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Abstract

We prove that weak solutions of the three-dimensional incompressible Navier-
Stokes equations are smooth if the negative part of the pressure is controlled, or if
the positive part of the quantity|2 + 2p is controlled.

1. Introduction

We consider the Cauchy problem for the three-dimensional Navier-Stokes equa-
tions
v+dvi@uv—Av+Vp=0, divv =0

in R3x 10, oo, with v(x, 0) smooth (or “sufficiently regular”) and decaying suffi-
ciently fast at infinity. Our main goal is to study the regularity of solutions of to the
Navier-Stokes equations under certain assumptions on the presJure pressure
p is arelatively well-defined quantity in real fluids. In the Navier-Stokes syspem,
is determined only up to an arbitrary functionzgfiue to the idealized assumption
of incompressibility. A way to remove this ambiguity is to specifyat infinity.
In the context of this work there will be no loss of generality in assuming ghat
vanishes at infinity. (See Section 2 for a precise definition.) The pressure defined
in this way will be called thenormalized pressurdn what follows p will always
denote the normalized pressure.

Our work was motivated by the following question.

(Q) If a solution to the Navier-Stokes equations develops a singularity, must the
normalized pressure become unbounded from below?

One of the main results in this work is a positive answer to this question (The-
orem 2.2).

Considering a flow of water under some standard conditions, we can speculate
that if p becomes very low, we will encounter the phenomenon of cavitation. This
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means that in areas of very low pressure bubbles of water vapor will form in the
fluid. Since the areas of very low pressure must have small volume, we can expect
that eventually the bubbles will be carried into an area where the pressure is not
so low, and will collapse. The collapse of even very small bubbles should create
observable effects (e.g., popping sounds). As far as we know, cavitation is not
observed in reasonable flows, such as flows in pipes under normal temperature and
pressure, even when the Reynolds number is high. Therefore, for such flows we
can assume that does not become exceedingly low. Hence, by the result above,
v should be smooth. We can further speculate that this means that all singularities
of solutions to the Navier-Stokes must be unstable, if they exist at all. This was
conjectured in [18].

We prove a slightly stronger statement than suggested by (Q), in that we do
not need a point-wise conditign(x, ) = —C to get regularity, but only a weaker
integral condition is necessary (see (2.7) and (2.8)).

It turns out that our method also gives a proof of the following statement, which
is of independent interest: If the quantityi> + 2p is bounded from above, the
solution must be regular. This is related to the works [7] and [26] on the five-
dimensional steady-state Navier-Stokes equations.

We briefly outline the main idea of the proof. The key is the following identity:

2p(y, 1) + [v*(y, 1)|
— ?)dy

% / 30 1) + (v, D) d

= R? / Vf,(w —1on) : (v(y, N v(y, t)) dy,

R3—B(xo,R)

where1*0(x, t) is the orthogonal projection af(x, #) into the two-dimensional
subspace oR® perpendicular to: — xo. We can see that bounds for the negative
part of p or the positive part ofv|? 4+ 2p give non-trivial estimates fov. A key
feature of these estimates is that the controlled quantities are invariant under the
natural scaling of the equatiafix, ) — Av(ix, A2r). In the language of regularity
theory, under our assumptions the above identity gives estimates which move the
equation from the realm of “super-critical" to the realm of “critical". This makes
the problem manageable.

Other papers where regularity for weak solutions to the Navier-Stokes equations
is studied under various assumptions on pressure include [1-3,5,20]. Regularity
criteria involving other quantities can be found for example in [22,23,17,12, 8,25,
6].
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2. Notation and main results

We denote b3 the space of all real 8 3 matrices. Adopting summation over
repeated Latin indices, running from 1 to 3, we shall use the following notation:

u-v=ujvi, |ul=+u-u, u=@w;)eR: v=(y)eRS
A:B=tA*B = A;jB;;, |Al=+vA:A,

A* = (Aji), A=Ay, A=(A;j)eM>, B=(B;j)eM>

uv =) e M3 Au=(Aju)eR3 uveR® AeM

Let w be a domain in some finite-dimensional space. We denofe,lgy; R')
and W,,ll (w; RY) the known Lebesgue and Sobolev spaces of functions édnto
R. The norm of the spack,, (w; R') is denoted by - ||,.. If m = 2, then we use
the abbreviation| - [, = || - 12,0

