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Abstract

We prove that weak solutions of the three-dimensional incompressible Navier-
Stokes equations are smooth if the negative part of the pressure is controlled, or if
the positive part of the quantity|v|2 + 2p is controlled.

1. Introduction

We consider the Cauchy problem for the three-dimensional Navier-Stokes equa-
tions

∂tv + div v ⊗ v −�v + ∇ p = 0, divv = 0

in R
3×]0,∞[, with v(x,0) smooth (or “sufficiently regular”) and decaying suffi-

ciently fast at infinity. Our main goal is to study the regularity of solutions of to the
Navier-Stokes equations under certain assumptions on the pressurep. The pressure
p is a relatively well-defined quantity in real fluids. In the Navier-Stokes system,p

is determined only up to an arbitrary function oft , due to the idealized assumption
of incompressibility. A way to remove this ambiguity is to specifyp at infinity.
In the context of this work there will be no loss of generality in assuming thatp

vanishes at infinity. (See Section 2 for a precise definition.) The pressure defined
in this way will be called thenormalized pressure. In what followsp will always
denote the normalized pressure.

Our work was motivated by the following question.

(Q) If a solution to the Navier-Stokes equations develops a singularity, must the
normalized pressure become unbounded from below?

One of the main results in this work is a positive answer to this question (The-
orem 2.2).

Considering a flow of water under some standard conditions, we can speculate
that if p becomes very low, we will encounter the phenomenon of cavitation. This
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means that in areas of very low pressure bubbles of water vapor will form in the
fluid. Since the areas of very low pressure must have small volume, we can expect
that eventually the bubbles will be carried into an area where the pressure is not
so low, and will collapse. The collapse of even very small bubbles should create
observable effects (e.g., popping sounds). As far as we know, cavitation is not
observed in reasonable flows, such as flows in pipes under normal temperature and
pressure, even when the Reynolds number is high. Therefore, for such flows we
can assume thatp does not become exceedingly low. Hence, by the result above,
v should be smooth. We can further speculate that this means that all singularities
of solutions to the Navier-Stokes must be unstable, if they exist at all. This was
conjectured in [18].

We prove a slightly stronger statement than suggested by (Q), in that we do
not need a point-wise conditionp(x, t) � −C to get regularity, but only a weaker
integral condition is necessary (see (2.7) and (2.8)).

It turns out that our method also gives a proof of the following statement, which
is of independent interest: If the quantity|v|2 + 2p is bounded from above, the
solution must be regular. This is related to the works [7] and [26] on the five-
dimensional steady-state Navier-Stokes equations.

We briefly outline the main idea of the proof. The key is the following identity:

∫
B(x0,R)

1

|y − x0|
(
2p(y, t)+ |̂vx0(y, t)|2

)
dy

= 1

R

∫
B(x0,R)

(
3p(y, t)+ |v(y, t)|2

)
dy

= R2
∫

R3−B(x0,R)

∇2
y

( 1

|y − x0|
)

:
(
v(y, t)⊗ v(y, t)

)
dy,

wherev̂x0(x, t) is the orthogonal projection ofv(x, t) into the two-dimensional
subspace ofR3 perpendicular tox − x0. We can see that bounds for the negative
part ofp or the positive part of|v|2 + 2p give non-trivial estimates forv. A key
feature of these estimates is that the controlled quantities are invariant under the
natural scaling of the equationv(x, t) → λv(λx, λ2t). In the language of regularity
theory, under our assumptions the above identity gives estimates which move the
equation from the realm of “super-critical" to the realm of “critical". This makes
the problem manageable.

Other papers where regularity for weak solutions to the Navier-Stokes equations
is studied under various assumptions on pressure include [1–3,5,20]. Regularity
criteria involving other quantities can be found for example in [22,23,17,12,8,25,
6].
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2. Notation and main results

We denote byM3 the space of all real 3×3 matrices. Adopting summation over
repeated Latin indices, running from 1 to 3, we shall use the following notation:

u · v = uivi, |u| = √
u · u, u = (ui) ∈ R

3, v = (vi) ∈ R
3;

A : B = trA∗B = AijBij , |A| = √
A : A,

A∗ = (Aji), trA = Aii, A = (Aij ) ∈ M
3, B = (Bij ) ∈ M

3;

u⊗ v = (uivj ) ∈ M
3, Au = (Aijuj ) ∈ R

3, u, v ∈ R
3, A ∈ M

3.

Letω be a domain in some finite-dimensional space. We denote byLm(ω; R
l )

andW1
m(ω; R

l ) the known Lebesgue and Sobolev spaces of functions fromω into
R
l . The norm of the spaceLm(ω; R

l ) is denoted by‖ · ‖m,ω. If m = 2, then we use
the abbreviation‖ · ‖ω ≡ ‖ · ‖2,ω.

Let T be a positive parameter,� be a domain inR3. We denote byQT ≡
�×]0, T [ the space-time cylinder. Space-time points are denoted byz = (x, t),
z0 = (x0, t0), etc. LetLm,n(QT ; R

l ) be the space of measurableR
l-valued func-

tions with the following norm:

‖f ‖m,n,QT =



( T∫
0

‖f (·, t)‖nm,� dt
) 1
n

, n ∈ [1,+∞[,

ess sup
t∈[0,T ]

‖f (·, t)‖m,� , n = +∞.

