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Asymptotic Behavior of the Solution to the Two-Dimensional Stationary
Problem of Flow Past a Body Far From It

L. I. Sazonov UDC 517.9

ABSTRACT. In the exterior domain Q2 C R? we consider the two-dimensional Navier-Stokes system
Au - Vp = (u, V)u, divu=0

whose solution possesses a finite Dirichlet integral and satisfies the condition lim ;) .o u(2) = (1,0). For
this solution, we establish the estimate |u(z) — (1,0)| < c|z|~*, where o > 1/4. This estimate implies an
asymptotic expression for the solution indicating the presence of a track behind the body.

KeY woRDS: Navier-Stokes system, flow past a body, Leray’s problem, hydrodynamic potential, MacDonald
function, Bernoulli function.

§1. Let Q be an exterior domain not containing (to be definite) the origin in the two-dimensional plane
of variables z = (z1, z2) with a sufficiently smooth boundary Q. The two-dimensional stationary flow
problem reduces to the solution of the Navier-Stokes system

vAw = Vp+ (w, Viw, divw =0 (1)
in the domain Q satisfying the boundary condition
wlog =0 (2)

and the limiting relation
lim w(z) =we (wee # 0). (3)
lz}{~—ro0
It is well known [1] that there exists a solution (wg,pr) of problem (1), (2) that is the uniform limit
on any compact domain of some sequence of solutions (wg, pr) of system (1) for the truncated domains
Qr =020 {z : |z| < R} with boundary conditions wrlsq = 0 and wg||zj=r = We - This solution satisfies
the condition |Vwy| € L2(f2). By virtue of regularity theorems (see, for example, [2]), any generalized
(in the sense of distributions) solution (w,p) of problem (1), (2) and, in particular, the Leray solution
(wr,pL) is sufficiently smooth in the closure of the domain 2. However, it was not proved that the Leray
solution is a solution of the flow problem, since it is not known whether w;, takes a prescribed value woo
at infinity; moreover, in the general case it is not even known if the limit lim|;j_,o wr exists. Note that
for sufficiently small values of |w.|/» the existence of a solution of the flow problem was established in [3].
General studies of the behavior at infinity of the solutions of system (1), (2) were carried out in [4-7].
The present paper is related directly to [7], where the following estimate was established for a symmetric
(with respect to the z;-axis) solution of the flow problem in the symmetric domain {2 satisfying the
relation |Vw| € L,(Q):
lw — weo| = o|z|71/*7*), (4)
where ¢ > 0 sufficiently is small.

This result will be established for a general (nonsymmetric) solution of the flow problem. The esti-
mate (4) is important in that it implies an asymptotic expansion of the solution, which is determined
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by the fundamental solution of the Ozeen system [8]; moreover, under this assumption the asymptotic
formulas for w = rotw and p were established (see [9]).

Note that, unlike [7], the derivation of relation (4) given below is based on the exact L,-estimates of
the solution w; these estimates are obtained from the integral representation of w via the hydrodynamic
potentials.

In what follows, without loss of generality, we assume that v = 1 and (w,p) is a solution of the flow
problem with |Vw| € L,(Q2) satisfying the limiting relation (3), where wo, = (1,0). Next, we use the
following properties of such solutions, which were proved in [4-6]:

a) |Vp| € Ly(), the limit lim;_, p(z) exists (in what follows, we assume that it is always equal
to 0);
b) the following relations are valid for w = rot w:

212 V0, 0] € La(Q),  |w(2)] =ofl2|7*/*), |Vw(z)] = ofle|"*/*1n |z]);
c) the function w and the Bernoulli function ® = p + |w|*/2 — 1/2 decay exponentially outside any

sector containing the positive z;-semiaxis: w = o(e~I*!), ® = o(e~*I*l), where a > 0 depends
on the sector’s angle.

§2. In what follows, an essential role is played by some estimates of the fundamental solution (u;?, q),
k,j =1,2, of the linearized Ozeen system

vAu — Su—-Vgqg=f, divu =0,
given by the formulas
1
g (z) = —2-1—8k In i—, ui(z) = = (—e‘”‘/zKo (l—;—l) + 810(2)) ,
T

|=|

[SY]

w(e) =ui(e) = 5-80(z),  wlle) = —5-0:0z),

where Q(z) = In |z| + e/2Ky(]z|/2) and Kp(r) is the MacDonald function.
In view of the asymptotics of the MacDonald function Ko(r) ~ e™7/v27r as r — oo, the following
inequalities are valid:

( 1 e(zx—lzl)/z) (k.3) = (L1)
N+t ——1, yJ) =11
i { LV o > 15 ®)
Cm’ (ka])#(lal)a
these, in particular, imply that
uj(z) € Lp(R?) (6)

where p € (3, 00) for (k,j) = (1,1) and p € (2, 00) for (k,7) # (1,1).
An appropriate analysis of the derivatives of the fundamental solution shows thaf
a,uf € Ly(R?) (7)
where p € (3/2,2) for (k,j,s) = (1,1,2) and p € (1,2) for (k,j,s) # (1,1,2); moreover, outside a
neighborhood of zero we have
dsuf € Ly(lz| > 1), (8)
where p € (3/2, 0] for (k7j,s) =(1,1,2) and p€ (1, 00| for (k,7,s) #(1,1,2).
Further, the application of convolution theorems and operators of potential type (see, for example, [10])
yields the following estimates:

llu % fllz, @y < ep,allfllz, @) (9)
where 1 < p< g< o0, 1/g=1/p+1/r — 1; moreover, r € [3,00) for (k,j) = (1,1) and r € [2, 00) for
(k,5) # (1,1);

18,2} * Fllzyw) < cp.allfllzo, (10
where 1 <p< q< oo, 1/q=1/p+1/r —1; moreover, r € [3/2,2] for (k,j,s)=(1,1,2) and = € [1,2]
for (k’j,s) #(1,1,2).
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§3. The proof of the main result is based on the following lemmas.

Lemma 1. For the field v = w — wo, the following integral representation holds:

v;(z) = /Q Kji(z — , (5)vi(y) dy + F(z), (11)
where

K1y = (S1ug)or + (Bouy + Brug)ve, Kiz = (B2u3)v2, Kz =0,
Kz = (814 — 8ul)oy + (Bu3)v; + 2ui8501,

F(z) = /(nlui - u}nsaa'vj + n,0,u] — nyul +pnju} —n1q')dS,,
Q

F(z) = / (nsBsu? — u?n,@svj —nyul +nju§p —¢°n1)dS,;
Q

moreover, in these relations summation is carried out over repeated subscripts; z —y is the argument of
the functions u},q’; v; = v;(y), p = p(y); the n; = n;(y) are the components of the outer normal with
respect to §) at 3N.

We prove in a standard way that the integral representation (11) holds. On substitution w = v + we
system (1) is multiplied by the matrix u/(z — y) and is integrated over the truncated domain Qp; the
integrals over the domain Qg are then transformed into integrals along the boundary 92r with the help
of Green’s formula; after the subsequent passage to the limit as R -+ oo the curvilinear integrals along the
circle {y : |y| = R} vanish in view of the estimates (5) (for this it suffices to have the conditions p(y) — 0,
vj(y) = 0, O,vj(y) = 0 as |y] — o).

Note that in order to transform the integrals

[ we =96 @) dy
the following relations are used:

01 (v}) + Bz(v1v2), k=1,

—_ 2 _
(v, V)vz = 01(v1v2) + 32(v3), (v, V)uv1 = { —by(0102) + 2030001, k=2,

The application of the estimates (9), (10) leads to the following result.

Lemma 2. For the integral operators
(Aji»llf)(z) = [l Kji(z_y,v(y))f(y)dy’ Jt=1,2, (],t) 5& (2, 1)7
yI>p
the following inequalities are valid: ||Aji, pllL,(|z|>0)—Ly(lz|>p) < €ji,ps Where p € (2,00) and

C11,p =6 (ﬁll?;lv(z)l + ””2”L3(|2|>P))’ €12,p = p Max lvz ()],

|=1>

2,0 = cp(max o(@)| + 100110

where the c, are constants depending only on p.

Lemma 3. Let the field v = w — wo belong to some space Ly (), po € (3,00). Then the following
inclusions are valid: v; € L,(Q), where p € (3, ] for i=1 and p € (2, ] for i =2.
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Proof. Let us consider in detail the proof of the inclusion for the component v,(z). The integral repre-
sentation (11) for 7 = 2 implies the relation

vy = Azz,p'vz -+ Fz,p, where Fz,p = F, -I-/ Kosvs dy. (12)
20{y : ly|>p}
It follows from the estimates of the fundamental solution (6)—(8) that F3 , € Ly(|z| > p) forall p € (2, o0).
Let g be an arbitrary fixed number from the interval (2, co). Choosing p large enough so that the following
inequality is valid:

”A22,p“L,,(]z|>p)—+Lp(Izl>p) <1, (13)
where p = q and p = py, and treating relation (12) as an integral equation with respect to v,(z) in the
space L, (|z| > p), we find that for |z > p

o0
v2(z) = Z(A;2pF27P)(z)'
n=0
Therefore, in view of inequalities (13) for p = g, the function v,(z) belongs to the space Ly(|z| > p).
Since g € (2, 00) is arbitrary, the assertion of the lemma holds for the component v,(z).
Further, as above, the corresponding result for the function v;(z) is obtained from the representation

v = An,pv1 + Fip, where Fi ,=F + / Kiav, dy+/ Kyiv, dy,
Q 2n{y : ly|>p}

since, in view of the estimates of the fundamental solution, the inclusion v, € L,(Q) for all p € (2, 00)
proved above, and Lemma 2, the function F),, belongs to all the spaces Ly(|z| > p) for p € (3,00). O

Thus, in view of Lemma 3, in order to obtain exact L,-estimates of the field v, we must assume some
“initial” estimates. Such estimates are obtained in the following section.

