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A STEADY EULER FLOW WITH COMPACT SUPPORT

A.V. Gavrilov

Abstract. A nontrivial smooth steady incompressible Euler flow in three dimen-
sions with compact support is constructed. Another uncommon property of this
solution is the dependence between the Bernoulli function and the pressure.

1 Introduction

A steady flow of an ideal fluid in R
3 is a solution of the Euler equation

(u · ∇)u = −∇p, div u = 0.

At present, it is not known if smooth nonzero solutions of this equation with com-
pact support 0 �= u ∈ C∞

0 (R3) exist [Nad14,NV17]. The problem is trivial in two
dimensions where there are obvious vortex-like solutions. In three dimensions, only
a few results are known, all on the negative side. It is known that such a flow cannot
be Beltrami [Nad14,CC15], and it cannot be axisymmetric without swirl [JX09].
Recently, Nadirashvili and Vladut found some other restrictions [NV17].

Apparently,1 weak solutions with compact support may be constructed using
methods of [CS14]. Also, there is a considerable literature about vortex rings which
are solutions with compactly supported vorticity (e.g. [AS89]). Opinions have been
expressed that in three dimensions there are no smooth solutions with compact
support besides u = 0. The main goal of this paper is to show that it is not true.

Theorem 1. There exists a nontrivial smooth steady Euler flow in R
3 with support

in an arbitrarily small neighbourhood of a circle.

We give below an explicit description of an axisymmetric flow with compact
support. This solution has also other unusual properties discussed in the last section.

2 Some Differential Equations

In this section we find solutions of some differential equations which will be used
later.

1 The author is no expert in this area.
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2.1 Ordinary differential equation.

Lemma 1. The singular Cauchy problem

3xψ′′ + 6x(ψ′)3 − 4ψ(ψ′)2 − 3ψ′ = 0; ψ(0) = 1, ψ′(0) = −3
4

(1)

has a unique analytic solution ψ(x) in a neighbourhood of x = 0.

Proof. The equation (1) becomes first order in variables t = xψ−2 and v = ψψ′,

t
dv

dt
= v

(
4
3
v + 1

)
+

tv2(2v + 9)
3(1 − 2tv)

.

Denoting w = v + 3
4 we may write this equation as tdw

dt = −w + f(t, w) where
the function f is analytic and f(0, 0) = ∂

∂wf(0, 0) = 0. By [Hil97, Theorem 11.1]
there is an unique analytic solution v(t) such that v(0) = −3

4 . The Cauchy problem
dψ
dx = 1

ψv
(

x
ψ2

)
, ψ(0) = 1 clearly has an unique solution. ��

From now ψ always means the function defined by (1). The Taylor series of this
function is2

ψ(x) = 1 − 3
4
x +

9
128

x2 − 21
1024

x3 +
1035

131072
x4 − 1809

524288
x5 + O(x6).

Denote

F (x, α) = −2xψ(α) + 2x3, H(α) = 6α

(
1

ψ′(α)
+ 2ψ(α)

)
,

G(x, α) = 12x2α − F 2(x, α) − H(α).

Note that at (x, α) = (1, 0) we have F = G = 0 and

∂F

∂x
= 4,

∂F

∂α
=

3
2
,

∂G

∂x
= 0,

∂G

∂α
= 8.

We will also need the following fact.

Lemma 2. The functions F, G satisfy

∂G

∂x
+ F

∂G

∂α
= 2G

∂F

∂α
, (2)

x
∂F

∂x
− F = 4x3. (3)

Proof. The part (3) is trivial; (2) boils down to the formula

H ′(α) = 24αψ′(α) + 4ψ(α),

equivalent to (1). ��
2 This series is for a reader’s convenience. In the proof we use ψ′(0) = − 3

4
but not higher deriva-

tives.
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2.2 Partial differential equations.

Lemma 3. The system3

∂

∂x
α = F (x, α),

(
∂
∂yα

)2
= G(x, α), (4)

has a unique analytic solution α(x, y) in a neighbourhood of the point (x, y) = (1, 0)
such that α(1, 0) = 0 and ∂

∂yα �≡ 0.

Proof. It is convenient to introduce an ad hoc variable s and to consider x and α func-
tions of (F, s), where G = s2 by definition. (This is possible because ∂(F,G)

∂(x,α) (1, 0) =
32 �= 0.) Consider a differential form

κ =
∂x

∂s
dF +

(
∂α

∂s
− F

∂x

∂s

)
ds

s
.

It is analytic near the origin of the (F, s) plane (because s−1 ∂
∂s = 2 ∂

∂G). We have
the relation (2) which in the new variables takes the form

F
∂x

∂F
+ s

∂x

∂s
=

∂α

∂F
.

It follows that

dκ =
1
s

∂

∂s

(
F

∂x

∂F
+ s

∂x

∂s
− ∂α

∂F

)
ds ∧ dF = 0.

By the Poincaré lemma, there is a unique analytic function Φ(F, s) such that Φ(0, 0)
= 0 and κ = dΦ.