In the special case� = R
3 andT = +∞, we use the abbreviations

Lm(�; R
3) = Lm, W1

2 (�; R
3) = H 1, Lm,n(QT ; R

3) = Lm,n,

Lm(0, T ;W1
2 (�; R

3)) = Lm(H
1).

For integrable-in-QT scalar-valued, vector-valued, and tensor-valued functions,
we shall use the following differential operators

∂tv = ∂v

∂t
, v,i = ∂v

∂xi
, ∇p = (p,i), ∇ u = (ui,j ),

div v = vi,i , div τ = (τij,j ), �u = div ∇ u,
which are understood in the sense of distributions. Herexi, i = 1,2,3, are the
Cartesian coordinates of a pointx ∈ R

3, andt ∈]0, T [ is the time variable.
For balls and parabolic cylinders, we use the standard notation:

B(x0, R) ≡ {x ∈ R
3 ‖ |x − x0| < R}, Q(z0, R) ≡ B(x0, R)×]t0 −R2, t0[,

wherez0 = (x0, t0).
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Let us formulate the main results of the paper. To this end, we remind the reader
that for the initial data satisfying the conditions

v0 ∈ H 1, div v0 = 0 in R
3, (2.1)

the Cauchy problem

∂tv + div (v ⊗ v)−�v + ∇ p = 0

div v = 0

}
in R

3×]0,+∞[, (2.2)

v(·,0) = v0(·) in R
3 (2.3)

always has a so-called Leray-Hopf weak solution (see [15,10,11,13]). This means
that there exists at least one functionv with the following properties:

v ∈ L2,∞ ∩ L2(H
1), div v(·, t) = 0 in R

3 for all t � 0;

the functiont �→
∫
R3

v(·, t) · w(·) dx is continuous on [0,+∞[

for all w ∈ L2;
∫

R3×]0,∞[

{
− v · ∂t w − v ⊗ v : ∇ w + ∇ v : ∇ w

}
dx = 0

for anyw ∈ C∞
0 (R

3×]0,∞[; R
3) such that divw(·, t) = 0 for all t > 0;

‖v(·, t)− v0(·)‖R3 → 0 as t → 0 + 0;

∫
R3

|v(x, t)|2dx + 2

t∫
0

∫
R3

|∇ v(x, t ′)|2 dxdt ′ �
∫
R3

|v0(x)|2dx

for all t � 0.

In this formulation, no information about the pressurep is given.
However, using the uniqueness theorem and the coerciveLs,l estimates of so-

lutions to the Cauchy problem for the Stokes equations (see, for example, [9,19],
and [11,13,24] in the cases = l), pressure can be introduced in a natural way.
More precisely, it can be proved (see, for instance [4] and [14]) that there exists a
functionp ∈ L1,loc such that, forO < δ < T < +∞,

∇ p ∈ Ls,l(R3×]δ, T [; R
3), (2.4)

where
3

s
+ 2

l
� 4.
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Moreover,

∂tv ∈ Ls,l(R3×]δ, T [; R
3), ∇2v ∈ Ls,l(R3×]δ, T [; M

3 × R
3),

and the equation

∂tv + div (v ⊗ v)−�v + ∇ p = 0 (2.5)

holds a.e. inR3×]0,∞[.
The pressurep is determined up to an arbitrary function oft . We fix a repre-

sentative forp by setting

p(x, t) ≡ 1

4π

∫
R3

1

|x − y|div div
(
v(y, t)⊗ v(y, t)

)
dy. (2.6)

To show that this function satisfies (2.5), let us denote the function on the right-hand
side of (2.6) byp0. It is known that

�p0(x, t) = −div div
(
v(x, t)⊗ v(x, t)

)
.

Differentiation inx gives us:

∇ p0 = 1
3G+ T (G),

whereG ≡ vkv,k = (vkvi,k) and

T (G)(x, t) ≡ − 1

4π

∫
R3

∇2
x

( 1

|x − y|
)
G(y, t) dy

= − 1

4π

∫
R3

(( δij

|x − y|3 − 3(xi − yi)(xj − yj )
|x − y|5

)
Gj(y, t)

)
dy

is a singular integral. According to the boundedness of singular integrals inLs , we
have the estimate∫

R3

|∇ p0(x, t)| 9
8dx � c1

∫
R3

(
|v(x, t)| |∇ v(x, t)|

) 9
8
dx

for all positivet and for some absolute constantc1.
Next, by Hölder’s inequality and by the multiplicative inequality, we obtain∫

R3

|v| 9
8 |∇ v| 9

8 dx �
( ∫

R3

|∇ v|2 dx
) 9

16
( ∫

R3

|v| 18
7 dx

) 7
18

� c2

( ∫
R3

|∇ v|2 dx
) 3

4
( ∫

R3

|v|2 dx
) 3

2
.
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Thus,

∇ p0(·, t) ∈ L 9
8

for a.e.t > 0.
On the other hand, it follows from equation (2.5) that

�p(x, t) = −div div
(
v(x, t)⊗ v(x, t)

)
.