Let T be a positive paramete® be a domain ifR3. We denote byQ; =
Qx]0, T[ the space-time cylinder. Space-time points are denoted by(x, 1),
z0 = (xo, fo), etc. LetL,, ,(Or: R!) be the space of measurafité-valued func-
tions with the following norm:

T 1
</ 1fC Do dl) ) n € [1, o0,
”f”m,n,QT = 0

ess sup|lfC, Dlmea n = +oQ.
te[0,T]

In the special cas® = R andT = 400, we use the abbreviations
Lp(RY) =Ly, W3R} =H', Lyp,(Qr;R% =Ly ,,
L (0, T; W32 R3) = L, (HY).

Forintegrable-in@r scalar-valued, vector-valued, and tensor-valued functions,
we shall use the following differential operators

) _31) _31) \Y (pi), V (u; i)
V= s V= s = i) u=1_Wi;),
t Y o p D.i i,J

divv=v;;, divt= (Tijj)» Au= divVu,

which are understood in the sense of distributions. Heré = 1, 2, 3, are the
Cartesian coordinates of a poink R3, andr €]0, T'[ is the time variable.
For balls and parabolic cylinders, we use the standard notation:

B(xo,R)={x € R® | |x—xol <R}, Q(z0, R)= B(xo, R)xlto — R?, 1o,

wherezg = (xg, o).
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Let us formulate the main results of the paper. To this end, we remind the reader
that for the initial data satisfying the conditions

voe HY, divip=0 in RS (2.1)

the Cauchy problem

v+dvv®uv)—Av+Vp=0
in R3x]0, +-00[, (2.2)

divv =0
v(-,0) = vo(-) in R3 (2.3)

always has a so-called Leray-Hopf weak solution (see [15,10,11,13]). This means
that there exists at least one functiomwith the following properties:

veE Ly NLyHY, divu(,1)=0 in R® forall +>0;

the functiory /v(~, t) - w(-)dx iscontinuous on [0, +oo[

R3
forall w e Ly;

/ {_U.atw—v®v:Vw+Vv:Vw}dx=O

R3x10,00[

for any w € C§°(R3x10, oo[; R®) such that diw(-, ) = 0 for all t > 0;

lv(-. 1) —vo()llgs > 0 as 1t - 0+0;

t
/|v(x,z)|2dx+2//|Vv(x,t’)|2dxdt’§f|uo(x)|2dx

R3 0 R3 R3

forall t = 0.

In this formulation, no information about the presspris given.

However, using the uniqueness theorem and the coelgiy@stimates of so-
lutions to the Cauchy problem for the Stokes equations (see, for example, [9,19],
and [11,13,24] in the case = I), pressure can be introduced in a natural way.
More precisely, it can be proved (see, for instance [4] and [14]) that there exists a
functionp € L1 oc Such that, for0 < § < T < 400,

V p € Ly (R3x15, T[; R3), (2.9

where
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Moreover,
dve Ly (R3x18, T R®), V2 e Lo (R3x18, T[; M2 x R3),
and the equation
v+dvo®v)—Av+Vp=0 (2.5)

holds a.e. ifR3x]0, ool.
The pressurg is determined up to an arbitrary function of\We fix a repre-
sentative forp by setting

px, 1) = i/ = divdiv(v(y, N v(y, t)) dy. (2.6)
an ) x>l
R?’

To show that this function satisfies (2.5), let us denote the function on the right-hand
side of (2.6) bypo. It is known that

A po(x,t) = —div div(v(x, 1) Qu(x, t)).
Differentiation inx gives us:
Vpo=3G+T(G),

whereG = vxv x = (vgv; ) and

T(G)(x,r)z_i/vz( ! )G(y,t)dy
47TR3 \x —yl

_ 1 (( ij 3 —y)& —y)
T 4 lx —yI3 lx — yI®

)Gi.0))dy
R3

is a singular integral. According to the boundedness of singular integrals ime
have the estimate

9
[ 19 potenifax < [ (e on1v o nf) s
R3 R3

for all positiver and for some absolute constant
Next, by Hilder's inequality and by the multiplicative inequality, we obtain

/|v|%|Vv|%dx (/|Vv|2dx)196</|v|l78dx)178
R3 R3 R3
cz</|Vv|2dx>i(/|v|2dx>g.

