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ABSTRACT. In the exterior domain f~ C R 2 we consider the two-dimensional Navier-Stokes system 

Au-Vp=(u,V)u, div~ = 0 

whose solution possesses a finite Dirichiet integral and satisfies the condition limlzl_.~ u(m) = (1, 0). For 
this solution, we establish the estimate [u(z) - (1, 0)[ < c[zl -~ , where a > 1/4. This estimate implies an 
asymptotic expression for the solution indicating the presence of a track behind the body. 

KEY WORDS: Navier-Stokes system, flow past a body, Leray's problem, hydrodynamic potential, MacDonald 
function, Bernoulli function. 

w Let ~t be an exterior domain not containing (to be definite) the origin in the two-dimensional plane 
of variables z = (z l ,  z2) with a sufficiently smooth boundary 0f t .  The two-dimensional stationary flow 
problem reduces to the solution of the Navier-Stokes system 

r, Aw = V p +  (w, V)w,  divw = 0 (1) 

in the domain f~ satisfying the boundary condition 

wlon = 0 (2) 

and the limiting relation 
lira w(z) = woo (woo # 0). (3) l~t-*oo 

It is well known [1] that  there exists a solution (wL,PL) of problem (1), (2) that  is the uniform limit 
on any compact  domain of some sequence of solutions (wR, pR) of system (1) for the truncated domains 
f~R = ft N { z  : Iz[ < R} with boundary conditions wRIon = 0 and WRll~l=R = woo. This solution satisfies 
the condition [VwLI 6 L2(fZ). By virtue of regularity theorems (see, for example, [2]), any generalized 
(in the sense of distributions) solution (w,p) of problem (1), (2) and, in particular, the Leray solution 
(WL, PL) is sufficiently smooth in the closure of the domain f~. However, it was not proved that the Leray 
solution is a solution of the flow problem, since it is not known whether wL takes a prescribed value woo 
at infinity; moreover, in the general case it is not even known if the limit limlzl~zr WL exists. Note that 
for sufficiently small values of twoo[/v the existence of a solution of the flow problem was established in [3]. 

General studies of the behavior at infinity of the solutions of system (1), (2) were carried out in [4-7]. 
The present paper is related directly to [7], where the following estimate was established for a symmetric 
(with respect to the zl-axis) solution of the flow problem in the symmetric domain ~ satisfying the 
relation IVwl C L2(f~): 

Iw - wool = oClxl-1/4- ), (4) 

where r > 0 sufficiently is small. 
This result will be  established for a general (nonsymmetric) solution of the flow problem. The esti- 

mate (4) is important  in that  it implies an asymptotic expansion of the solution, which is determined 
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by the fundamental  solution of the Ozeen system [8]; moreover, under this assumption the asymptotic 
formulas for w = rot w and p were established (see [9]). 

Note that,  unlike [7], the derivation of relation (4) given below is based on the exact Lp-estimates of 
the solution w ; these estimates are obtained from the integral representation of w via the hydrodynamic 
potentials. 

In what follows, without loss of generality, we assume that v = 1 and (w, p) is a solution of the flow 
problem with IVwl E L2(t2) satisfying the limiting relation (3), where w ~  = (1 ,0) .  Next, we use the 
following properties of such solutions, which were proved in [4-6]: 

a) IVpl C L2(n) ,  the limit liml~l_,ocp(z ) exists (in what follows, we assume that-it  is always equal 
to 0); 

b) the following relations are valid for w -- rot w: 

Izl:/~lV,,,I,l,,,I eL~Ca) ,  I,,,(z)l =o(Izl-~/4), IVwO:)l =o(I ,~l-~/4~lzl) ;  
c) the function w and the Bernoulli function �9 = p + Iwl2/2 - 1/2 decay exponentially outside any 

sector containing the positive z:-semiaxis: w = o(e-~l~t), ~ = o(e-~l~l), where a > 0 depends 
on the sector's angle. 