Therefore,q ≡ p − p0 is a harmonic function inx for a.e.t > 0. But, by (2.4),

∇ p ∈ L 9
8 ,

3
2
(R3×]δ, T [; R

3).

This means that

∇ q(·, t) ∈ L 9
8
(R3×]δ, T [; R

3)

for a.e.t > 0. Sinceq is harmonic inx, we find that∇ q(·, t) = 0 in R
3 and,

therefore,q is a function oft only.

Definition 2.1. We say that a functiong : R
3×]0,+∞[→ [0,+∞[ satisfies con-

dition (C) if, for any t0 > 0, there exists a positive numberR0 = R0(t0) such
that

A(t0) ≡ sup
x0∈R3

sup
t0−R2

0�t�t0

∫
B(x0,R0)

g(x, t)

|x − x0|dx < +∞ (2.7)

and,

for each fixedx0 ∈ R
3 and for each fixedR ∈]0, R0],

the functiont �→
∫
B(x0,R)

g(x, t)

|x − x0|dx is continuous att0 from the left. (2.8)

Our main result is as follows

Theorem 2.2. Let v be a Leray-Hopf solution to the Cauchy problem(2.1)–(2.3)
and letp be the normalized pressure associated withv. Assume that there exists a
functiong satisfying condition(C) such that

|v(x, t)|2 + 2p(x, t) � g(x, t), x ∈ R
3, t ∈]0,+∞[ (2.9)

or

p(x, t) � −g(x, t), x ∈ R
3, t ∈]0,+∞[. (2.10)

Thenv is Hölder continuous onR3×]0,+∞[ and therefore smooth and unique.

Remark 2.3. Obviously, conditions (2.7) and (2.8) are satisfied ifg ≡ constant
> 0 in R

3×]0,+∞[.
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3. Remarks on suitable weak solutions to the Navier-Stokes equations

In this section, we are going to discuss some facts about the so-called suitable
weak solutions to the Navier-Stokes equations:

∂tv + div v ⊗ v −�v = f − ∇ p

div v = 0

 in QT , (3.1)

whereQT ≡ �×]0, T [, � is a domain inR3, andT is a positive parameter. We
always assume thatf lies in the Morrey space

M2,γ (QT ; R
3) ≡

{
f ∈ L2(QT ; R

3) ‖ dγ (f ;QT ) < +∞
}

for some positive numberγ , where

dγ (f ;QT ) ≡ sup
{ 1

Rγ+1/2

( ∫
Q(x0,R)

|f |2dx
) 1

2 ‖ Q(x0, R) � QT , R > 0
}
.

We say that a pair of functionsv andp are suitable weak solutions of the Navier-
Stokes equations if the following conditions hold (see [21,4,16,14] for details):

v ∈ L2,∞(QT ; R
3) ∩ L2(0, T ;W1

2 (�; R
3)), p ∈ L 3

2
(QT ); (3.2)

equations (3.1) are satisfied inQT in the sense of distributions; (3.3)

and ∫
�

|v(x, t)|2φ(x, t) dx + 2

t∫
0

∫
�

|∇ v(x, t ′)|2φ(x, t ′) dxdt ′

�
t∫

0

∫
�

{
|v(x, t ′)|2

(
∂tφ(x, t

′)+�φ(x, t ′)
)

(3.4)

+ 2f (x, t ′) · v(x, t ′) φ(x, t ′)
+

(
|v(x, t ′)|2 + 2p(x, t ′)

)
v(x, t ′) · ∇ φ(x, t ′)

}
dxdt ′

for a.e.t ∈]0, T [ and for all non-negative functionsφ ∈ C∞
0 (R

3 × R) vanishing in
a neighborhood of the parabolic boundary∂ ′QT ≡ �× {t = 0} ∪ ∂�× [0, T ].

As in [14], we call a pointz0 ∈ QT regular forv if there exists a non-empty
neighborhoodOz0 of this point where the functionz �→ v(z) has a H¨older continu-
ous representative. It can be proved that there exists a representative ofv such that
(see [21,4,16,14] for details)

H1(2) = 0, (3.5)
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where2 is the set of all singular points ofv andH1 is the one-dimensional parabolic
Hausdorff measure. By definition,

H1(2) ≡ lim
δ→0

inf
{ ∑

i

Ri ‖ 2 ⊂
∑
i

Q(zi, Ri), 0< Ri � δ
}
.

In what follows, we shall fix a representative ofv such that

lim inf
t→t0

∫
�

|v(x, t)|2 dx �
∫
�

|v(x, t0)|2 dx for all 0< t0 < T (3.6)

and, for eachw ∈ L2(�,R
3),

t ∈]0, T [�→
∫
�

v(x, t) · w(x) dx is a continuous function. (3.7)

To see that this is possible we note that, by (3.5),

H1(�× {t = t0} ∩2) = 0

and, according to the definition of regular points,

v(x, t) → v(x, t0) for a.e.x ∈ �. (3.8)

Therefore (3.6) follows from Fatou’s lemma. On the other hand, by (3.2), we have

‖v(·, t0)‖2,� � ‖v‖2,∞,QT (3.9)

for all t0 ∈]0, T [, and thus, by (3.8) and (3.9),

v(·, t) → v(·, t0) in Lr(�; R
3) (3.10)

for anyr ∈ [1,2[. In turn, (3.9) and (3.10) imply (3.7).

