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FORWARD SELF-SIMILAR SOLUTIONS
OF THE NAVIER–STOKES EQUATIONS IN THE HALF SPACE

MIKHAIL KOROBKOV AND TAI-PENG TSAI

For the incompressible Navier–Stokes equations in the 3D half space, we show the existence of forward
self-similar solutions for arbitrarily large self-similar initial data.

1. Introduction

Let R3
+
= {x = (x1, x2, x3) : x3 > 0} be a half space with boundary ∂R3

+
= {x = (x1, x2, 0)}. Con-

sider the 3D incompressible Navier–Stokes equations for velocity u : R3
+
×[0,∞)→ R3 and pressure

p : R3
+
×[0,∞)→ R,

∂t u−1u+ (u · ∇)u+∇p = 0, div u = 0, (1-1)

in R3
+
×[0,∞), coupled with the boundary condition

u|∂R3
+
= 0, (1-2)

and the initial condition
u|t=0 = a, div a = 0, a|∂R3

+
= 0. (1-3)

The system (1-1) enjoys a scaling property: if u(x, t) is a solution, then so is

u(λ)(x, t) := λu(λx, λ2t) (1-4)

for any λ > 0. We say that u(x, t) is self-similar (SS) if u = u(λ) for every λ > 0. In that case,

u(x, t)=
1
√

2t
U
(

x
√

2t

)
, (1-5)

where U (x)= u
(
x, 1

2

)
. It is called discretely self-similar (DSS) if u = u(λ) for one particular λ > 1. To

get self-similar solutions u(x, t) we usually assume the initial data a(x) is also self-similar, i.e.,

a(x)=
a(x̂)
|x |

, x̂ =
x
|x |
. (1-6)

In view of the above, it is natural to look for solutions satisfying

|u(x, t)| ≤
C(C∗)
|x |

or ‖u( · , t)‖L3,∞ ≤ C(C∗), (1-7)
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where C∗ is some norm of the initial data a. For 1 ≤ q, r ≤∞, we denote the Lorentz spaces by Lq,r.
In such classes, with sufficiently small C∗, the unique existence of mild solutions — solutions of the
integral equation version of (1-1)–(1-3) via a contraction mapping argument — has been obtained by
Giga and Miyakawa [1989] and refined by Kato [1992], Cannone, Meyer and Planchon [Cannone et al.
1994; Cannone and Planchon 1996], and Barraza [1996]. It is also obtained in the broader class BMO−1

in [Koch and Tataru 2001]. In the context of the half space (and smooth exterior domains), it follows
from [Yamazaki 2000]. As a consequence, if a(x) is SS or DSS with small norm C∗ and u(x, t) is a
corresponding solution satisfying (1-7) with small C(C∗), the uniqueness property ensures that u(x, t) is
also SS or DSS, because u(λ) is another solution with the same bound and same initial data a(λ) = a. For
large C∗, mild solutions still make sense but there is no existence theory since perturbative methods like
the contraction mapping no longer work.

Alternatively, one may try to extend the concept of weak solutions (which requires u0 ∈ L2(R3)) to more
general initial data. One such theory is local-Leray solutions in L2

uloc, constructed by Lemarié-Rieusset
[2002]. However, there is no uniqueness theorem for them and hence the existence of large SS or DSS
solutions was unknown. Recently, Jia and Šverák [2014] constructed SS solutions for every SS u0 which
is locally Hölder continuous. Their main tool is a local Hölder estimate for local-Leray solutions near
t = 0, assuming minimal control of the initial data in the large. This estimate enables them to prove
a priori estimates of SS solutions, and then to show their existence by the Leray–Schauder degree theorem.
This result is extended by Tsai [2014] to the existence of discretely self-similar solutions.

When the domain is the half space R3
+

, however, there is so far no analogous theory of local-Leray
solutions. Hence the method of [Jia and Šverák 2014; Tsai 2014] is not applicable.

In this note, our goal is to construct SS solutions in the half space for arbitrary large data. By BCw we
denote bounded and weak-* continuous functions. Our main theorem is the following.

Theorem 1.1. Let �= R3
+

and let A be the Stokes operator in � (see (5-5)–(5-7)). For any self-similar
vector field a ∈ C1

loc(�\{0}) satisfying div a = 0, a|∂� = 0, there is a smooth self-similar mild solution
u ∈ BCw([0,∞); L3,∞

σ (�)) of (1-1) with u(0)= a and

‖u(t)− e−t Aa‖L2(�) = Ct1/4, ‖∇(u(t)− e−t Aa)‖L2(�) = Ct−1/4, ∀t > 0. (1-8)

Comments on Theorem 1.1:

(1) There is no restriction on the size of a.

(2) It is concerned only with existence. There is no assertion on uniqueness.

(3) Our approach also gives a second construction of large self-similar solutions in the whole space R3,
but for initial data more restrictive (C1) than those of [Jia and Šverák 2014]. In fact, it would show
the existence of self-similar solutions in the cones

Kα = {0≤ φ ≤ α} , for 0< α ≤ π,

(in spherical coordinates), if one could verify Assumption 3.1 for e−A/2a. We are able to verify it
only for α = π

2 and α = π .
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(4) We have the uniform bound (1-7) for u0(t) = e−t Aa and we show |u0(x, t)| .
(√

t + |x |
)−1 in

Section 6. We expect u0(t) 6∈ Lq(�) for any q ≤ 3, and ‖u0(t)‖Lq →∞ as t→ 0+ for q > 3. The
difference v = u − u0 is more localized: by interpolating (1-8), ‖v(t)‖Lq → 0 as t → 0+ for all
q ∈ [2, 3). Although ‖v(t)‖L3(�) = C for t > 0, v(t) weakly converges to 0 in L3 as t → 0+, as
easily shown by approximating the test function by L2

∩ L3/2 functions. Both u0(t) and v(t) belong
to L∞(R+; L3,∞(R3

+
)).