R3 R3

A

A
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Thus,
V po(-,t) € Lg

fora.e.r > 0.
On the other hand, it follows from equation (2.5) that
Ap(x,t)= —diniV(v(x, 1) Qv(x, l)).
Thereforeg = p — po is a harmonic function in for a.e.r > 0. But, by (2.4),

Vpel %(R?’X]S, T[; RS).

9
8’
This means that

Vq(.1) e Ly®3x]8, T[: R

for a.e.r > 0. Sinceq is harmonic inx, we find thatV ¢(-,r) = 0 in R3 and,
thereforeg is a function oft only.

Definition 2.1. We say that a functiog : R3x]0, +oo[— [0, +o0[ satisfies con-
dition (C) if, for any#y > 0, there exists a positive numb&p = Rp(79) such
that

A(tg) = sup  sup / g, 1) dx < +00 2.7)

xoeR? to_RgététoB(xo Ro) b= xol

and,

for each fixedxo € R3 and for each fixedR €]0, Ro],
g(x,1)

B(xo,R) 1X — X0

(2.8)

the functions — dx is continuous atg from the left

Our main result is as follows

Theorem 2.2. Letv be a Leray-Hopf solution to the Cauchy probléal)—(2.3)
and letp be the normalized pressure associated witlhssume that there exists a
functiong satisfying conditionC) such that

l(x, D% +2p(x, 1) < g(x, 1), x €R3 1 €]0, 400 (2.9)
or
px, 1) 2 —g(x,1), xeR3 1€]0, +ool. (2.10)
Thenv is Holder continuous ofiR3x 10, +o0[ and therefore smooth and unique.

Remark 2.3. Obviously, conditions (2.7) and (2.8) are satisfie¢ it= constant
> 0inR3x]0, +-o0l.
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3. Remarks on suitable weak solutionsto the Navier-Stokes equations

In this section, we are going to discuss some facts about the so-called suitable
weak solutions to the Navier-Stokes equations:

hv+dviuv—Av=f—-Vp
in QOr, (3.1

divv =0

whereQr = Qx]0, T[, 2 is a domain inR3, andT is a positive parameter. We
always assume that lies in the Morrey space

Mz, (0rs R = {1 € La(0rs B | dy (f: Q1) < +00]

for some positive number, where

1 1
4,0 00 =sup| iz ([ 17dx)" 1 Qo m € 01 R = 0,
Q(xo0,R)

We say that a pair of functionsandp are suitable weak solutions of the Navier-
Stokes equations if the following conditions hold (see [21,4,16,14] for details):

v e L2oo(Qri RO NL2(0, T: Wa( R%),  p e L3(Qr): (32)
equations (3.1) are satisfied @7 in the sense of distributions (3.3)

and

t

/|v(x,t)|2¢(x,t)dx+2//|Vv(x,t/)|2¢(x,t/)dxdt/
Q 0 Q

1
< [ [ {reor(aows+ apwn) (3.4)
0 Q

+2F(x, ) - vix, t)o(x, 1)
+ <|v(x, Y2+ 2 p(x, t/)>v(x, 1) -V o (x, t/)} dxdt’

fora.e.t €]0, T[ and for all non-negative functions e C3°(R3 x R) vanishing in
a neighborhood of the parabolic boundaf@r = Q x {r =0} U3 x [0, T1].

As in [14], we call a pointg € Qr regular forv if there exists a non-empty
neighborhood),, of this point where the function+— v(z) has a Hlder continu-
ous representative. It can be proved that there exists a representatiseatf that
(see [21,4,16, 14] for details)

HY(Z) =0, (3.5)
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wherey is the set of all singular points ofand#* is the one-dimensional parabolic
Hausdorff measure. By definition,

1osy — [im i . R <
H(Z) _ginolnf [ZRI | =c ZQ(zl, Ri), 0<R; = 8].
In what follows, we shall fix a representativew$uch that