Remark 3.1. Following the arguments in [14], we can see that all the above state-
ments remain valid fort0 = T .

Lemma 3.2. Let v be as above. Given�0 � �, 0 < t0 � T , and0 < δ0 <
√
t0,

assume that

a(�0, t0, δ0) ≡ sup

{
1

R

∫
B(x0,R)

|v(x, t)|2 dx ‖ x0 ∈ �0,

t ∈ [t0 − δ2
0, t0], 0< R � d0 ≡ 1

2
dist(∂�,�0)

}
< +∞.

(3.11)

Then,

lim
t→t0−0

∫
�0

|v(x, t)− v(x, t0)|2 dx = 0. (3.12)
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Proof. Taking into account (3.7), we see that it is enough to prove

lim
t→t0−0

∫
�0

|v(x, t)|2 dx =
∫
�0

|v(x, t0)|2 dx. (3.13)

We first note that (3.5) implies the following fact. For eachγ , there exists a countable
family of sets of the form

b
γ,t0
i ≡ B(x

γ

i , Rγ i)× {t = t0}
such that

Rγ i � d0, 2 ∩
(
�0 × {t = t0}

)
⊂ ∑

i

b
γ,t0
i ,

∑
i

Rγ i < γ. (3.14)

Let us fixε > 0 and let

γ = ε

8a(�0, t0, δ0)
.

Then, by (3.11) and (3.14), we obtain∣∣∣ ∫
∑
i

B(x
γ
i ,Rγ i )

|v(x, t)|2 dx −
∫

∑
i

B(x
γ
i ,Rγ i )

|v(x, t0)|2 dx
∣∣∣

�
∑
i

∫
B(x

γ
i ,Rγ i )

|v(x, t)|2 dx +
∑
i

∫
B(x

γ
i ,Rγ i )

|v(x, t0)|2 dx

� 2a(�0, t0, δ0)
∑
i

Rγ i < 2γ a(�0, t0, δ0)

� ε

4

(3.15)

for all t ∈ [t0 − δ2
0, t0].

We let

ωγ ≡ �0 × {t = t0} −
∑
i

b
γ,t0
i .

For eachz ∈ ωγ , there exists a non-empty neighborhoodOz such that the
functionz �→ v(z) is Hölder continuous onOz ∩QT . Sinceωγ is compact, there
exists a non-empty neighborhoodOγ

ω of the setωγ such that

ωγ ⊂ Oγ
ω

and the functionz → v(z) is continuous inOγ

ω ∩QT . Hence,∣∣∣ ∫
ωγ

|v(x, t)|2 dx −
∫
ωγ

|v(x, t0)|2 dx
∣∣∣ < ε

2
(3.16)
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for all 0 � t0 − t < µ = µ(ε,�0, t0, δ0) � δ2
0. Combining (3.15) and (3.16), we

obtain∣∣∣ ∫
�0

|v(x, t)|2 dx −
∫
�0

|v(x, t0)|2 dx
∣∣∣ �

∣∣∣ ∫
ωγ

|v(x, t)|2 dx −
∫
ωγ

|v(x, t0)|2 dx
∣∣∣

+
∣∣∣ ∫
∑
i

B(x
γ
i ,Rγ i )

|v(x, t)|2 dx

−
∫

∑
i

B(x
γ
i ,Rγ i )

|v(x, t0)|2 dx
∣∣∣

< ε

for all 0 � t0 − t < µ. Therefore (3.13) and Lemma (3.2) are proved.��
In what follows, we are going to use the following condition for local H¨older

continuity ofv.

Lemma 3.3. Let a pair ofv andp be an arbitrary suitable weak solution to the
Navier-Stokes equations inQT with external forcef ∈ M2,γ (QT ; R

3) for some
positive numberγ . There exists a positive numberε8, depending onγ only and
having the following property. Assume that, for some positiveR8,Q(z0, R8) ⊂ QT
and

sup
0<R<R8

A(z0, R) < ε8, (3.17)

where

A(z0, R) ≡ sup
t0−R2�t�t0

1

R

∫
B(x0,R)

|v(x, t)|2 dx.

Then,z0 is a regular point ofv.

Proof. Our proof is mostly based on the method developed byLin in [16] (see also
[14]). As in [14], we introduce the following functionals:

A(ρ) ≡ A(z0, ρ), E(ρ) ≡ 1
r

∫
Q(z0,ρ)

|∇ v|2 dz,

C(r) ≡ 1
r2

∫
Q(z0,ρ)

|v|3 dz, D(r) ≡ 1
r2

∫
Q(z0,ρ)

|p| 3
2 dz.