We now outline our proof. Unlike previous approaches based on the evolution equations, we directly
prove the existence of the profile U in (1-5). It is based on the a priori estimates for U using the classical
Leray–Schauder fixed point theorem and the Leray reductio ad absurdum argument (which has been
fruitfully applied in recent papers of Korobkov, Pileckas and Russo [Korobkov et al. 2013; 2014a; 2014b;
2015a; 2015b] on the boundary value problem of stationary Navier–Stokes equations). Specifically, the
profile U (x) satisfies the Leray equations

−1U −U − x · ∇U + (U · ∇)U +∇P = 0, div U = 0 (1-9)

in R3
+

with zero boundary condition and, in a suitable sense,

U (x)→U0(x) := (e−A/2a)(x) as |x | →∞. (1-10)

System (1-9) was proposed by Leray [1934], with the opposite sign for U + x · ∇U , for the study of
singular backward self-similar solutions of (1-1) in R3 of the form u(x, t)=U

(
x/
√
−2t

)
/
√
−2t . Their

triviality was first established in [Nečas et al. 1996] if U ∈ L3(R3), in particular if U ∈ H 1(R3) as assumed
in [Leray 1934], and then extended in [Tsai 1998] to U ∈ Lq(R3), 3≤ q ≤∞. In the forward case and in
the whole space setting, we have

|U0(x)| ∼ |x |−1, V (x) :=U (x)−U0(x), |V (x)|. |x |−2 for |x |> 1; (1-11)

see [Jia and Šverák 2014; Tsai 2014]. In the half space setting, it is not clear if one can show a pointwise
decay bound for V . We show, however, that V (x) is a priori bounded in H 1

0 (R
3
+
), and use this a priori

bound to construct a solution. Due to lack of compactness of H 1
0 at spatial infinity, we use the invading

method introduced by Leray [1933]: we approximate �= R3
+

by �k =�∩ Bk , k = 1, 2, 3, . . . , where
Bk is an increasing sequence of concentric balls, construct solutions Vk in �k of the difference equation
(3-3) with zero boundary condition, and extract a subsequence converging to a desired solution V in R3

+
.

Our proof is structured as follows. We first recall some properties for Euler flows in Section 2, and
then use it to show that the Vk are uniformly bounded in H 1

0 (�k) in Section 3. In Section 4, we construct
Vk using the a priori bound and a linear version of the Leray–Schauder theorem, and extract a weak
limit V using the uniform bound. The arguments in Sections 2–4 are valid as long as one can show that
U0 = e−A�/2a, A� being the Stokes operator in �, satisfies certain decay properties to be specified in
Assumption 3.1. In Section 5 we show that, for�=R3

+
and those initial data a considered in Theorem 1.1,

U0 indeed satisfies Assumption 3.1. We finally verify that u(x, t) defined by (1-5) satisfies the assertions
of Theorem 1.1 in Section 6.
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Because our existence proof does not use the evolution equation, we do not need the nonlinear version
of the Leray–Schauder theorem as in [Jia and Šverák 2014; Tsai 2014]. As a side benefit, we do not need
to check the small-large uniqueness (cf. [Tsai 2014, Lemma 4.1]).

2. Some properties of solutions to the Euler system

For q ≥ 1, denote by D1,q(�) the set of functions f ∈W 1,q
loc (�) such that ‖ f ‖D1,q (�)=‖∇ f ‖Lq (�)<∞.

Recall, that by the Sobolev embedding theorem, if q < n then for any f ∈ D1,q(Rn) there exists a constant
c ∈ R such that f − c ∈ L p(Rn) with p = nq/(n− q). In particular,

f ∈ D1,2(R3)⇒ f − c ∈ L6(R3), f ∈ D1,3/2(R3)⇒ f − c ∈ L3(R3). (2-1)

Further, denote by D1,2
0 (�) the closure of the set of all smooth functions having compact supports in �

with respect to the norm ‖ · ‖D1,2(�), and H(�)= {v ∈ D1,2
0 (�) : div v = 0}. In particular,

H(�) ↪→ L6(�). (2-2)

(Recall that by the Sobolev inequality, ‖ f ‖L6(R3) ≤ C‖∇ f ‖L2(R3) holds for every function f ∈ C∞c (R
3)

having compact support in R3; see [Adams and Fournier 2003, Theorem 4.31].)
Assume that the following conditions are fulfilled:

(E) Let � be a domain in R3 with (possibly unbounded) connected Lipschitz boundary 0 = ∂�, and the
functions v ∈ H(�) and p ∈ D1,3/2(�)∩ L3(�) satisfy the Euler system

(v · ∇)v+∇ p = 0 in �,

div v = 0 in �,

v = 0 on ∂�.

(2-3)

The next statement was proved in [Kapitanskiı̆ and Piletskas 1983, Lemma 4] and in [Amick 1984,
Theorem 2.2]; see also [Amirat et al. 1999, Lemma 4].