w In what follows, an essential role is played by some estimates of the fundamental  solution (u~, qk), 
k, j = 1, 2, of the linearized Ozeen system 

v A u -  O i u -  Vq = f ,  ~ v u  = O, 
given by the formulas 

1 0 1 u](z )= l ( -e '~12Ko(L~-)+O:l" l (z ) )  qk(x) = ~ k In ~-~, ~ 

= = : 
= - 

where ~(z)  = In Izl + eX'/~Ko(ixil2) and K0(r) is the MacDonald function. 
In view of the asymptotics of the MacDonald function K0(r) "~ e -~/2v/ -~  as r -+ oo, the following 

inequalities are valid: 

- 1 

these, in particular, imply that  

4- 
e(~1-1~1)/2 (k, j)  = (:, :), 

(k , j )  # (1, 1), 
I,~1 > 1; (5) 

u~(z) E Lp(R 2) (6) 

where p E (3, co) for (k, j )  = (1, 1) and p E (2, oo) for (k, j )  # (1, 1). 
An appropriate analysis of the derivatives of the fundamental solution shows tha~ 

O,u~ e Lp(~ ~) (7) 

where p E (3/2, 2) for ( k , j , s )  = (1 ,1 ,2)  and p E (1,2) for ( k , j , s )  # (1 ,1 ,2 ) ;  moreover, ou ts idea  
neighborhood of zero we have 

O.u~ E Lp(Izl > 1), (8) 
where p E  (3/2, oo1 for -(kwj,S ) = (1, 1,2) and pE  (1, cr for ( k , j , s ) #  (1, 1 ,2) .  

Further, the application of convolution theorems and operators of potential type (see, for example, [10]) 
yields the following estimates: 

Ilu~ * .fllL,,(n~=) -< %,qll.fllL,,(~), (9) 
where 1 < p < q < ~ ,  1/q = l i p +  1/r - 1; moreover, r E [3, oo) for ( k , j )  = (1, 1) and r E [2, co) for 
(k,j) # (I, 1); 

IlO,~,~ * .f l lL,r < %,qll.fl lL,,cnv), (lO) 
where 1 < p < q < co, 1/q = 1/p + 1/r - 1 ; moreover, r E [3/2, 2] for (k, j ,  s) = (1, 1,2) and r E [1,2] 
for ( k , j , s )  # (1, 1 ,2) .  
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w The proof of the main result is based on the following lemmas. 

L e m m a  1. For the field v = w -  woo, the following integral representation holds: 

vj(z)  = [ K j i ( z  - y, v(y))vi(y) dy + Fj(z) ,  
Jn 

where 

(ii) 

K ~  = (O~=i)vi + (0~=i + 0~=I)~,  K ~  = (0~=I)~, g~l  = 0, 

K22 = (01u~ - 02u~)vl + (Ozu~)v2 + 2u2xO2vl, 

Fl(Z)  = .~o (nl'O'~ - 'tl'}nsOsVJ -1- nsc')su] - n l ~  -4- p n j u }  - nlql ) dSv, 

F2(x) = L (nsOsu21 - u~n.O.vj - nxu21 + nju2p - q2nl) dS v 

moreover, in these relations summation is carried out over repeated subscripts; z -- y is the argument of 
the functions u~, qJ ; vj = v j (y) ,  p = p(y);  the nj = nj(y) are the components of the outer normal with 
respect to f~ at Of~. 

We prove in a s t andard  way that  the integral representation (11) holds. On substitution w = v + woo 
system (1) is multiplied by the matrix u~(z - y) and is integrated over the t runcated domain f~a; the 
integrals over the domain  f~a are then transformed into integrals along the boundary 012/z with the help 
of Green's formula; after the subsequent passage to the limit as R --+ oo the curvilinear integrals along the 
circle {y : lyl = R} vanish i= view of the  estimates (5) (for this it suffices to have the conditions p(y) ~ O, 
, j (v)  -~ 0,  0 ~ ( v )  -+ 0 as Ivl-~ ~)- 

Note tha t  in order to t ransform the integrals 

the following relations are used: 

L u~(: - v)(v(v)V)vj(v) av 

(~ 
' V)Vl = ~ --~2(VlV2)"~2V202Vl, k = 2 .  

(v ,v)v~ = 0 x ( v l v ~ ) + 0 ~ ( ~ ) ,  

The application of the  estimates (9), (10) leads to the following result. 