We have assumed thatQ(z0, ρ) ⊂ QT .
In [14], the following decay estimates involving the above functionals are

proved:

C(r) � c1

[( r
ρ

)3
A

3
2 (ρ)+

(ρ
r

)3
A

3
4 (ρ)E

3
4 (ρ)

]
(3.18)
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for all 0< r � ρ (see Lemma 5.1 in [14]),

A

(
ρ

2

)
+ E

(
ρ

2

)
� c1

[
C

2
3 (ρ)+ C 1

3 (ρ)D
2
3 (ρ)+ C(ρ)+ d2

γ ρ
2(γ+1)

]
(3.19)

(see inequality (5.4) in [14]),

D(r) � c1

[ r
ρ
D(ρ)+

(ρ
r

)2(
A

3
4 (ρ)E

3
4 (ρ)+ d

3
2
γ ρ

3
2 (γ+1)

)]
(3.20)

for all r ∈]0, ρ] (see Lemma 5.3 in [14]). Heredγ ≡ dγ (f ;QT ) andc1 is an
absolute positive constant.

In contrast to [14], we focus on the functional

F(R) ≡ C(R)+D(R).
Let θ ∈]0,1/2[ andQ(z0, ρ) ⊂ QT . We shall fix numbersθ andρ later. From

Young’s inequality and from (3.19), we can derive

A
(ρ

2

)
+ E

(ρ
2

)
� c2

[
F 2

3 (ρ)+ F(ρ)+ d2
γ ρ

2(γ+1)
]
, (3.21)

wherec2 is an absolute constant. Combining estimates (3.18) and (3.21), we obtain

C(r) � c1
[(2r

ρ

)3
A

3
2

(ρ
2

)
+

( ρ
2r

)3
A

3
4

(ρ
2

)
E

3
4

(ρ
2

)]
� c3

[( r
ρ

)3
A

3
2 (ρ)

+
(ρ
r

)3
A

3
4 (ρ)

(
F 2

3 (ρ)+ F(ρ)+ d2
γ ρ

2(γ+1)
) 3

4
] (3.22)

for all 0 < r � ρ/2, with c3 an absolute constant. The same can be done with
estimate (3.20). As a result, we have

D(r) � c4
[ r
ρ

F(ρ)+
(ρ
r

)2(
A

3
4 (ρ)

(
F 2

3 (ρ)+ F(ρ)+ d2
γ ρ

2(γ+1)
) 3

4

+ d
3
2
γ ρ

3
2 (γ+1)

)]
,

(3.23)

for all 0< r � ρ/2, wherec4 is an absolute constant.
Settingθ = r/ρ, we observe that from (3.22) and (3.23) we can obtain the

following estimate:

F(θρ) � c5
[
θF(ρ)+ θ3A

3
2 (ρ)+ d

3
2
γ ρ

3
2 (γ+1)

+ (θ−3 + θ−2)A
3
4 (ρ)

(
F 2

3 (ρ)+ F(ρ)+ d2
γ ρ

2(γ+1)
) 3

4
]

� c6
[
θF(ρ)+ 1

θ15

(
A3(ρ)+ A 3

2 (ρ)+ A 3
4 (ρ)d

3
2
γ ρ

3
2 (γ+1)

)
+ d

3
2
γ ρ

3
2 (γ+1)

]
.

(3.24)



76 G. Seregin & V. Šverák

Here,c5 andc6 are absolute constants andθ ∈]0,1/2[.
Let us fixθ ∈]0,1/2[ andρ0 ∈]0, R8] in such a way that

θc6 � 1
2, d

3
2
γ ρ

3
2 (γ+1)
0 � ε8. (3.25)

Without loss of generality, we may assume thatε8 � 1. Then, (3.24) and (3.25)
imply the bound

F(θρ) � 1
2F(ρ)+ c7ε8, (3.26)

for anyρ ∈]0, ρ0], with c7 an absolute constant. Iterating (3.26), we obtain

F
(
ρ

2k

)
� 1

2k
F(ρ)+ 2c7ε8

for all naturalk. The last estimate implies

lim inf
R→0+0

F(R) � 2c7ε8. (3.27)

According to Proposition 2.8 in [14], there existsε0(γ ) such that if

lim inf
R→0+0

{( 3

4π
C(R)

) 1
3 +

( 3

4π
D(R)

) 2
3
}
< ε0(γ ), (3.28)

thenz0 is regular point. Choosingε8 in an appropriate way, we deduce the statement
of the lemma from (3.27) and (3.28). Lemma 3.3 is proved.��

4. Proof of Theorem 2.2

First, let us prove that, for functionsv andp connected by relation (2.6), and
for anyx0 ∈ R

3, for any t > 0, and for anyR > 0, the following identities are
valid: ∫

B(x0,R)

1

|y − x0|
(
2p(y, t)+ |̂vx0(y, t)|2

)
dy

=
∫

B(x0,R)

1

R

(
3p(y, t)+ |v(y, t)|2

)
dy

= R2
∫

R3−B(x0,R)

∇2
y

( 1

|y − x0|
)

:
(
v(y, t)⊗ v(y, t)

)
dy,

(4.1)

where

v̂x0(y, t) ≡ v(y, t)− ṽx0(y, t), ṽx0(y, t) ≡ v(y, t) · (y − x0)(y − x0)

|y − x0|2 .
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To this end, we take a sufficiently regular functiong :]0,+∞[→ [0,+∞[ and
observe that, by (2.6),∫

B(x0,R)

g(|x0 − y|)p(y, t) dy

= 1

4π

∫
R3

f (x, t)

∫
B(x0,R)

g(|x0 − y|) 1

|x − y| dy dx,
(4.2)

wheref (x, t) ≡ div div
(
v(x, t)⊗ v(x, t)

)
. It is easy to check that

∫
B(x0,R)

g(|x0 − y|) 1

|x − y| dy

= 4π



1

|x − x0|

|x−x0|∫
0

ρ2g(ρ)dρ +
R∫

|x−x0|
ρ g(ρ)dρ if |x − x0| � R,

1

|x − x0|
R∫

0

ρ2g(ρ)dρ if |x − x0| > R.