Theorem 2.1. Let the conditions (E) be fulfilled. Then

∃ p̂0 ∈ R : p(x)≡ p̂0 for H2-almost all x ∈ ∂�. (2-4)

Here and henceforth we denote by Hm the m-dimensional Hausdorff measure Hm(F)= limt→0+H
m
t (F),

where Hm
t (F)= inf

{∑
∞

i=1(diam Fi )
m
: diam Fi ≤ t, F ⊂

⋃
∞

i=1 Fi
}
.

3. A priori bound for Leray equations

Recall that the profile U (x) in (1-5) satisfies Leray equations (1-9) with zero boundary condition and
U (x)→U0(x) at spatial infinity. Decompose

U =U0+ V, U0 = e−A/2a. (3-1)
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Because a is self-similar, u0( · , t)= e−t Aa is also self-similar, i.e., u0(x, t)= λu0(λx, λ2t) for all λ > 0.
Differentiating in λ and evaluating at λ= 1 and t = 1

2 , we get

0=U0+ x · ∇U0+ ∂t u0
(
x, 1

2

)
=U0+ x · ∇U0+1U0−∇P0 (3-2)

for some scalar P0. Thus, the difference V (x) satisfies

−1V − V − x · ∇V +∇P = F0+ F1(V ), div V = 0 (3-3)

for some scalar P , where

F0 =−U0 · ∇U0, (3-4)

F1(V )=−(U0+ V ) · ∇V − V · ∇U0, (3-5)

and V vanishes at the boundary and the spatial infinity.
For a Sobolev function f ∈W 1,2(�), set

‖ f ‖H1(�) :=

(∫
�

|∇ f |2+ 1
2 | f |

2
)1/2

. (3-6)

Denote by H 1
0 (�) the closure of the set of all smooth functions having compact supports in� with respect

to the norm ‖ · ‖H1(�), and

H 1
0,σ (�)= { f ∈ H 1

0 (�) : div f = 0}.

Note that H 1
0 (�)= { f ∈W 1,2(�) : f |∂� = 0, ‖ f ‖H1(�) <∞} for bounded Lipschitz domains.

We assume the following.

Assumption 3.1 (boundary data at infinity). Let � be a domain in R3. The vector field U0 : �→ R3

satisfies div U0 = 0 and
‖U0‖L6(�) <∞, ‖∇U0‖L2(�) <∞. (3-7)

Note that from Assumption 3.1 and (3-4) it follows, in particular, that∣∣∣∣∫
�

F0 · η

∣∣∣∣≤ C,
∣∣∣∣∫
�

(η · ∇)U0 · η

∣∣∣∣≤ C (3-8)

for any η ∈ H 1
0,σ (�) with ‖η‖H1

0,σ (�)
≤ 1 (by virtue of the evident imbedding H 1

0,σ (�) ↪→ L p for all
p ∈ [2, 6]).

If it is valid in �, it is also valid in any subdomain of � with the same constant C . We show in
Section 5 that for �= R3

+
and a satisfying (5-1), U0 = e−A/2a satisfies (5-3) and hence Assumption 3.1.

This is also true if �= R3 and a is self-similar, divergence free, and locally Hölder continuous.

Theorem 3.2 (a priori estimate for bounded domain). Let � be a bounded domain in R3 with connected
Lipschitz boundary ∂�, and assume Assumption 3.1 for U0. Then for any function V ∈ H 1

0 (�) satisfying

−1V +∇P = λ(V + x · ∇V + F0+ F1(V )), div V = 0 (3-9)
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for some λ ∈ [0, 1], we have the a priori bound

‖V ‖2H1(�)
=

∫
�

(
|∇V |2+ 1

2 |V |
2)
≤ C(U0, �).

Remark. Note that C(U0, �) is independent of λ ∈ [0, 1].

Proof. Let the assumptions of the theorem be fulfilled. Suppose that its assertion is not true. Then there
exists a sequence of numbers λk ∈ [0, 1] and functions Vk ∈ H 1

0 (�) such that

−1Vk − λk Vk − λk x · ∇Vk +∇Pk = λk(F0+ F1(Vk)), div Vk = 0, (3-10)

and moreover,

J 2
k :=

∫
�

|∇Vk |
2
→∞. (3-11)

Multiplying (3-10) by Vk and integrating by parts in �, we obtain the identity

J 2
k +

λk

2

∫
�

|Vk |
2
= λk

∫
�

(F0− Vk · ∇U0)Vk . (3-12)

Consider the normalized sequence of functions

V̂k =
1
Jk

Vk, P̂k =
1

λk J 2
k

Pk . (3-13)

Since ∫
�

|∇ V̂k |
2
≡ 1,

we could extract a subsequence, still denoted by V̂k , which converges weakly in W 1,2(�) to some function
V ∈ H 1

0 (�), and strongly in L3(�). Also we could assume without loss of generality that λk→λ0 ∈ [0, 1].
Multiplying the identity (3-12) by 1/J 2

k and taking a limit as k→∞, we have

1+
λ0

2

∫
�

|V |2 =−λ0

∫
�

(V · ∇U0)V = λ0

∫
�

(V · ∇V )U0. (3-14)