This form is odd with respect to the second variable, in the sense that σ∗κ = −κ
where σ : (F, s) 	→ (F, −s). If γ is a path connecting the origin (0, 0) to a given point
(F, s), then

Φ(F, −s) =
∫

σγ
κ =

∫
γ
σ∗κ = −

∫
γ
κ = −Φ(F, s).

We have Φ2(F, s) = Φ2(F, −s), hence the square Φ2 is a well defined analytic function
of F and G = s2. Now we can change the variables back and denote f(x, α) = Φ2.
We have f(1, 0) = 0 (essentially, by assumptions).

Near the origin Φ(F, s) =
(
1
4 + O(F )

)
s + O(s3), hence

∂Φ2

∂F
(0, 0) = 0,

∂Φ2

∂G
(0, 0) =

1
16

,

3 Note that ∂
∂x

means ∂
∂x

|α when applied to F or G but ∂
∂x

|y when applied to α. To avoid a (very

common) inconsistency in notation we write this partial derivative as ∂f
∂x

for the former and ∂
∂x

f
for the latter.
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and
∂

∂α
f(1, 0) =

(
3
2

∂

∂F
+ 8

∂

∂G

)
Φ2(0, 0) =

1
2
.

By the implicit function theorem, in a neighbourhood of the origin there is a unique
analytic function of two variables α(x, y) such that α(1, 0) = 0 and

f(x, α(x, y)) = y2.

From (2) and the definition of κ we have

sdΦ = dα − Fdx.

Now, in the variables (x, y) we have Φ2 = y2, hence dΦ2 = dy2 and4

(dα − F (x, α)dx)2 − G(x, α)dy2 = 0.

This equality implies (4) (and is essentially equivalent to it). ��
Remark 1. In Lemma 3, the condition α(1, 0) = 0 is crucial. In this case we cannot
take the square root of the second equation, and solving the system is more difficult
then for α(1, 0) > 0. Unfortunately, in the latter case the function α would have no
extrema, and the Euler flow u in the following section could not be extended to the
whole space.

Remark 2. Note that α(x, y) = α(x,−y) pretty much by definition. An interest-
ing consequence is G(x, α(x, 0)) = 0. (Which follows from (4) and ∂

∂yα(x, 0) = 0.)
Because of this, the function α(x, 0) is actually another analytic solution of (4).

Remark 3. In the given proof, the main technical difficulty is the absence of an
inverse map to (F, s) 	→ (x, α). We circumvent this obstacle by artificially construct-
ing a function Φ2(F, s) with a well defined “pullback”. One of the referees pointed
out that there is a more straightforward (although not unrelated) proof using the
Cartan–Kähler Theorem. We may consider a form ω = dα−pdx−qdy on a manifold
of dimension 3 defined by equations

p = F (x, α), q2 = G(x, α)

in variables x, y, α, p, q. This form satisfies the integrability condition ω ∧ dω = 0, so
we can use it to construct the function α(x, y). (An important detail is that ω/q is
analytic.)

Remark 4. The method of the proof is constructive and may be used to compute
the Taylor series

α(x, y) = 2(x − 1)2 + 2y2 + 3(x − 1)3 + 3(x − 1)y2 + O((|x − 1| + |y|)4).
The first two terms are important, so it may be appropriate to include a direct
computation of them.

4 As customary, dy2 actually means dy ⊗ dy, a tensor square.
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Lemma 4. The function α(x, y) has a strict local minimum at (x, y) = (1, 0).

Proof. The first derivatives at this point are zero by (4). We have

∂2

∂x2
α =

∂

∂x
F =

∂F

∂x
= 4,

∂2

∂x∂y
α =

∂

∂y
F =

(
∂F

∂α

)(
∂

∂y
α

)
= 0.

Finally, (at any point) we have the equality
(

∂G

∂α

)(
∂

∂y
α

)
=

∂

∂y
G = 2

(
∂

∂y
α

) (
∂2

∂y2
α

)
.

As the derivative ∂
∂yα is not identically zero, it implies

∂2

∂y2
α =

1
2

∂G

∂α
.

At the point under consideration we have then ∂2

∂y2 α = 4. The second differential
d2α is positively definite, so this point is a strict minimum. ��

3 The Flow

We use the standard cylindrical coordinates.5 For a velocity field with axial symme-
try the Euler equation (u · ∇)u = −∇p takes the form

⎧⎪⎪⎨
⎪⎪⎩

uρ
∂
∂ρuρ + uz

∂
∂zuρ − 1

ρu2
ϕ = − ∂

∂ρp,

uρ
∂
∂ρuϕ + uz

∂
∂zuϕ + 1

ρuρuϕ = 0,

uρ
∂
∂ρuz + uz

∂
∂zuz = − ∂

∂zp.

(5)

For R > 0, denote a = α
( ρ

R , z
R

)
. For the sake of convenience, we denote by C the

circle ρ = R, z = 0 where a = 0. Let

p =
aR4

4
, b =

R3

4

√
H(a), u =

1
ρ

(
∂p

∂z
eρ − ∂p

∂ρ
ez + beϕ

)
. (6)

(Note that b is not smooth on C.) Obviously, div u = 0 outside C.