Ii;nitnf/|v(x,t)|2dx ;/|v(x,to)|2dx forall0<t9g < T (3.6)
—10
Q Q

and, for eachw € Lo(Q, R3),

t €10, T[—~ /v(x, 1) - w(x)dx is acontinuous function. (3.7)
Q

To see that this is possible we note that, by (3.5),
HY Q@ x{r=10}NZT)=0
and, according to the definition of regular points,
v(x,t) = v(x,1g) fora.e.x € Q. (3.8)
Therefore (3.6) follows from Fatou’s lemma. On the other hand, by (3.2), we have
lv(, 0)llze = lIvll2,00,07 (3.9)
for all 1o €]0, T[, and thus, by (3.8) and (3.9),
v(,1) > v(-, 10) In L(S2%R3) (3.10)
foranyr € [1, 2[. In turn, (3.9) and (3.10) imply (3.7).

Remark 3.1. Following the arguments in [14], we can see that all the above state-
ments remain valid fofg = T.

Lemma 3.2. Letv be as above. Giveftg € 2,0 < 190 £ T, and0 < 8o < /7o,
assume that

1
a(Qo, tg, o) = SUP{E / lu(x,HI?dx | xo € o,
B(xo0,R)
1 (3.11)
t € tg— 33, o, 0<R=Zdy= Edist(asz, Qo)}

< 400.

Then,

Of lv(x, 1) — v(x, 10)|?dx = 0. (3.12)
Qo

lim
t—to—
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Proof. Taking into account (3.7), we see that it is enough to prove

I|m /|v(x 1] dx—f|v(x 10)|% dx. (3.13)
We first note that (3.5) implies the following fact. For eaglthere exists a countable
family of sets of the form
b/ = B(x!, Ryi) x {t = 10}
such that

R, <do, =N (ﬁo x {t = to}) C Zb}’"o, Y Ryi <y (3.14)
1 1

Let us fixe > 0 and let
&

8a(Q0. 10, 80)
Then, by (3.11) and (3.14), we obtain

‘ / (e, D2 dx — / Iv(x, t0)|2dx‘

Y B/ Ryi) > B(x] Ryi)
1 1

)/:

<Y [ weofa+Y [ ek

i i
B(x! . Ryi) B(x! . Ryi)

< 2a(Q0, 10,80) Y Ryi < 2y a(Q, 1o, 0)

i

(3.15)

[IA
Nl®

forall t € [to — 82, tol.
We let
o =Qox {t =10} — Y b
i
For eachz € w?, there exists a non-empty neighborho®d such that the

functionz — v(z) is Hélder continuous o, N Q. Sincew? is compact, there
exists a non-empty neighborho6t}, of the setw?” such that

o’ C O

and the function, — v(z) is continuous ir®’, N’ Q7. Hence,

‘/Iv(x,t)|2dx—/|v(x,to)|2dx <§ (3.16)
wY w?
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forall0 <1 —t < u = u(e, Qo, tg, §o) < 8(2). Combining (3.15) and (3.16), we
obtain

}/|v(x,t)|2dx—/|v(x,t0)|2dx‘ < ‘/lv(x,t)|2dx—/|v(x,to)|2dx
Qo Qo wV Y

+ ‘ / |v(x,t)|2dx

> BG! Ry
i

— f lu(x, 10)|% dx
ZB(xiy,RV,-)
< €&
forall 0 < 19 — r < u. Therefore (3.13) and Lemma (3.2) are proved.

In what follows, we are going to use the following condition for locallttEr
continuity ofv.

Lemma 3.3. Let a pair ofv and p be an arbitrary suitable weak solution to the
Navier-Stokes equations @7 with external forcef € Mz, (Qr; RR3) for some
positive numbely. There exists a positive numbey, depending ory only and
having the following property. Assume that, for some posRive2 (zo, Rx) C Or
and

sup A(zo, R) < &, (3.17)
O<R<R,

where 1
Azo,R)= sup = f lv(x, 1) dx.

to—R2<t<1g RB(xo R

Then,zg is a regular point ofv.