In particular, λk is separated from zero for large k.
Multiplying (3-10) by 1/(λk J 2

k ), we see that the pairs (V̂k, P̂k) satisfy the equation

V̂k · ∇ V̂k +∇ P̂k =
1
Jk

( 1
λk
1V̂k + V̂k + x · ∇ V̂k +

1
Jk

F0−U0 · ∇ V̂k − V̂k · ∇U0

)
. (3-15)

Take an arbitrary function η ∈ C∞c,σ (�). Multiplying (3-15) by η, integrating by parts and taking a
limit, we obtain finally ∫

�

(V · ∇V ) · η = 0. (3-16)

Since η ∈ C∞c,σ (�) is arbitrary, we see that V is a weak solution to the Euler equation
(V · ∇)V +∇P = 0 in �,

div V = 0 in �,
V = 0 on ∂�,

(3-17)
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for some P ∈ D1,3/2(�)∩ L3(�). By Theorem 2.1, there exists a constant p̂0 ∈ R such that P(x)≡ p̂0

on ∂�. Of course, we can assume without loss of generality that p̂0 = 0, i.e., P(x)≡ 0 on ∂�. Then by
(3-14) and the first line of (3-17), we get

1+
λ0

2

∫
�

|V |2 =−λ0

∫
�

U0 · ∇P =−λ0

∫
�

div(P ·U0)= 0.

The obtained contradiction finishes the proof of the theorem. �

Theorem 3.3 (a priori bound for invading method). Let � = R3
+

, and assume Assumption 3.1 for U0.
Take a sequence of balls Bk = B(0, Rk)⊂ R3 with Rk→∞, and consider half-balls �k =�∩ Bk . Then
for functions Vk ∈ H 1

0 (�k) satisfying

−1Vk − Vk − x · ∇Vk +∇Pk = F0+ F1(Vk), div Vk = 0, (3-18)

we have the a priori bound ∫
�k

(
|∇Vk |

2
+

1
2 |Vk |

2)
≤ C(U0),

where the constant C(U0) is independent of k.

Proof. Let the assumptions of the theorem be fulfilled. Suppose that its assertion is not true. Then there
exists a sequence of domains �k and a sequence of solutions Vk ∈ H 1

0 (�k) of (3-18) such that

J 2
k := ‖Vk‖

2
H1(�k)

=

∫
�k

(
|∇Vk |

2
+

1
2 |Vk |

2)
→∞. (3-19)

Multiplying (3-18) by Vk and integrating by parts in �k , we obtain the identity

J 2
k =

∫
�k

(F0− Vk · ∇U0)Vk . (3-20)

Consider the normalized sequence of functions

V̂k =
1
Jk

Vk, P̂k =
1
J 2

k
Pk . (3-21)

Multiplying (3-18) by 1/J 2
k , we see that the pairs (V̂k, P̂k) satisfy the equation

V̂k · ∇ V̂k +∇ P̂k =
1
Jk
(1V̂k + V̂k + x · ∇ V̂k + F0−U0 · ∇ V̂k − V̂k · ∇U0). (3-22)

Since ∫
�k

(
|∇ V̂k |

2
+

1
2 |V̂k |

2)
≡ 1,

we could extract a subsequence, still denoted by V̂k , which converges weakly in W 1,2(�) to some function
V ∈ H 1

0 (�), and strongly in L2(E) for any E b�.
Multiplying the identity (3-20) by 1/J 2

k and taking a limit as k→∞, we have

1=
∫
�

(−V · ∇U0)V . (3-23)
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Take an arbitrary function η ∈ C∞c,σ (�). Multiplying (3-22) by η, integrating by parts and taking a limit,
we obtain finally ∫

�

(V · ∇V ) · η = 0. (3-24)

Since η ∈ C∞c,σ (�) is arbitrary, we see that V is a weak solution to the Euler equation
(V · ∇)V +∇P = 0 in �,

div V = 0 in �,
V = 0 on ∂�,

(3-25)

with some P ∈ D1,3/2(�)∩L3(�). More precisely, since V,∇V ∈ L2(�), we have P ∈ D1,q(�) for every
q ∈

[
1, 3

2

]
. Consequently, P ∈ Ls(�) for each s ∈

[ 3
2 , 3

]
. In particular, P ∈ L3(�) and ∇P ∈ L9/8(�).

Furthermore, ∫
S+R

|P|4/3 =−R2
∫
∞

R

∫
S+1

d
dr
(
|P(rω)|4/3

)
dω dr

.
∫
|x |>R
|P|1/3|∇P| ≤

(∫
|x |>R
|P|3

)1/9(∫
|x |>R
|∇P|9/8

)8/9

,

where S+R = {x ∈� : |x | = R} is the corresponding half-sphere. Hence, we conclude that∫
S+R

|P|4/3→ 0 as R→∞. (3-26)

Analogously, from the assumption U0 ∈ L6(�), ∇U ∈ L2(�), it is very easy to deduce that∫
S+R

|U0|
4
→ 0 as R→∞. (3-27)

On the other hand, by (3-23) and the first line of (3-25) we obtain

1=
∫
�

(V · ∇)V ·U0 =−

∫
�

∇P ·U0 =− lim
R→∞

∫
�R

div(P ·U0)=− lim
R→∞

∫
S+R

P(U0 · n)= 0, (3-28)

where �R =�∩ B(0, R) and the last equality follows from (3-26)–(3-27). The obtained contradiction
finishes the proof of the theorem. �

4. Existence for Leray equations

The proof of the existence theorem for the system of equations (3-3)–(3-5) in bounded domains � is
based on the following fundamental fact.