Integration by parts in (4.2) leads to the identity∫
B(x0,R)

g(|x0 − y|)p(y, t) dy

=
∫

B(x0,R)

(
v(y, t)⊗ v(y, t)

)
: ∇2

y

(
1

|y − x0|

|y−x0|∫
0

ρ2g(ρ)dρ

+
R∫

|y−x0|
ρ g(ρ)dρ

)

+
R∫

0

ρ2g(ρ)dρ

∫
R3−B(x0,R)

(
v(y, t)⊗ v(y, t)

)
: ∇2

y

( 1

|y − x0|
)
dy.

Takingg(ρ) = 1/ρ and theng(ρ) = 1, we arrive at identities (4.1).
Arguing by contradiction, let us denote byt0 the first moment of time when

singular points ofv appear. It is known thatt0 > 0 and, for anyT in the range
0 < T < t0, our solutionv is smooth onR3×]0, T ] (see [15]). In particular,
for any domain� ⊂ R

3 and for any 0< δ < t0, the functionv together with the
associated pressurep forms a suitable weak solution to the Navier-Stokes equations
in the space-time cylinderQδ,t0 ≡ �×]δ, t0[. Moreover, for any 0� t < t0, the



78 G. Seregin & V. Šverák

following two identities hold:

∫
R3

|v(x, t)|2 dx + 2

t∫
0

∫
R3

|∇ v(x, t ′)|2 dxdt ′ =
∫
R3

|v0(x)|2 dx

and ∫
R3

|v(x, t)|2φ(x) dx + 2

t∫
0

∫
R3

|∇ v(x, t ′)|2φ(x) dxdt ′

=
∫
R3

|u0(x)|2φ(x) dx +
t∫

0

∫
R3

|v(x, t ′)|2�φ(x) dxdt ′

+
t∫

0

∫
R3

(
|v(x, t ′)|2 + 2p(x, t ′)

)
v(x, t ′) · ∇φ(x) dxdt ′

for anyφ ∈ C∞
0 (R

3). They imply

∫
R3

|v(x, t)|2
(
1 − φ(x)

)
dx + 2

t∫
0

∫
R3

|∇ v(x, t ′)|2
(
1 − φ(x)

)
dxdt ′

=
∫
R3

|u0(x)|2
(
1 − φ(x)

)
dx −

t∫
0

∫
R3

|v(x, t ′)|2�φ(x) dxdt ′

−
t∫

0

∫
R3

(
|v(x, t ′)|2 + 2p(x, t ′)

)
v(x, t ′) · ∇ φ(x) dxdt ′

(4.3)

for anyφ ∈ C∞
0 (R

3) and for all 0� t < t0. We note that, by the multiplicative
inequality, we have

‖u‖3
3,Qt0

� c1t
1
4
0 ‖u‖

3
2
2,∞,Qt0‖∇ u‖

3
2
2,Qt0

� c1t
1
4
0 ‖u0‖3

2,Qt0
, (4.4)

whereQt0 = R
3×]0, t0[ andc1 is an absolute constant. Dividing (4.1) by4π

3 R
2

and taking the limit asR → 0 + 0, we obtain

3p(x, t)+ |u(x, t)|2 = 3

4π

∫
R3

∇2
y

( 1

|y − x|
)

:
(
v(y, t)⊗ v(y, t)

)
dy.

The theory of singular integrals and (4.4) tell us that

‖p‖ 3
2 ,Qt0

< +∞. (4.5)
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Thus, by an appropriate choice of the cut-off functionφ, we find from (4.3)–(4.5)
that

lim
R→+∞ sup

0�t<t0

∫
R3−B(0,R)

|u(x, t)|2 dx = 0.

Finally, since

lim inf
t→t0−0

∫
R3−B(0,R)

|u(x, t)|2 dx �
∫

R3−B(0,R)
|u(x, t0)|2 dx,

we have

lim
R→+∞ sup

0�t�t0

∫
R3−B(0,R)

|u(x, t)|2 dx = 0. (4.6)

Assume first that condition (2.9) holds. Then, (4.1) can be transformed to the
form

− 1

2R

∫
B(x0,R)

|v(x, t)|2 dx + 3

2R

∫
B(x0,R)

(
|v(x, t)|2 + 2p(x, t)

)
dx

=
∫

B(x0,R)

1

|x − x0|
(
|v(x, t)|2 + 2p(x, t)

)
dx −

∫
B(x0,R)

1

|x − x0| |̃v
x0(x, t)|2 dx

= R2
∫

R3−B(x0,R)

K(x, x0) :
(
v(x, t)⊗ v(x, t)

)
dx, (4.7)

where

K(x, x0) ≡ ∇2
x

( 1

|x − x0|
)
.