Proof. Our proof is mostly based on the method developebisyin [16] (see also
[14]). As in [14], we introduce the following functionals:

A(p) = Az, p), E(p)=1 / IV v|2dz,
0(z0,p)

Ccr) =4 34z, D) = 34

=3 wPdz, D) =3 |pl2 dz.
0(z0,p) 0Q(zo0,p)

We have assumed thé(zo, p) C O7.
In [14], the following decay estimates involving the above functionals are
proved:

r

cir) < cl[(%)?’A%(p) +(4 )3A%<p)E%(p>] (3.18)
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forall0 < r < p (see Lemma 5.1 in [14]),

2
(see inequality (5.4) in [14]),

A<B> + E(%) < 1 C3(p) + C3(0ID3(0) + Clp) +d2p* V] (3.29)

D(r) < cl[%mp) + (§)2(A%(p)E%<p) + dy%p%(””)] (3.20)

for all r €]0, p] (see Lemma 5.3 in [14]). Heré, = d, (f; Qr) andcy is an
absolute positive constant.
In contrast to [14], we focus on the functional

F(R) = C(R) + D(R).

Letd €]0, 1/2[ andQ(zo, p) C Q7. We shall fix numberg andp later. From
Young's inequality and from (3.19), we can derive

A(g) n E(g) < cz[f% (0) + F(p) + d5p2<y+1>], (3.21)

wherec; is an absolute constant. Combining estimates (3.18) and (3.21), we obtain

e <ef(ZF R0+ (22 (3]
§63[(%>3A%(/0) (3.22)

+(2) 4ty (Fio + 7 + 2]

forall 0 < r £ p/2, with c3 an absolute constant. The same can be done with
estimate (3.20). As a result, we have

3
3

r P\2/ 3 2
D) Zeal “F (o) + (2) (430 (F3(0) + F (o) + d2p27+P)
0 r
+df 3 0)],
forall0 < r < p/2, wherecy is an absolute constant.

Settingé = r/p, we observe that from (3.22) and (3.23) we can obtain the
following estimate:

(3.23)

3
F(Op) S cs[6F(p) + 6343 (p) + a0 +Y

3
+O3+ G*Z)A%(p)@-‘% (p) + Flp) + dﬁpz(”l)) 4]
(3.24)

1 3 3 3 3
< o[ 07 () + 735 (4%(0) + A% (0) + AT (p)d} 17 4D)

3 3
+ dyzp?(’”rl)] )
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Here,cs andcg are absolute constants afict]0, 1/2].
Let us fixf €]0, 1/2[ andpg €]0, R,] in such a way that

3 3
Ocg < %, dy p()z(y+l) < e, (3.25)

Without loss of generality, we may assume that< 1. Then, (3.24) and (3.25)
imply the bound

F6p) £ 3F(0) + czea, (3.26)

for anyp €]0, po], with ¢7 an absolute constant. Iterating (3.26), we obtain

0 1
f(z_k) = §-7:(P) + 2c784
for all naturalk. The last estimate implies

liminf F(R) < 2cve,. 3.27
15’%(!)+0‘7:( )_ cre ( )

According to Proposition 2.8 in [14], there exigtgy’) such that if
. 3 i /3 -
imig (& ew)’ + (o) s @z

thenzg is regular point. Choosing, in an appropriate way, we deduce the statement
of the lemma from (3.27) and (3.28). Lemma 3.3 is proved.

4. Proof of Theorem 2.2

First, let us prove that, for functionsand p connected by relation (2.6), and
for anyxo € RS, for anyr > 0, and for anyR > 0, the following identities are
valid:

1 _
/ (2000 + 7y, 0 dy
|y = xol

B(xo0,R)
1 2
= [ z(on+ponR)s 1)
B(xo,R)
1
_ p2 2 .
=R / Vy(|y — XO|) - (v(y, 1) ®v(y, t)) dy,
R3—B(x0,R)
where

v(y, 1) - (y — x0)(y — x0)
ly — xol? '

/ﬁxo(yvt)Ev(y5t)_5xo(yvt)ﬂ F‘Jxo(yat)z
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To this end, we take a sulfficiently regular functigrn:]0, +oco[— [0, +oo[ and
observe that, by (2.6),

/ gllxo—yDp(y,t)dy
B(xo0,R)