Theorem 4.1 (Leray–Schauder theorem). Let S : X → X be a continuous and compact mapping of a
Banach space X into itself , such that the set

{x ∈ X : x = λSx for some λ ∈ [0, 1]}

is bounded. Then S has a fixed point x∗ = Sx∗.
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Let � be a domain in R3 with connected Lipschitz boundary 0 = ∂�, and set X = H 1
0,σ (�).

For functions V1, V2 ∈ H 1
0,σ (�), write 〈V1, V2〉H =

∫
�
∇V1 · ∇V2. Then the system (3-3)–(3-5) is

equivalent to the following identities:

〈V, ζ 〉H =
∫
�

G(V ) · ζ, ∀ζ ∈ C∞c,σ (�), (4-1)

where G(V )= V + x · ∇V + F(V ), F(V )= F0+ F1(V ),

F0(x)=−U0 · ∇U0, (4-2)

F1(V )=−(U0+ V ) · ∇V − V · ∇U0. (4-3)

Since H 1
0,σ (�) ↪→ L6(�), by the Riesz representation theorem, for any f ∈ L6/5(�) there exists a unique

mapping T ( f ) ∈ H 1
0,σ (�) such that

〈T ( f ), ζ 〉H =
∫
�

f · ζ, ∀ζ ∈ C∞c,σ (�), (4-4)

and moreover,
‖T ( f )‖H ≤ ‖ f ‖X ′,

where

‖ f ‖X ′ = sup
ζ∈C∞c,σ (�), ‖ζ‖H≤1

∫
�

f · ζ.

Then the system (3-3)–(3-5)∼(4-1) is equivalent to the equality

V = T (G(V )). (4-5)

Theorem 4.2 (compactness). If � is a bounded domain in R3 with connected Lipschitz boundary 0= ∂�,
and Assumption 3.1 holds for U0, then for X = H 1

0,σ (�) the operator S : X 3 V 7→ T (G(V )) ∈ X is
continuous and compact.

Proof. (i) For V, Ṽ ∈ X , setting v = Ṽ − V ,

F(Ṽ )− F(V )=−(U0+ V + v) · ∇v− v · ∇(U0+ V ).

Thus we have

‖S(Ṽ )− S(V )‖X

. ‖v‖L2 +‖∇v‖L2 +‖F(Ṽ )− F(V )‖L6/5

. ‖v‖L2 +‖∇v‖L2 +‖U0‖L3‖∇v‖L2 +‖V + v‖L3‖∇v‖L2 +‖∇U0‖L2‖v‖L3 +‖v‖L3‖∇V ‖L2

. (1+‖V ‖X +‖v‖X )‖v‖X . (4-6)

(ii) By the Sobolev theorems, we have the compact embedding X ↪→ Lr (�) for all r ∈ [1, 6). Thus if a
sequence Vk ∈ X is bounded in X , i.e., ‖Vk‖L2(�)+‖∇Vk‖L2(�) ≤ C , then we can extract a subsequence
Vkl which converges to some V ∈ X in L3(�) norm: ‖Vkl − V ‖L3(�)→ 0 as l→∞. Then using the
condition Vkl ≡ V ≡ 0 on ∂� and integration by parts, it is easy to see that ‖F(Vkl )− F(V )‖X ′→ 0 and,
consequently, ‖G(Vkl )−G(V )‖X ′→ 0 as l→∞. �
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Corollary 4.3 (existence in bounded domains). Let� be a bounded domain in R3 with connected Lipschitz
boundary ∂�, and assume Assumption 3.1 for U0. Then the system (3-3)–(3-5) has a solution V ∈ H 1

0,σ (�).

Proof. This is a direct consequence of Theorems 4.1–4.2 and 3.2. �

Theorem 4.4 (existence in unbounded domains). Let �= R3
+

, and assume Assumption 3.1 for U0. Then
the system (3-3)–(3-5) has a solution V ∈ H 1

0,σ (�).

Proof. Take balls Bk = B(0, k) and consider the increasing sequence of domains �k = � ∩ Bk from
Theorem 3.3. By Corollary 4.3 there exists a sequence of solutions Vk ∈H 1

0,σ (�k) of the system (3-3)–(3-5)
in �k . By Theorem 3.3, the norms ‖Vk‖H1

0,σ (�)
are uniformly bounded, thus we can extract a subsequence

Vkl such that the weak convergence Vkl ⇀ V in W 1,2(�′) holds for any bounded subdomain �′ ⊂�. It
is easy to check that the limit function V is a solution of the system (3-3)–(3-5) in �. �

5. Boundary data at infinity in the half space

In this section we restrict ourselves to the half space � = R3
+

with boundary 6 = ∂R3
+

and study the
decay property of U0 = e−A/2a. Our goal is to prove the following lemma, which ensures Assumption 3.1
under the conditions of Theorem 1.1.

Write x∗ = (x ′,−x3) given x = (x ′, x3) ∈ R3, and 〈z〉 = (1+ |z|2)1/2 for z ∈ Rm .