From (4.7), it follows that

1

2R

∫
B(x0,R)

|v(x, t)|2 dx

= 3

2R

∫
B(x0,R)

(
|v(x, t)|2 + 2p(x, t)

)
dx

+
∫

B(x0,R)

1

|x − x0| |̃v
x0(x, t)|2 dx

−
∫

B(x0,R)

1

|x − x0|
(
|v(x, t)|2 + 2p(x, t)

)
dx

� 3

2R

∫
B(x0,R)

g(x, t) dx −
∫

B(x0,R)

1

|x − x0|g(x, t) dx
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+
∫

B(x0,R)

1

|x − x0| |̃v
x0(x, t)|2 dx

+
∫

B(x0,R)

1

|x − x0|
[
g(x, t)−

(
|v(x, t)|2 + 2p(x, t)

)]
dx

and thus

1

2R

∫
B(x0,R)

|v(x, t)|2 dx

� 1

2

∫
B(x0,R)

1

|x − x0|g(x, t) dx

+
∫

B(x0,R)

1

|x − x0| |̃v
x0(x, t)|2

+
∫

B(x0,R)

1

|x − x0|
[
g(x, t)−

(
|v(x, t)|2 + 2p(x, t)

)]
dx.

(4.8)

In addition, we are going to use the identity

1

2

∫
B(x0,R)

1

|x − x0|g(x, t) dx +
∫

B(x0,R)

1

|x − x0| |̃v
x0(x, t)|2

+
∫

B(x0,R)

1

|x − x0|
[
g(x, t)−

(
|v(x, t)|2 + 2p(x, t)

)]
dx

= 3

2

∫
B(x0,R)

1

|x − x0|g(x, t) dx − R2

×
∫

R3−B(x0,R)

K(x, x0) :
(
v(x, t)⊗ v(x, t)

)
dx.

(4.9)

According to (2.7), we can show from (4.8) and (4.9) that, for anyx0 ∈ R
3 and for

anyR ∈]0, R0(t0)], the following bound is valid:

1

2R

∫
B(x0,R)

|v(x, t0)|2 dx

� 1

2

∫
B(x0,R)

1

|x − x0|g(x, t0) dx

+
∫

B(x0,R)

1

|x − x0| |̃v
x0(x, t0)|2
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+
∫

B(x0,R)

1

|x − x0|
[
g(x, t0)−

(
|v(x, t0)|2 + 2p(x, t0)

)]
dx

� 1

2

∫
B(x0,R0)

1

|x − x0|g(x, t0) dx +
∫

B(x0,R0)

1

|x − x0| |̃v
x0(x, t0)|2

+
∫

B(x0,R0)

1

|x − x0|
[
g(x, t0)−

(
|v(x, t0)|2 + 2p(x, t0)

)]
dx

= 3

2

∫
B(x0,R0)

1

|x − x0|g(x, t0) dx

− R2
0

∫
R3−B(x0,R0)

K(x, x0) :
(
v(x, t0)⊗ v(x, t0)

)
dx

� 3

2
A(t0)+ c2

R0(t0)
‖v(·, t0)‖2

2,R3,

wherec2 is an absolute constant. This is one of the crucial points of our argument.
Together with Lemma 3.2, it implies that the functiont �→ u(·, t) is continuous
from the left at the pointt0 as a function with values inL2(R

3; R
3). To see this, we

notice that Lemma 3.2 gives

lim
t→t0−0

∫
B(0,r)

|v(x, t)− v(x, t0)|2 dx = 0

for anyr > 0. But then (4.6) yields

lim
t→t0−0

∫
R3

|v(x, t)− v(x, t0)|2 dx = 0. (4.10)

Let ε8 = ε8(1) be the number of Lemma 3.3. Fix an arbitraryx0 in R
3. There

exists a positive numberR8 � R0(t0) such that

ε8

2
>

1

2

∫
B(x0,R8)

1

|x − x0|g(x, t0) dx +
∫

B(x0,R8)

1

|x − x0| |̃v
x0(x, t0)|2 dx

+
∫

B(x0,R8)

1

|x − x0|
[
g(x, t0)−

(
|v(x, t0)|2 + 2p(x, t0)

)]
dx

= 3

2

∫
B(x0,R8)

1

|x − x0|g(x, t0) dx

− R2
8

∫
R3−B(x0,R8)

K(x, x0) :
(
v(x, t0)⊗ v(x, t0)

)
dx.
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But, by the continuity condition (2.8) and by (4.10), the function

t �→ 3

2

∫
B(x0,R8)

1

|x − x0|g(x, t) dx

− R2
8

∫
R3−B(x0,R8)

K(x, x0) :
(
v(x, t)⊗ v(x, t)

)
dx

is continuous from the left at the pointt0. Therefore there exists a positive number
δ8 �

√
t0/2 such that

ε8

2
>

1

2

∫
B(x0,R8)

1

|x − x0|g(x, t) dx +
∫

B(x0,R8)

1

|x − x0| |̃v
x0(x, t)|2

+
∫

B(x0,R8)