§4. Consider the Bernoulli function ® = p + |w|?/2 — 1/2 satisfying the equation A® = (w, V) + w?
and the system of boundary value problems

Adp = (w,V)(IZ'R +w2,

(14)
®rloa = ®lan, @rljz=r=0.
Since the difference ® — ®p satisfies the maximum principle and ®(z) — 0 as |z| — oo, it follows that
the sequence of functions ®5 extended by zero to 2N {z : |z| > R} is uniformly convergent to ® on
and, in particular, [|®g|l;_ (q) are uniformly bounded.
Set &g = (r + b, where b is a function different from zero only in some neighborhood of 0Q and
blag = ®|sa . Multiplying Eq. (14) by f(r and integrating over Qr = QN {z : |z| < R}, we obtain the
identity

| (enrs - 5honf) de = - [

[ (¢a(V R, V1) = 560, V) = Fer(Bb — (w0, V)b~ w?)) do. (19
Choosing

Tz <a,

lna’

z > a,

In L1 ’
we find from (15) that the following estimate uniform in R is valid for sufficiently large a > 0:

/ %16 f|dz < c.
Qr

(We have used the fact that w € L2(Q), v — 0 as |z| — co, and the functions (g are uniformly bounded.)
Passing to the limit as R — oo and taking into account the fact that ® decays exponentially outside the

semiaxis z; > 0, we prove that
de
%(z)——— <ec. 16
\/s; ( )lzlan lzl — ( )
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Lemma 4. For the field v, the following estimate is valid for any £ > 0:

dz
L”zmﬁ—é < 0. (17)

Proof. To prove (17), we first establish an integral formula relating the field v to the Bernoulli function &.
Let us introduce the complex velocity u = wy + tw, and the differential operators

5_1(a 0\ o _1(5 .8
0z~ 2\ 0z, z6:1:2 ’ 9z~ 2\ 0z, lazg ’

In these terms the Navier—Stokes system can be expressed as

8%u o

— a 2

Multiplying (18) by the function 1/(n(Z — @)), integrating over the domain
Qr=(Q\{z:]z—w|<e})n{z:]z| <R}
and passing to the limit as ¢ — 0, R — oo, we obtain the formula
u*(w) — 1= (§2)(w) + f(w), (19)

where S is the singular operator

(SQ)('w) = 3/‘; i(ﬂ—d:cl dz,,

)0 G-w)
Ju 1 ® 1 u? —1—40u/8z
f{w)_‘i%(w)*;f/mz—iﬁd”éﬁ o I w &

Since 8u/8z € L3(N), the function f belongs to any weight space Ly(f2, |[z|~2) for all a > 0. It follows
from the estimate (16) that ® € L,(f2, |z|7'~¢) for any arbitrarily small ¢ > 0. In view of the fact
that the singular integral S is bounded in any weight space L»(2, |z|™), 0 < a < 2, we find from (19)
that u2 — 1 € Ly(,|z|"17¢) for all ¢ > 0. Since w; = 1, wy — 0 as |z| — oo, from the relation
u? — 1= w? — 1 — w + 2iw w; we obtain wy,w; — 1 € Ly(R, |=|7179).

Thus Lemma 4 is proved. 0

§5. In this section we conclude the proof of the estimate (4).
Theorem 1. The estimate (4) of the solution of the flow problem is valid.
Proof. For w =rotw and the field v = w — ws, the following relation is valid:

Av = V4w, (20)

where V+ = (—8,,681).

Let z € @, and let B, = {y: |z —y| < p} be the ball centered at = and contained in the domain 2.
Multiplying relation (20) by the function (27)~'In(jz — y|/p) and integrating over the ball B,, after
familiar transformations we obtain

T T C") I S 0 €' Gl )
v@) = o /aB, o ¥t /B,, (z-y)? e

where (z — y)‘L =(—(z2 —¥2), 21 —w1).
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Integrating over p from R/2 to R and estimating the integrals obtained, we find that

In view of the fact that v € L,(R, |z|~17¢), from (21) we obtain the estimate

f [ @R\ e 1 )
lv(z)] < cR —=—dy ly'**dy ) + c max jw(y)|R.
Bg y€BRn

o lylt+e

Assuming |z| to be sufficiently large and R < |z|/2, we prove the inequality
v(z) < ¢(|=|* 2R + |2| "/ R).

Minimizing this inequality with respect to R, we find that |v(z)| < clz|(7212)/8_ Thus v € L,(Q) for all
p > 16. This yields the “initial” estimates for the application of Lemma 3. Therefore, v € L,(Q2) for all
p > 3. In view of this fact, from (21) we obtain the inequality

o(z)] < c(R'Z/” ( /B P d:c)l/p + R|z|—3/4).

Setting R = |z|* for a = 3/(4 + 8/p) and choosing p > 3 arbitrarily close to 3, we obtain |v(z)| <
c|z|~3/19t¢  This concludes the proof. O
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