Lemma 5.1. Suppose a is a vector field in �= R3
+

satisfying

a ∈ C1
loc(�\{0};R

3), div a = 0, a|∂� = 0,

a(x)= λa(λx), ∀x ∈�, ∀λ > 0.
(5-1)

Let U0 = e−A/2a, where A is the Stokes operator in �. Then

|∇
kU0(x)| ≤ ck[a]1(1+ x3)

−min(1,k)(1+ |x |)−1, ∀k ∈ Z+ = {0, 1, 2, . . . }, (5-2)

and, for any 0< δ� 1,
|∇U0(x)| ≤ cδ[a]1x−δ3 〈x〉

2δ−2, (5-3)

where [a]m = supk≤m, |x |=1 |∇
ka(x)|.

If we further assume a ∈ Cm
loc, m ≥ 2, and ∂k

3 a|6 = 0 for k < m, then |∇kU0(x)| ≤ ck[a]m〈x3〉
−k
〈x〉−1

for k ≤ m.

Estimates (5-2) and (5-3) imply, in particular,

U0 ∈ L4(�)∩ L∞(�), ∇U0 ∈ L2(�), (5-4)

and hence Assumption 3.1 for U0 is satisfied.

Green tensor for the nonstationary Stokes system in the half space. Consider the nonstationary Stokes
system in the half space R3

+
,

∂tv−1v+∇ p = 0, div v = 0, for x ∈ R3
+
, t > 0, (5-5)

v|x3=0 = 0, v|t=0 = a. (5-6)
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In our notation,
v(t)= e−t Aa. (5-7)

It is shown by Solonnikov [2003, §2] that, if a = ă satisfies

div ă = 0, ă3|x3=0 = 0, (5-8)

then

vi (x, t)=
∫

R3
+

Ği j (x, y, t)ă j (y) dy (5-9)

with

Ği j (x, y, t)= δi j0(x − y, t)+G∗i j (x, y, t), (5-10)

G∗i j (x, y, t)=−δi j0(x − y∗, t)− 4(1− δ j3)
∂

∂x j

∫
R2×[0,x3]

∂

∂xi
E(x − z)0(z− y∗, t) dz,

where E(x)= 1/(4π |x |) and 0(x, t)= (4π t)−3/2e−|x |
2/(4t) are the fundamental solutions of the Laplace

and heat equations in R3. (A sign difference occurs since E(x) = −1/(4π |x |) in [Solonnikov 2003].)
Moreover, G∗i j satisfies the pointwise bound

|∂s
t Dk

x D`
yG∗i j (x, y, t)|. t−s−`3/2

(√
t + x3

)−k3
(√

t + |x − y∗|
)−3−|k′|−|`′|e−cy2

3/t (5-11)

for all s ∈ N= {0, 1, 2, . . .} and k, ` ∈ N3 [Solonnikov 2003, (2.38)].
Note that Ği j is not the Green tensor in the strict sense since it requires (5-8). There is no known

pointwise estimate for the Green tensor; cf. [Solonnikov 1964; Kang 2004].
We now estimate U0 = e−A/2a for a satisfying (5-1). By (5-9) and (5-10),

U0,i (x)=
∫

R3
+

0
(
x − y, 1

2

)
ai (y) dy+

∫
R3
+

G∗i j
(
x, y, 1

2

)
a j (y) dy =:U1,i (x)+U2,i (x). (5-12)

By (5-11), for k ∈ Z+ and using only |a(y)|. 1/|y′|,

|∇
kU2(x)|.

∫
R3
+

(1+ x3)
−k(1+ x3+ |x ′− y′|)−3e−cy2

3
1
|y′|

dy

. (1+ x3)
−k
∫

R2
(1+ x3+ |x ′− y′|)−3 1

|y′|
dy′

= (1+ x3)
−k−2

∫
R2
(1+ |x̄ − z′|)−3 1

|z′|
dz′

. (1+ x3)
−k−2(1+ |x̄ |)−1

= (1+ x3)
−k−1(1+ x3+ |x ′|)−1, (5-13)

where x̄ = x ′/(1+ x3). To estimate U1, fix a cut-off function ζ(x) ∈ C∞c (R
3) with ζ(x)= 1 for |x |< 1.

We have

∇
kU1,i (x)=

∫
R3
+

0
(
x − y, 1

2

)
∇

k
y
(
(1− ζ(y))ai (y)

)
dy+

∫
R3
+

∇
k
x 0
(
x − y, 1

2

)
(ζ(y)ai (y)) dy, (5-14)
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using a|6 = 0. Hence, for k ≤ 1,

|∇
kU1(x)|.

∫
R3

e−|x−y|2/2
〈y〉−1−k dy+ e−x2/4 . 〈x〉−1−k . (5-15)

We can get the same estimate for k ≥ 2 if we assume ∇ka is defined and has the same decay. On the
other hand, we can show |∇k

x U1(x)|. 〈x〉−2 for k ≥ 2 if we place the extra derivatives on 0 in the first
integral of (5-14).

Combining (5-13) and (5-15), we get (5-2) and the last statement of Lemma 5.1.
Write

�− = {x ∈� : 1+ x3 > |x ′|}, �+ = {x ∈� : 1+ x3 ≤ |x ′|}. (5-16)

By (5-13) and (5-15), we have shown (5-3) in �− (with δ = 0).
It remains to show (5-3) in �+.

Estimates using boundary layer integrals. Set ε j = 1 for j < 3 and ε3 =−1. Thus x∗j = ε j x j . Let ā(x)
be an extension of a(x) to x ∈ R3 with

ā j (x)= ε j a j (x∗), if x3 < 0.