1 1 (4.2)
= 4—/f(x,t) / g(xo—yD dydx,
JT
R3

lx — y
B(xo,R)

where f (x, t) = divdiv (v(x, 1) v(x, t)). It is easy to check that

1
/ g(lxo — yD dy
lx — yl

B(x0.R)
[x—xol R
p?g(p)dp + / pg(p)dp if |x —xo| =R,
|x — xol " W
— X—X0
=4r R
1 ) .
p°g(p)dp if  |x —xol > R.
|x — xol /

Integration by parts in (4.2) leads to the identity

gllxo—yDp(y,t)dy

B(x0,R)
ly—xol
- . y2 2
= f (v(y,t)®v(y,t)) : Vy( pg(p)dp
ly — xol
B(xo.R)
R
+ / pg(p)dp>
|y=xol
; 1
2 .2
+/p g(p)dp / (v(y,t) ®v(y,t)) : Vy(|y _xo|)dy
0 R3—B(xo,R)

Takingg(p) = 1/p and therg(p) = 1, we arrive at identities (4.1).

Arguing by contradiction, let us denote lythe first moment of time when
singular points ofv appear. It is known that > 0 and, for anyT in the range
0 < T < fg, our solutionv is smooth onR3x10, '] (see [15]). In particular,
for any domair©2 ¢ R3 and for any O< § < 1o, the functionv together with the
associated pressupgorms a suitable weak solution to the Navier-Stokes equations
in the space-time cylinde®; ;,, = Qx18, fo[. Moreover, for any < ¢ < 1o, the
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following two identities hold:

t
/Iv(x,t)lzdx—{-Z//|Vv(x,t’)|2dxdt’=/|vo(x)|2dx
R3 0 R3 R3

and

t
/|v(x,t)|2¢(x)dx+2//|V v(x, t)°p (x) dxdt’

R3 0 R3

/|u0(x)| ¢(x)dx+/f|v(x )?A¢ (x) dxdt’

0 R3

+//(|v(x,t’)|2+2p(x,t/))v(x,t/)-Vqs(x)dxdz’

0 R3

for anyg e C5°(R3). They imply

/|v(x N (1 ¢(x))dx+2f/|Vv(x )| (1 ¢(x)>dxdt

0 R3
fman|1 ¢@ﬂdx—/]\uxtnA¢uﬁum (4.3)
0 R3

—//(|v(x,ﬂ)|2+2p(x,r’))v(x,t’)-v¢(x)dxdt’
0 R3
forany¢ € C3°(R3) and for all 0= ¢ < 19. We note that, by the multiplicative
inequality, we have
1 3

3 1
3 < A2 2 < .44 3
ll3.g,, < c1rg lul3 o, 0, IV 413 o, < 116 lluol3 g, - (4.4)

where Q,, = R3x]0, 1] andc; is an absolute constant. Dividing (4.1) 8§ R?
and taking the limit a® — 0+ 0, we obtain

) : (v(y, 1 ®v(y, t)) dy

3 1
2 _ 2
3pr. )+ . 0P = /V>< v —x]
R3

The theory of singular integrals and (4.4) tell us that

Iplls , < —+oo. (4.5)
3,01
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Thus, by an appropriate choice of the cut-off functigsrwe find from (4.3)—(4.5)
that
lim sup / |u(x,t)|2dx =0.
R—>+400 9<r <1y
~  R3-B(O.R)

Finally, since

lim inf / lu(x,t)|2dx = / lu(x, to)|? dx,

t—>19—0
R3—B(0,R) R3—B(0,R)
we have
lim sup / lu(x, 1)[%dx = 0. (4.6)
R—+00 <1<y
~ 7 R3-B(O,R)

Assume first that condition (2.9) holds. Then, (4.1) can be transformed to the
form

1 2 3 2
-5 / [oer, D dx + o f (|v(x, N2 + 2p(x, t)) dx
B(xo,R) B(xo,R)
1 2 1 ~x 2
= (|v(x, N2+ 2p(x, t)) dx — [0 (x, 1)]2 dx
|x — xol |x — xol
B(xo,R) B(3o,R)
= R? / K (x, x0) : (v(x,t)@v(x,t)) dx, 4.7
R3—B(x0,R)
where

2 1
K (x, x0) = V"<|x - xo|>'