L e m m a  2. For the integral operators 

(A j i ,o f ) ( z )  = f K j i ( z - y , v ( y ) ) f ( y ) d y ,  j , i = 1 , 2 ,  ( j , i ) # ( 2 , 1 ) ,  
Jlv I>p 

the following inequalities are valid: Ilaji,pllLp(txt>p)-+L.(t~l>.) <-- c~ ,o ,  where p E (2, oo) and 

c n , .  = cp(max lv(x)l + IIv~llL~(l~l>.)), cx2,. = cp max Iv~(x)l, 
\l=l>p I=l>p 

c22,p = cp (max  Iv(x)l + llO2vllln~<l~l>,)), 
\l=l>p 

where the cp are constants depending only on p. 

L e m m a  3. Let the field v = w - woo belong to some space Lpo(f~), 190 E (3. oo). Then the following 
inclusions are valid: vi E Lp(f~), where p E (3, oo] for i = 1 and p E (2, co] /or  i = 2. 
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P r o o f .  Let us consider in detail the proof of the inclusion for the component v2(z). The integral repre- 
sentation (11) for j = 2 implies the relation 

K22v2 dy. (12) V2 = A22,pv2 -4- F2,p, where F2,p = F2 + n{y: DI>p} 

It follows from the estimates of the fundamental solution (6)-(8) that F2,, E L,(lzl > p) for all p ~ (2, co). 
Let q be an arbi t rary fixed number from the interval (2, oo). Choosing p large enough so that  the following 
inequality is valid: 

llA22,pllLp(i=l>p)~Ldlxl>p) < 1, (13) 

where p = q and p = p0, and treating relation (12) as an integral equation with respect to v2(z) in the 
space Lp0(]z ] > p),  we find that for I x] > p 

oo 

n:0  
Therefore, in view of inequalities (13) for p = q, the function re(z) belongs to the space Lq(IZ[ > p). 
Since q E (2, co) is arbitrary, the assertion of the lemma holds for the component v2(z). 

Further, as above, the corresponding result for the function vl (z) is obtained from the representation 

where Fl,p = Fl + [ K12v2 dy + [ K11vl dy, vl  : A l l , p V l  --l- F l , p ,  
J~ Ja n{~: lyl>p} 

since, in view of the estimates of the fundamental  solution, the inclusion v2 E Lp(12) for all p E (2, co) 
proved above, and Lemma 2, the function Fl,p belongs to all the spaces Lp(Izl > p) for p ~ (3, co). [] 

Thus, in view of Lemma 3, in order to obtain exact Lp-estimates of the field v, we must assume some 
"initial" estimates. Such estimates are obtained in the following section. 

w Consider the Bernoulli function q~ = p + [w[2/2-  1/2 satisfying the equation Aq~ = (w, V)~  + w 2 
and the system of boundary value problems 

A~R = (w, V)q~a + 2 ,  
(14) 

~Rloa ='I'lon, ~R[IxI=R = 0. 
Since the difference ~ -- ~R satisfies the maximum principle and r --~ 0 as [xl -+ co, it follows that 
the sequence of functions ~R extended by zero to 12 N {z : Ix] > R} is uniformly convergent to �9 on 12 
and, in particular, 116RIIL| are uniformly bounded. 

Set q~R = eR + b, where b is a function different from zero only in some neighborhood of Oft and 
blo~ -- ~10n. Multiplying Eq. (14) by feR and integrating over 12R = 12 N {z : Izl < R}, we obtain the 
identity 

eR 01 f ) . ~ R ( ( V ' R ) 2 f - -  1 2 ~  dx 

Choosing 

= -  ~ R  ((R(V~R, V f ) -  l ( ~ ( v ,  V ) / -  f ~ R ( A b -  (w, V ) b - w 2 ) ) d z .  (15) 

1 
, Xl < a, 

f =  In 1 
~;, ~ >~, 

we find from (15) that  the following estimate uniform in R is valid for sufficiently large a > 0: 

f ~JO~fl a~ < c. 
R 

(We have used the fact that  w E L~(12), v --4 0 as I~1 -+ co, and the functions r are uniformly bounded.) 
Passing to the limit as R --+ co and taking into account the fact that ~ decays exponentially outside the 
semiaxis zl > 0, we prove that 

dz < c. (16) 
'~2(~) [~lln 2 I~l 
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L e m m a  4. For the field v ,  the following estimate is valid for any ~ > 0 : 

~ U  2 dx 
i=1~+~ < oo. (17) 

P r o o f .  To prove (17), we first establish an integral formula relating the field v to the  Bernoulli  function {b. 
Let us in t roduce  the complex velocity u = wl  + iw~ and the differential opera tors  

, i ~ 

In these t e rms  the Navier-Stokes system can be expressed as 

O'u 20@ = 0 , 4 ~ &  ~ ( ~  - 1 ) .  