Lemma 5. The fields (u, p) given by (6) satisfy (5) in a neighbourhood of C (but
not on the curve itself).

5 Alternatively, one may use toroidal coordinates (which is in a sense more natural). However,
they do not seem to offer any real advantage because the surfaces p = const are not actual tori
(with circular section).
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Proof. The second equation of (5) is obvious. The last one is equivalent to

x

(
∂

∂x
α

)
∂2

∂x∂y
α +

(
∂

∂y
α

)(
∂

∂x
α + 4x3 − x

∂2

∂x2
α

)
= 0,

where x = ρ
R , y = z

R and α = α(x, y). After multiplication by ∂
∂yα, using (4) and

∂G

∂x
+ F

∂G

∂α
=

∂

∂x

(
∂

∂y
α

)2

= 2
(

∂

∂y
α

)
∂2

∂x∂y
α

we have
1
2
xF

(
∂G

∂x
+ F

∂G

∂α

)
+ G

(
F + 4x3 − x

(
∂F

∂x
+ F

∂F

∂α

))
= 0,

which follows from (2), (3).
Finally, the first equation is

x

(
∂

∂x
α

)
∂2

∂y2
α − x

(
∂

∂y
α

)
∂2

∂x∂y
α +

(
∂

∂y
α

)2

− 4x3 ∂

∂x
α + H(α) = 0,

or
1
2
xF

∂G

∂α
− 1

2
x

(
∂G

∂x
+ F

∂G

∂α

)
+ G − 4x3F + H(α) = 0,

which is again a consequence of (2), (3). ��
As introduced, this Euler flow is only defined in a vicinity of the circle C. However,

this flow satisfies an additional condition u · ∇p = 0 which is very useful for our
purposes. Consider another field ũ = ω(p)u where ω is a smooth function. Due to
the above condition we have

div ũ = ω(p) div u + ω′(p)(u · ∇p) = 0

and

(ũ · ∇)ũ = ω2(p)(u · ∇)u + ω(p)ω′(p)(u · ∇p)u = −ω2(p)∇p.

So, regardless of a choice of the function ω, the field ũ is also an Euler flow, with
the corresponding pressure determined by dp̃ = ω2(p) dp.

Due to Lemma 4, we may assume that ω = ω(p) in a vicinity of the circle C
and ω = 0 outside this domain. If supp(ω) ⊂ [ε, 2ε] (as a function of p) with ε > 0
sufficiently small, then we have ũ ∈ C∞(R3). The new flow is supported in a toroidal
domain which can be made arbitrarily close to the circle. This completes the proof
of Theorem 1.

Remark 5. It should be noted that the poloidal stream function Ψ = a is a solution6

of the Grad-Shafranov equation in the following form (R = 1)

(∂ρρ + ∂zz − 1
ρ
∂ρ)Ψ = 10ρ2 − 1

2
H ′(Ψ).

6 This is probably what an expert would expect in this situation, but the author does not know
an appropriate reference to make it a meaningful discussion.
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4 Generalized Beltrami Flows

The condition u ·∇p = 0 mentioned above means that the pressure is constant along
a streamline. This is very uncommon, and the only other nontrivial example known
to the author is a flow on the 3-sphere constructed in [KKP14]. (The trivial examples
are vortices (rotational flows) and their variations.) By the Bernoulli theorem |u|2
must also be a first integral; indeed, from (6), (4) and the definition of G we have

|u|2 =
1
ρ2

[(
∂p

∂z

)2

+
(

∂p

∂ρ

)2

+ b2

]
= 3p.

For the modified flow ũ the formula is different but |ũ|2 is still a function of the
pressure p̃.

Recall that for a Beltrami flow u the Bernoulli function B = p+ 1
2 |u|2 is constant.

The case when the Bernoulli function depends on the pressure may be considered
a generalization, and constructed flows belongs to this category (B = 5

2p for the
original flow). As was pointed out by Arnold [AK99][II.1.B], for a non-constant B
both the streamlines and the vortex lines lie on the surfaces B = const; in our
situation these are the same as p = const. It makes a difference because in this case
the flow sheets become independent in a sense, so the flow may be “modulated” (a
trick we used in the previous section).

One of the referees pointed out to the author that a generalized Beltrami flow
(with an extremum of pressure at some point) has a peculiar restriction on the
behaviour of the pressure. Let (u, p) be such a flow, and assume that |u|2 = 3p as
before (we can do this without loss of generality). By the same recipe as above we
may then construct another flow (ũ, p̃). If it has compact support then (e.g. [CC15])∫

R3

(|ũ|2 + 3p̃) dx = 0.

To make sense of this it is convenient to introduce a function V (c) = V ol({x ∈ R
3 :

p(x) ≤ c}). The equality then becomes∫
R3

(pω2(p) + p̃) dx =
∫

ω2(p)(p dV (p) − V (p) dp) = 0.

It must be frue for any function ω which means V (p) = p · const.
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