Since div a = 0 in R3
+

and a|6 = 0, it follows that div ā = 0 in R3. Let u(x, t) be the solution of the
nonstationary Stokes system in R3 with initial data ā, given simply by

ui (x, t)=
∫

R3
0(y, t) āi (x − y) dy.

It follows that ui (x, t)= εi ui (x∗, t). Thus

∂3ui (x, t)|6 = 0, for i < 3; u3(x, t)|6 = 0. (5-17)

We have |∇ka(y)|. |y|−1−k for k ≤ 1. By the same estimates leading to (5-15) for U1, we have∣∣∇k
x ui
(
x, 1

2

)∣∣. 〈x〉−1−min(1,k), for k ≤ 2. (5-18)

Thus u
(
x, 1

2

)
satisfies (5-3).

Using the self-similarity condition

u(x, t)= λu(λx, λ2t), ∀λ > 0, (5-19)

from (5-18) we get

|∇
m
x ui (x, t)|.

{(
|x | +

√
t
)−1−m

, m ≤ 1,
t−1/2

(
|x | +

√
t
)−2
, m = 2.

(5-20)

Now decompose
v = u−w.

Then w satisfies the nonstationary Stokes system in R3
+

with zero force, zero initial data, and has boundary
value

w j (x, t)|x3=0 = u j (x ′, 0, t), if j < 3; w3(x, t)|x3=0 = 0. (5-21)
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Using (5-21), it is given by the boundary layer integral

wi (x, t)=
∑
j=1,2

∫ t

0

∫
6

Ki j (x − z′, s)u j (z′, 0, t − s) dz′ ds, (5-22)

where, for j < 3,

Ki j (x, t)=−2δi j∂30−
1
π
∂ jCi , (5-23)

Ci (x, t)=
∫
6×[0,x3]

∂30(y, t)
yi − xi

|y− x |3
dy (5-24)

[Solonnikov 1964, pp. 40, 48]. (Note that the Ki3 ( j = 3) have extra terms.) They satisfy for j < 3

|∂m
t D`

x ′∂
k
x3
Ci (x, t)| ≤ ct−m−(1/2)(x3+

√
t
)−k(
|x | +

√
t
)−2−` (5-25)

[Solonnikov 1964, pp. 41, 48].
We now show (5-3) for w

(
x, 1

2

)
in the region �+ : 1+ x3 ≤ |x ′|.

For t = 1
2 and i, k ∈ {1, 2, 3},

∂xkwi
(
x, 1

2

)
=−

∑
j=1,2

∫ 1/2

0

∫
6

1
π
∂kCi (x − z′, s)∂z j u j

(
z′, 0, 1

2 − s
)

dz′ ds

− 1i<3

∫ 1/2

0

∫
6

2∂k∂30(x − z′, s)ui
(
z′, 0, 1

2 − s
)

dz′ ds

= I1+ I2. (5-26)

Above, we have integrated by parts in tangential directions x j in I1.
By (5-20) and (5-25),

|I1|.
∫ 1/2

0

∫
6

s−1/2(x3+
√

s
)−1(
|x − z′| +

√
s
)−2(
|z′| +

√
1
2 − s

)−2 dz′ ds.

Fix 0< ε ≤ 1
2 . Splitting

(
0, 1

2

)
as
(
0, 1

4

]
∪
( 1

4 ,
1
2

)
, and making the change of variable s→ 1

2 − s in
( 1

4 ,
1
2

)
,

we get

|I1|.
∫ 1/4

0

∫
6

x−2ε
3 s−1+ε(

|x ′− z′| + x3+
√

s
)−2
(|z′| + 1)−2 dz′ ds

+

∫ 1/4

0

∫
6

(x3+ 1)−1(|x ′− z′| + x3+ 1)−2(
|z′| +

√
s
)−2 dz′ ds.

Integrating first in time and using, for 0< b <∞, 0≤ a < 1< a+ b, and 0< N <∞, that∫ 1

0

ds
sa(N + s)b

≤
C

N a+b−1(N + 1)1−a , (5-27)

∫ 1

0

ds
sa(N + s)1−a ≤ C min

(
1

N 1−a , log
2N + 2

N

)
, (5-28)
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where the constant C is independent of N , we get

|I1|.
∫
6

x−2ε
3 (|x ′− z′| + x3)

−2+2ε(|x ′− z′| + x3+ 1)−2ε(|z′| + 1)−2 dz′

+

∫
6

(x3+ 1)−1(|x ′− z′| + x3+ 1)−2 min
(

1
|z′|2

, log
2|z′|2+ 2
|z′|2

)
dz′.

Dividing the integration domain into |z′|< 1
2 |x
′
|, 1

2 |x
′
|< |z′|< 2|x ′|, and |z′|> 2|x ′|, we get

|I1|. x−2ε
3 〈x〉

−2+δ, for x ∈�+ (5-29)

for any 0< δ� 1. Taking ε = 1
2δ and ε = 1

2 , we get

(1+ x3)|I1|. x−δ3 〈x〉
−2+2δ, for x ∈�+. (5-30)

To estimate I2 for i < 3 (note I2 = 0 if i = 3), we separate two cases. If k < 3, integration by parts
gives

I2 =−

∫ 1/2

0

∫
6

2∂30(x − z′, s)∂zk ui
(
z′, 0, 1

2 − s
)

dz′ ds.