From (4.7), it follows that

1
o / [v(x, )% dx
B(x0,R)
3 2
= <|v(x,t)| +2p(x,t))dx
B(xo,R)
1 ~x0 2
|x—xo||v (x,t)|“dx
B(xo,R)
1 2
= T (oG 02 + 2p(x. ) dx
B(xo,R)
<3 / (x.0)d f (.0)d
= 2R iy, tax x—xo 2

B(xo.R) B(xo0.R)
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1
+ / 70 (x, 1)|? dx
|x — xol

B(xo,R)

" / |x—1xo|[g(x’t)_(lv(x’t)|2+2P(X,l)>]dx

B(x0,R)
and thus
: [ weoia
2R v(x, X
B(xo0,R)
1 1
<- / glx, ) dx
2 |x — xo
B(xo.R
(0. %) (4.8)
+ 0 (x, 1)[2
|x — xol
B(xo,R)
2
) — 1 2p(x,t))|dx.
t | mglE@n = (e 0P 4 2pen ) | dx
B(xo,R)
In addition, we are going to use the identity
1 1 1
5 / glx,ndx + / 7% (x, 1)[2
2 |x — xol |x — xol
B(x0,R) B(xo,R)
1 2
+ s, = (lwex D2+ 2p(x, 1)) dx
s |x — xol
3 o L (4.9)
2
=— / gx,t)dx — R
2 |x — xol
B(x0,R)
x / K(x,x0) : (v(x,t)@v(x,t))dx.
R3—B(xo,R)

According to (2.7), we can show from (4.8) and (4.9) that, for ang R and for
any R €]0, Ro(tp)], the following bound is valid:

1 1
S - / g(x, r0)dx
2 |x — xo|

1 ~
| e or
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- / Ix—lxo|[g(xvlo)_('U(x»fo)lz-i-zp(x,lo))]dx

B(x0,R)
1 1 1
< - / g(x, 10) dx + / |77 (x, 10)|?
2 |x — xol |x — xol
B(x0,Ro) B(x0,Ro)
1
+ [2x.10) = (jor, 10) 2+ 2p(x, 10)) | dx
|x — xol
B(x0,Ro)
3 1
= / g(x, o) dx
2 lx — xol
B(xo0, Ro)
— R2 / K(x, x0) : (v(x,to)®v(x,to)) dx
R3—B(x0,Ro)
3 c2 2
< —A(t o 1 ,
=5 (to) + Ro(io) v, 10)115 ps

wherec; is an absolute constant. This is one of the crucial points of our argument.
Together with Lemma 3.2, it implies that the functior> u(-, t) is continuous
from the left at the pointy as a function with values iho(R3; R3). To see this, we
notice that Lemma 3.2 gives

lim . / lv(x, 1) — v(x, 10)|°dx =0

t—1to—
B(O,r)

for anyr > 0. But then (4.6) yields

t—>10—

lim Of lv(x, 1) — v(x, 10)|?dx = 0. (4.10)
]R?’

Lete, = &,(1) be the number of Lemma 3.3. Fix an arbitragyin R3. There
exists a positive numbek, < Ro(zp) such that

Ex
2

1 ~xi 2
> g(x, to)dx + [v°0(x, to)|“ dx
2 [x — xo
B(xo,R.) B(xo,R,)

|x — xol

+ (2. 10) = (Iv(x, 02 + 2p(x, 10)) | dx
|x — xol
B(xo,Ry)
3 1
=— / g(x, o) dx
2 |x — xol
B(xo0,Ry)

_ Rf / K (x, xo) : (v(x,to)®v(x,to)> dx.
R3—B(x0,R,)
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But, by the continuity condition (2.8) and by (4.10), the function

3 1
t—> — / g(x,t)dx
2 |x — xo|

B(xo0,Ry)
—Rf / K (x, xo) : (v(x,t)@v(x,t)) dx
R3—B(x0,R,)

is continuous from the left at the point Therefore there exists a positive number
8« < /1o/2 such that

