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System with Two Space Variables 
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1. A Priori Estimates 

We consider the Navier-Stokes system 
2 

v,--rdv+ 2 vkv,, = - grad f i+f (x ,  t ) ,  
k = l  

d i v v = o ,  
for the functions v = (vl(zl ,  z2 , t ) ,  v2(z1, x 2 ,  t ) )  and $(xl, x 2 ,  t )  in the 
region Q of the Euclidean z-plane x = (xl , x2) with boundary S. We 
assume the boundary and initial conditions 
(4 vIs = 0, vlh0 = a(%), (diva = 0, al, = 0). 

It  was proved in [l] that the problem (1)-(2) (in the case of two and three 
space variables) is uniquely solvable for all time t 2 0, iff has a potential and 
if the Reynolds number at the initial moment is small, and for a period of 
time which is short enough even if these conditions are not fulfilled. Moreover, 
the unique solvability “in the large” of the Cauchy problem for system (1) in 
the case of two space variables was proved by J. Leray [Z] (and later by the 
author in a different way). As to the question of the unique solvability “in 
the large” of the boundary value problem (1)-(2), it seemed dubious even 
for two space variables (see the detailed investigations of J. Leray [3] on 
this question). Here we establish the following 

THEOREN 1. The firobiem (1)-(2) is  uniquely solvable “in the large” 
(i.e. for a21 times t 2 0) for any value of the Reynolds number at the initial 
moment of time and for arbitrary forces f, if only the integrals 

are finite. The region 9 may be bounded OY unb0unded.l 

‘The solution will have the derivatives v Z k ,  v l ,  vtzk in L,(Qz[O, t j )  and V , ~ , ,  in 
Lz(Qa[0, t ] ) .  Q‘ c n. 
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In [l] the whole question of unique solvability "in the large" of problem 
(1)-(2) was reduced to  obtaining a firiori estimates for the integrals 

(3) 

or for max IvI. Therefore we shall deal here only with the a priori estimates 
for the solutions of problem (1)-(2). 

Let us introduce the following notation: 

I t  is known (see [l]) that the solutions of problem (1)-(2) satisfy the in- 
equality 

Let us find one more estimate for v. In order to do this we differentiate the 
system with respect to t ,  scalarly multiply the result by v, and integrate 
over 9. After simple transformations we obtain the identity 

from which 

follows. 

of compact support in the plane the inequality 
Let us verify that for any continuously differentiable function zt(xl , x2) 

(6) 11 u4(x1, z 2 ) d ~ l d x 2  5 2 JS u 2 ( ~ ~ ~  x2)d~,dx2 16 ( ~ ~ 1 + ~ ~ ~ d z l d x 2  

is true. (Here the integration is extended over the whole space.) It is clear 
that 

u2 (XI 3 X2) = 2 1: u""t., dxk, k= 1, 2,  

and hence 

k = 1, 2. 
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Therefore 

implying inequality (6). 
Let us use (6) to estimate 9(1) = (Ja zik V",V: ax)" in (5). Since the 

functions vkt are equal to zero on the boundary of 12, we have, because of 
(6), the estimate 

and therefore, from ( 5 ) ,  
9 ( t )  5 2 y p ) q t )  

d 
Y"4 +2VSZ(4 5 21 Iftl Iw ( t )  +44(4W (W(4 

4 ( 7 )  
5 2llftllw(t)+v~2(t) + - 4"t)w2(4. 

V 

This yields 
d 4 
-& Y"4 5 2llftllw(t) + - 5"WP) 

V 
(8) 

and 

From (7)  and (9) we deduce also 

These inequalities give us a priori estimates for the solutions which are even 
stronger than (3). From the proof given above it may be seen that neither 
the size of the region 9 nor the smoothness of the boundary influence the 
value of the constants in inequalities (9), (10). 

2. Stability of Solutions of Problem (1)-(2) 

It is known that the vector space L2(Q) can be decomposed into two 
orthogonal subspaces: f ( Q )  and G(Q). The subspace G(Q) consists of gradi- 
ents of simple valued functions; our solution v and vt belong to the subspace 
f ( Q ) .  Corresponding to this decomposition of L2(Q) we decompose f into 
two components and add the gradient part to grad#. For the remaining 
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part we shall retain the old notation f. It is this part of the force that is 
included into (4)-(10). For example, if the forces have a potential, then f 
in (4)-(10) is equal to zero. 

Here as well as above we assume that the initial d.isturbances a are such 
that llall and llvt(x, 0)ll are finite; it is easy to see that these conditions are 
really fulfilled if a E Wg(Q) and div a = 0, al, = 0. 

From inequalities (4)-(10) it follows that for arbitrary initial disturb- 
ances the estimate 

~~v(x, t )112+ 1,” +2(t)dt I const. 

holds if fr llflldt 5 const., and that the estimate 

y2( t )  + $0”92( t )d t  5 const. 

holds if in addition J ~ I l f J [ d t  5 const.. These estimates imply 
THEOREM 2. T h e  solution v of problem (1)-(2) for which Ilv(x, 0)ll and 

IIvt(x, 0)ll are f in i teandthe  forcesfsatisfytheconditionJ,*‘(I(fl[+IIf,lI)dt sconst.  
tends to Zero when t -+ 00; this means that for v the integrals JB v;*(x, t ) d x  
and Jn. v2(x, t)dx (f2 i s  any finite part  of 9) tend to zero when t + 00. 