Using ue−u2
≤ C`(1+ u)−` for u > 0 and any ` > 0,

∂30(x, s)= cs−2 x3
√

s
e−x2/4s

≤ cs−2
(

1+
|x |
√

s

)−3

= cs−1/2(
|x | +

√
s
)−3
. (5-31)

Hence I2 can be estimated in the same way as I1, and (5-30) is valid if I1 is replaced by I2 and k < 3.
When k = 3, by ∂t0 =10 and integration by parts,

I2 =

∫ 1/2

0

∫
6

2
(∑

j<3

∂2
j − ∂t

)
0(x − z′, s)ui

(
z′, 0, 1

2 − s
)

dz′ds

=

∑
j<3

∫ 1/2

0

∫
6

2∂ j0(x − z′, s)∂z j ui
(
z′, 0, 1

2 − s
)

dz′ ds

+

∫ 1/2

0

∫
6

20(x − z′, s)∂t ui
(
z′, 0, 1

2 − s
)

dz′ ds

− lim
µ→0+

(∫
6

20
(
x − z′, 1

2 −µ
)
ui (z′, 0, µ) dz−

∫
6

20(x − z′, µ)ui
(
z′, 0, 1

2 −µ
)

dz
)

= I3+ I4+ lim
µ→0+

(I5,µ+ I6,µ).

Here I3 can be estimated in the same way as I1, and (5-30) is valid if I1 is replaced by I3. For I4, since
∂t ui =1ui , by estimate (5-20) for ∇2u,

|I4|.
∫ 1/2

0

∫
6

s−3/2
(

1+
|x − z′|2

4s

)−3/2(1
2
− s
)−1/2(

|z′| +

√
1
2
− s

)−2

dz′ ds. (5-32)
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We have a similar estimate as I1 with the following difference: we have to use the estimate (5-27) during
the integration over each subinterval s ∈

[
0, 1

4

]
and s ∈

[ 1
4 ,

1
2

]
; for the second subinterval we apply (5-27)

with a = 1
2 , b = 1, N = |z′|2.

For the boundary terms, the integrand of I5,µ is bounded by e−|x−z′|2/2
|z′|−1 and converges to 0 as

µ→ 0+ for each z′ ∈6. Thus lim I5,µ = 0 by the Lebesgue dominated convergence theorem. For I6,µ,

|I6,µ|. µ
−1/2e−x2

3/(4µ)
∫
6

0R2(x ′− z′, µ) 1
〈z′〉

dz′ . µ−1/2e−x2
3/(4µ) 1

〈x ′〉
, (5-33)

which converges to 0 as µ→ 0+ for any x ∈�.
We conclude that, for either k < 3 or k = 3, (5-30) is valid if I1 is replaced by I2 and hence, for any

0< δ� 1,
(1+ x3)

∣∣∂kwi
(
x, 1

2

)∣∣. x−δ3 〈x〉
−2+2δ, ∀x ∈�+, ∀i, k ≤ 3. (5-34)

Combining (5-18) and (5-34), we have shown (5-3) in �+, concluding the proof of Lemma 5.1. �

6. Self-similar solutions in the half space

In this section we first complete the proof of Theorem 1.1, and then give a few comments.

Proof of Theorem 1.1. By Lemma 5.1, for those a satisfying the assumptions of Theorem 1.1, U0= e−A/2a
satisfies (5-2) and (5-3), and hence Assumption 3.1 is satisfied. By Theorem 4.4, there is a solution
V ∈ H 1

0,σ (R
3
+
) of the system (3-3)–(3-5).

Noting U0 ∈ C∞(R3
+
) by (5-2), the system (3-3)–(3-5) is a perturbation of the stationary Navier–

Stokes system with smooth coefficients. The regularity theory for the Navier–Stokes system implies that
V ∈ C∞loc

(
R3
+

)
. The vector field U =U0+V is thus a smooth solution of the Leray equations (1-9) in R3

+
.

The vector field u(x, t) defined by (1-5), u(x, t)=U
(
x/
√

2t
)
/
√

2t , is thus smooth and self-similar.
Moreover,

v(x, t)= u(x, t)− e−t Aa =
1
√

2t
V
(

x
√

2t

)
satisfies

‖v(t)‖Lq (R3
+)
= ‖V ‖Lq (R3

+)
(2t)(3/2q)−(1/2) and ‖∇v(t)‖L2(R3

+)
= ‖∇V ‖L2(R3

+)
(2t)−1/4.

This finishes the proof of Theorem 1.1. �

Remark. Let u0(x, t)= (e−t Aa)(x)=U0
(
x/
√

2t
)
/
√

2t . We have u0( · , t)→ a as t→ 0+ in L3,∞(R3
+
).

Indeed, by (5-2), |U0(x)|. 〈x〉−1
∈ L3,∞

∩Lq , q>3. We have ‖u0(t)‖Lq (R3
+)
=‖U0‖Lq (R3

+)
(2t)(3/2q)−(1/2),

which remains finite as t→ 0+ only if q = (3,∞), and

|u0(x, t)|.
1
√

t
·

1
1+ |x |/

√
t
=

1
√

t + |x |
. (6-1)

This is consistent with the whole space case �= R3.
For the difference V (x), we only have its Lq(R3

+
) bounds, and not pointwise bounds as (1-11) in [Jia

and Šverák 2014; Tsai 2014].
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