, 1 1 1
S / g(x,t)dx + / |77 (x, 1) |2
22 |x — xol |x — xol

B(xo0.R,) B(xo0.R,)
1
+ (5000 = (e, D2 + 2p(x, 1) | dx
|x — xol
B(xo,R,)

forall r € [t — 82, t0]. Then (4.8) leads to the estimate

! / lv(x, n2d
R vix,t)|“dx
B(xo,R)
1 1
<z / g(x,t)dx
2 |x — xo
B(xo,R)
+ 70 (x, 1)[2
|x — xol
B(x0,R)
1 2
+ [g(x, 1 — (Iv(x, 12 + 2p(x, t))] dx
|x — xol
B(x0,R)
1 1 1 -
=5 / gx,n)dx + / |70 (x, 1)
2 |x — xol |x — xol
B(xg,R,) B(x0,R.)
1
+ [0 = (1oe, 0 +2p(x, 1) | dx
|x — xol
B(x0,R,)
N
< —
2

being valid for allR €]0, R,] and for allt € [rg — 83, to]. The last bound and
Lemma 3.3 imply thatg = (xo, 7o) iS a regular point. Sinceg was chosen arbi-
trarily, the functionu is Hoélder continuous at any point of the $&t x [10/2, 1o]
and, thereforey u € C([10/2, tol; L2(R3; M3)). In turn, this implies the existence
of a numberr; > 1o with the property thaV u € C([to, t1]; Lo(R3; M3)). So,
one can state th&f u € Lo (0, t1; L2(R3; M?3)). Thereforey is regular in some
neighborhood of any poirt, 7o), x € R3. But this contradicts the definition of.
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Assume now that conditions (2.10) holds. This case is treated more or less in
the same way as the previous one. In particular, it follows from (4.1) that

1 2
= <|v(x,t)| +3(p(x,t)+g(x,t)))dx
B(xo0,R)
3 1
=— / gx,t)dx —2 / g(x,t)dx
R |x — xo|
B(xo,R) B(xo0,R)
+ 1 (m"O(x D%+ 2(p(x, 1) + glx t))) dx
Ix — xo| . pix, 8, (4.11)
B(x0,R)
1
< f glx,t)dx
lx — xol
B(x0,R)
1 .
+ f (Iv"o(x,t)|2+2(p(x,t)~I—g(x,t))) dx
|x — xol
B(xo,R)
and

1

+ f ! (Iﬁxo(x,t)|2+2(p(x,t)+g(x,t))) dx
|x — xol

1 (4.12)
=3 / g(x,t)dx

|x — xol
B(x0,R)

+R? / K(x,xo):(v(x,t)@v(x,t))dx.

R3—B(xo,R)

Next, by (2.7), (4.11), and (4.12), we can show that, for ang R2 and for any
R €]0, Ro(#p)], the following bound is valid:

1

— f lu(x, 10)|> dx < 3A(10) + 2

Ro(0)

2
R ||v(-, t0)||2,R3'

B(xo0.R)

This estimate, Lemma 3.2, and (4.6) imply (4.10).
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Lete, = &,(1) be the number of Lemma 3.3. Fix an arbitragyin R3. There
exists a positive numbek, < Ro(zp) such that

Ex 1
— > g(x, o) dx
2 |x — xo

B(xo,Ry)

1
+ / (I?xo(x,to)|2+2(p(x,to) +g(x,to))) dx
|x — xol

B R
(xo. ko) (4.13)
_3 / —8(x.10) dx
B(xg,Ry)
+ R2 / K (x, x0) : (v(x,to) ® v(x,to)> dx
3_B(xo,R*)

By continuity condition (2.8) and by (4.10)—(4.13), the function

t—3 / g(x t)dx
B(x0,Ry)
+R? f K (x, x0) : (v(x, 1 ®v(x, z)) dx
3—B(x0,R,)

is continuous from the left at the poirt Therefore there exists a positive number
8. < 4/10/2 such that

= / w(x, H2d
R v(x, X

B(xo0.R)

1
< / glx, ) dx
|x — xo

B(xo.R)

1
+ / (I?"O(x,t)|2+2(p(x,t)+g(x,t))) dx
|x — xol

B(xo,R)

1

B(xo0,R,)

1 .
+ / (|vx°(x,t)|2—|—2(p(x,t)—i—g(x,t))) dx
[x — xol
B(x0,R.)

Ex
< —

A

forall R €]0, R,]and forallz € [to—af, to]. And, again, this estimate together with

Lemma 3.3 leads to the same contradiction with the definitiog.afheorem 2.2
is proved.
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