmetric exterior problem were investigated in [21] and [24]. In both cases
the solvability of the problem was established without restrictions on the fluxes
of the boundary velocity field. However, the Leray problem in an arbitrary exterior
planar or three-dimensional domain is still open. It seems that essentially new ideas
are needed for its solution.

In [54], [13], [55] the stationary problem (1.1)–(1.3) was considered in non-
compact domains Ω with multiple boundary components. In these papers the
solvability of (1.1)–(1.3) was established under the assumption that the fluxes
of the boundary vector field across the inner boundary components are small, while
the fluxes of the field across the outer boundary components can be arbitrary.
In [54] and [13] solutions with a finite Dirichlet integral were found, and in [55] the
Dirichlet integral could be either finite or infinite, depending on the geometry of the
outlets of Ω at infinity. It could be interesting to extend these results to the case
of arbitrary fluxes of the boundary field across the inner boundary components.

Another interesting problem arises in the study of boundary layers adjoining
parts with intensive inflow of a fluid across a permeable boundary of the flow
region. The simplest version of the statement of such a problem is as follows. Con-
sider a planar flow in a curvilinear annulus Ω with outer boundary Γ0 and inner
boundary Γ1. Assume that the normal components of the velocity do not vanish
on Γ0 and Γ1, and let F0 and F1 denote the corresponding velocity fluxes (clearly,
F1 = −F0). Then we can construct an asymptotic solution of the flux problem
for Re = |F1|/ν → ∞ by using a modification of the classical Vishik–Lyusternik
method [56]. By contrast to boundary layer theory in the flow problem [34], here
the boundary layer has thickness of order Re−1 for large values of Re. The bound-
ary layer is localized in a neighbourhood of Γ1 for F1 > 0 or in a neighbourhood
of Γ0 for F1 < 0. In general, it is a highly non-trivial problem to justify taking the
formal asymptotics to be the leading term as Re → ∞ of the solution of the flux
problem. However, there are some prospects for such a justification in the sym-
metric planar problem, where effective a priori estimates are known [14]. A natural
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approach to the justification will be to linearize the problem on an approximate
solution and then to use Kantorovich’s theorem on the convergence of Newton’s
method. Unfortunately, at this point we do not have enough information about the
spectral properties of the linearized non-selfadjoint operator in the flux problem for
large values of Re, because the asymptotic solution depends only implicitly on the
parameter Re.

A methodical investigation of boundary-value problems for the Navier–Stokes
equations with singularities in the flow region was begun less than a decade ago,
although examples of exact (for instance, self-similar) singular solutions of these
equations were well known [34]. In the planar problem with source or sink which
was considered in [52] and [53], the singularity is characterized by the dimensionless
parameter |F |/ν = Re, which can be called the local Reynolds number. The
methods proposed for proving solvability of the planar problem do not allow one
to treat the case of large Reynolds numbers. The general case apparently requires
completely new ideas, but we hope that under the additional assumption of a line
of symmetry of the flow this can be proved using methods already available.

Results in [52] and [53] can be extended in several directions. Let us again
consider planar flows with singularities, but now not in the interior but on the
boundary Γ of the flow region. Specifically, there are two points A+ and A− on
Γ where a source and a sink with intensities F and −F , respectively, are located.
On the rest of the boundary we impose the no-slip conditions. Is this problem for
the system (1.1), (1.2) solvable for small values of |F |/ν = Re? As a first step, we
can consider the case when the parts of the curve Σ near A+ and A− are straight
line segments intersecting at an angle β. Then the singular part of the solution is
described by the solution of the problem of a planar diffuser flow [34] localized near
the corner points. This solution is unique for small Re and β < β∗ ≈ 2.25 [57].
After separating out this singularity of the velocity field, we arrive at a problem
of the same type as one in § 6, though complicated by the presence of boundary
corners. In view of Kondrat’ev’s results in [58] there are hopes that the Dirichlet
integral of the regular component of the velocity field is finite when the angle β and
the Reynolds number Re are sufficiently small.

It could also be interesting to discuss planar flows with singularities on the
boundary of the domain in the case when the source or the sink is located at
a corner with zero opening angle.

Problems with singularities of higher orders than the ones in [52] and [53] seem
significantly more complicated. One example is the axially symmetric problem with
a point source or sink in the flow region. Even the appropriate function space is
not so obvious here. This is because after linearizing the equations (1.1), (1.2) on
the flow produced by the source (or sink) there occur terms containing first-order
derivatives which are not subordinate to the Stokes operator in Sobolev or Kon-
dratiev spaces. Furthermore, in the three-dimensional case the power F of the point
source does not have the same dimension as the viscosity, and introducing a local
Reynolds number is not productive.

As mentioned in the Introduction, complications in the analysis of solutions of
the Navier–Stokes equations in domains with boundary consisting of several com-
ponents are characteristic for stationary problems: no such complications occur in
initial-boundary value problems. However, there also exist non-stationary problems
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without initial conditions in which the presence of several boundary components
essentially complicates the analysis. Such are problems with time-periodic values
of the velocity vector field prescribed on the boundary of the flow region. In this
case one would expect a time-periodic solution to exist. An existence theorem
for periodic solutions of the Navier–Stokes equations with homogeneous boundary
conditions in the case of periodic external forces was proved by Yudovich in [59].
In a recent paper [60] Kobayashi studied the flux problem in a symmetric plane
domain with symmetric and time-periodic velocity vector prescribed on the bound-
ary of the domain. He proved that a time-periodic solution exists for any values of
the partial fluxes. It would be interesting to look at this problem in an arbitrary
bounded plane domain, in a bounded axially symmetric three-dimensional domain,
and in various classes of unbounded domains.

It also seems reasonable to consider the problem with a pulsating source or sink
in a plane domain (an analogue of the problem treated in § 6.1). If the power of the
source (or sink) depends periodically on the time and the corresponding Reynolds
number is not very large, then we can expect such a problem to be solvable in the
class of periodic solutions.
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