To prove this it is sufficient to use the finiteness of the integrals 
J r + 2 ( t ) d t  and J r F 2 ( t ) d t  and to take into consideration that 

The solution of problem (1)-(2) is stable with respect to changes in 
the initial conditions and in the external forces. Indeed, the following 
theorem is true 

THEOREM 3. Let v‘ and v” be the solations of firoblem (1)-(2) correspond- 
ing  to d(x) and af‘ (x)  and to the forces f‘(x, t )  and ,”(,, t ) .  For the difference 
u(x, t )  of these solutions the estimate 

holds. Here B2( t )  = f n  zzz1 (viL(x, t))”x. 
To prove this we form the system for u = V‘-.V‘‘, p = p‘-pf’: 

ut-vAu+v6uZ, + wk v12 = - grad p+f ,  

After some simple transformations we get 

div u = 0, 

where f = f ‘ - f ” .  Let us multiply it scalarly by u arid integrate the result 
over 9. 
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and hence estimate (11) and also the estimate 

follow. The theorem is proved. 
Let us suppose that the force f” does not depend on t and let v”(x) be 

the corresponding solution of the stationary problem. Let us show that if 
the “generalized Reynolds number” 24c,/v corresponding to v” (x) is less 
than one, then the solutions v’(x, t )  of the non-stationary problem corre- 
sponding to the same f “ ( x )  and any a(.) tend, in a certain sense, to v”(x)  
when t + co. Here cg is a constant depending only on the region 9; c i  is 
the supremum of 

taken for all continuously differentiable functions b ( x )  which vanish on the 
boundary of 9. 

THEOREM 4. If for the solution v”(x) of the stationary firoblem, correspond- 
ing to the forces f”(x) ,  “the generalized Reynolds az4mber” 24ca/v is less than 
olze, then for all arbitrary solzdions of firoblem (1)-(2), corresfionding to the 
same f“(z), the integral 

m 2  1 k = l  
2 [vLk(x, t)-v;(x)l2dxdt 

is finite. 
Indeed, from (12), which is true for II = v’-v’’, and from the inequality 

IIU(X> t)lI 5 c,d(t), we have 

d 
at - II412+2~+2(t) I 4cQ$42(t)> 

which implies the statement of our theorem. 
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Appendix 

1. Let us say a few words about the case when 9 is an unbounded 
region and when for the function a(.) the integral JQ a2(z)dz is infinite. 
Let a(.) be represented at  infinity as 

More precisely, it  is sufficient to know that div a = 0, maxlzl,>l la, azkl 5 
const., and azL, a?,., E L.,(Q). Let us take some twice differentiable solenoidal 
function u’ (z) whch is equal to zero on S and for which max lu’, uLk[ 5 const., 
a (x) - u’ (z), u:k , A u‘ E L,  (Q) . We shall seek the solution v(z, t )  of problem 
(1)-(2) corresponding to a(z)  in the form v(x, t) = u’(z)+u(z, t ) .  To 
determine u(z, t )  we have the system 

ut-vAu+ (u~+zck) (u:*+uzk) = - grad $+f+vAu’,  div u = 0, 

and the conditions 

u[s = 0, u(x, 0) = a(z)-u’(x) E L,(Q). 
It is easy to verify that for u a theorem of the type of Theorem 1 holds. The 
case of non-homogeneous boundary conditions is treated similarly. 

2. Estimates (3), (9), (10) and the results of [l] imply the existence of 
a “generalized solution” v of problem (1)-(2), which has only the deriva- 
tives vt , vak , vtzk. This solution v satisfies a certain integral identity (see 
[ 11). Proceeding from this identity we proved that v has also the derivatives 
vZ,.,. Based on J. Leray’s article [3], K. Golovkin investigated when “the 
generalized solution” possesses continuous derivatives. 

3. The method of estimates given above permits one to prove the unique 
solvability “in the large” of problem (1)-(2) for three space variables 
x = (zl , x2 , z3) in case of axial symmetry, provided that the domain 9 has 
no points in common with the axis of symmetry. 

4. While obtaining the a firiori estimates for the solutions of the non- 
stationary problem (1)-(2) we encountered the question of existence of 
inequalities of the type (6).  For functions of two variables also the in- 
equality 

/IQ u3dx1 dx2 5 i /IQ 21 dxIdx2 /IQ + u:,)dxl dxz 
if uls = 0, u 2 0, 

(16) 

is true. The proof of inequality (6) given above is analogous to the proof of 
(16) which was given by A. 0. Gelfond. For functions of three and more 
independent variables inequalities (6) and (16) do not hold. Instead the 
following relation, for instance, 
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if uIs = 0 

is true for functions of three variables. 
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