1

|x − x0|
[
g(x, t)−

(
|v(x, t)|2 + 2p(x, t)

)]
dx

for all t ∈ [t0 − δ2
8 , t0]. Then (4.8) leads to the estimate

1

2R

∫
B(x0,R)

|v(x, t)|2 dx

� 1

2

∫
B(x0,R)

1

|x − x0|g(x, t) dx

+
∫

B(x0,R)

1

|x − x0| |̃v
x0(x, t)|2

+
∫

B(x0,R)

1

|x − x0|
[
g(x, t)−

(
|v(x, t)|2 + 2p(x, t)

)]
dx

� 1

2

∫
B(x0,R8)

1

|x − x0|g(x, t) dx +
∫

B(x0,R8)

1

|x − x0| |̃v
x0(x, t)|2

+
∫

B(x0,R8)

1

|x − x0|
[
g(x, t)−

(
|v(x, t)|2 + 2p(x, t)

)]
dx

<
ε8

2

being valid for allR ∈]0, R8] and for all t ∈ [t0 − δ2
8 , t0]. The last bound and

Lemma 3.3 imply thatz0 = (x0, t0) is a regular point. Sincex0 was chosen arbi-
trarily, the functionu is Hölder continuous at any point of the setR

3 × [t0/2, t0]
and, therefore,∇ u ∈ C([t0/2, t0];L2(R

3; M
3)). In turn, this implies the existence

of a numbert1 > t0 with the property that∇ u ∈ C([t0, t1];L2(R
3; M

3)). So,
one can state that∇ u ∈ L∞(0, t1;L2(R

3; M
3)). Therefore,u is regular in some

neighborhood of any point(x, t0), x ∈ R
3. But this contradicts the definition oft0.
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Assume now that conditions (2.10) holds. This case is treated more or less in
the same way as the previous one. In particular, it follows from (4.1) that

1

R

∫
B(x0,R)

(
|v(x, t)|2 + 3(p(x, t)+ g(x, t))

)
dx

= 3

R

∫
B(x0,R)

g(x, t) dx − 2
∫

B(x0,R)

1

|x − x0|g(x, t) dx

+
∫

B(x0,R)

1

|x − x0|
(
|̂vx0(x, t)|2 + 2(p(x, t)+ g(x, t))

)
dx

�
∫

B(x0,R)

1

|x − x0|g(x, t) dx

+
∫

B(x0,R)

1

|x − x0|
(
|̂vx0(x, t)|2 + 2(p(x, t)+ g(x, t))

)
dx

(4.11)

and

∫
B(x0,R)

1

|x − x0|g(x, t) dx

+
∫

B(x0,R)

1

|x − x0|
(
|̂vx0(x, t)|2 + 2(p(x, t)+ g(x, t))

)
dx

= 3
∫

B(x0,R)

1

|x − x0|g(x, t) dx

+ R2
∫

R3−B(x0,R)

K(x, x0) :
(
v(x, t)⊗ v(x, t)

)
dx.

(4.12)

Next, by (2.7), (4.11), and (4.12), we can show that, for anyx0 ∈ R
3 and for any

R ∈]0, R0(t0)], the following bound is valid:

1

R

∫
B(x0,R)

|v(x, t0)|2 dx � 3A(t0)+ c2

R0(t0)
‖v(·, t0)‖2

2,R3.

This estimate, Lemma 3.2, and (4.6) imply (4.10).
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Let ε8 = ε8(1) be the number of Lemma 3.3. Fix an arbitraryx0 in R
3. There

exists a positive numberR8 � R0(t0) such that

ε8

2
>

∫
B(x0,R8)

1

|x − x0|g(x, t0) dx

+
∫

B(x0,R8)

1

|x − x0|
(
|̂vx0(x, t0)|2 + 2(p(x, t0)+ g(x, t0))

)
dx

= 3
∫

B(x0,R8)

1

|x − x0|g(x, t0) dx

+ R2
8

∫
R3−B(x0,R8)

K(x, x0) :
(
v(x, t0)⊗ v(x, t0)

)
dx.

(4.13)

By continuity condition (2.8) and by (4.10)–(4.13), the function

t �→ 3
∫

B(x0,R8)

1

|x − x0|g(x, t) dx

+ R2
8

∫
R3−B(x0,R8)

K(x, x0) :
(
v(x, t)⊗ v(x, t)

)
dx

is continuous from the left at the pointt0. Therefore there exists a positive number
δ8 �

√
t0/2 such that

1

R

∫
B(x0,R)

|v(x, t)|2 dx

�
∫

B(x0,R)

1

|x − x0|g(x, t) dx

+
∫

B(x0,R)

1

|x − x0|
(
|̂vx0(x, t)|2 + 2(p(x, t)+ g(x, t))

)
dx

�
∫

B(x0,R8)

1

|x − x0|g(x, t) dx

+
∫

B(x0,R8)

1

|x − x0|
(
|̂vx0(x, t)|2 + 2(p(x, t)+ g(x, t))

)
dx

<
ε8

2

for allR ∈]0, R8] and for allt ∈ [t0−δ2
8 , t0].And, again, this estimate together with

Lemma 3.3 leads to the same contradiction with the definition oft0. Theorem 2.2
is proved.
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