Multiplying (18) by the  funct ion 1/(~r(2 - ~ ) ) ,  integrating over the domain  

n,,R = (r~ \ {z :  l: - wl < ~}) n {~:  Izl < R}  

and passing to the limit as ~ --+ 0, R --+ oo, we obtain the formula  

u2(w) - 1 = (S@)(w) + f ( w ) ,  

where S is the  singular opera tor  

( s , ) ( w )  = 2 s ,(~) (~-~)~ d=~ d==, 

1 fo  + dz + 1 ~ ~,=-l_:4__&tO~d~ i ( w ) : 4  ( w ) - g  , z Z w  ~ /  ~ ~ - ~  " 

(18) 

(19) 

Since Ou/O-5 e L2(f~), the  function f belongs to any weight space L2(fl ,  Iz[ - a )  for all a > 0. It follows 
from the es t imate  (16) t h a t  �9 E L2(fl ,  Ixl -~-') for any arbitrari ly small e > 0. In view of the fact 
tha t  the singular  integral  S is bounded in any weight space L2(~ ,  Iz l -a ) ,  0 < a < 2, we find f rom (19) 
tha t  u 2 -  1 E L2(f~,lz] - l - e )  for all t > 0. Since w~ --+ 1, w= --+ 0 as Ixl --+ oo, f rom the relation 
~" - 1 = w~ - 1 - w~ + ~ iw~w,  we obtain w , ,  wl  - 1 e L ~ ( a ,  I = l - ' - ' )  

Thus  L e m m a  4 is proved. [] 

w In this  section we conclude the proof of the est imate (4). 

T h e o r e m  1. The estimate (4) of the solution o[ the flow problem is valid. 

P r o o f .  For  w = rot w and  the field v = w - woo, the following relation is valid: 

Av = V• (20) 

where V • = ( - 0 2 , 0 1 ) .  
Let z E ~ ,  and  let Bp = {y : Iz - y[ < p} be the ball centered at  z and  contained in the domain f t .  

Mult iplying relation (20) by the function (2~r) -1 ln(Ix - y[/p) and integrat ing over the ball Bp,  after 
familiar t ransformat ions  we obtain 

1 f0 vIy/d, + 1 fB 

where (~ - y ) ~  = ( - ( ~ ,  - y , ) ,  =, - y , ) .  
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Integrat ing over p f rom R / 2  to R and est imating the integrals obtained,  we find tha t  

( iB  Iv(y)l iB I~(y)l dy). (21) I v ( - ) l < c  : R - - r  ~ [7-~-I 

In view of the  fact  tha t  v q L2(fl ,  Izl-l-~), from (21) we obtain the es t imate  

(~ )1/2 (i  B Izxl 1+~ ~1/2 Iv(,~)l  < cR -~ Iv(y)12 dy dy) + c m a x  I ' . , ' (y) IR.  
- l y l l+~  ,, ,,~13,, 

Assuming I~1 to be sufficiently large and R < 1~1/2, we prove the inequality 

~,(=) < c(Izl(X+:)/~R -1 + IzI-3/4R). 

Minimizing this inequali ty with respect to R ,  we find tha t  [v(z)i < c l z l  ( - 1 + 2 ~ ) 1 s  . Thus  v e Lp(f l  ) for all 
p > 16. This yields the "initial" estimates for the application of L e m m a  3. Therefore,  v q Lp(f l)  for all 

p > 3. In view of  this fact,  f rom (21) we obtain the inequality 

D. 
k \ J  BR 

Setting R = ]zl ~ for a = 3 / (4  + 8 /p )  and choosing p > 3 arbitrari ly close to 3,  we obtain  Iv(z) l  < 

clzl-3/z~ . This  concludes the  proof. [] 
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