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Abstract

We study the nonhomogeneous boundary value problem for Navier–Stokes
equations of steady motion of a viscous incompressible fluid in a two-dimensional,
bounded, multiply connected domain Ω = Ω1 \ Ω2, Ω2 ⊂ Ω1. We prove that
this problem has a solution if the flux F of the boundary value through ∂Ω2 is
nonnegative (inflow condition). The proof of the main result uses the Bernoulli law
for a weak solution to the Euler equations and the one-sided maximum principle
for the total head pressure corresponding to this solution.

1. Introduction

Let Ω be a bounded domain in R
n, n = 2, 3, with multiply connected Lips-

chitz boundary ∂Ω consisting of N disjoint components � j : ∂Ω = �1 ∪ · · · ∪�N

and �i ∩ � j = ∅, i �= j . Consider in Ω the stationary Navier–Stokes system with
nonhomogeneous boundary conditions

⎧
⎨

⎩

−ν�u + (
u · ∇)

u + ∇ p = 0 in Ω,

div u = 0 in Ω,

u = a on ∂Ω.

(1.1)

The continuity equation (1.12) implies the necessary compatibility condition for
the solvability of problem (1.1):

∫

∂Ω

a · n dS =
N∑

j=1

∫

� j

a · n dS =
N∑

j=1

F j = 0, (1.2)

where n is a unit vector of the outward (with respect to Ω) normal to ∂Ω . The
compatibility condition (1.2) means that the net flux of the fluid over the boundary
∂Ω is zero.
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Starting from the famous paper of Leray [27] published in 1933, problem (1.1)
has been the subject of investigation in many papers. However, in spite of all efforts,
the existence of a weak solution u ∈ W 1,2(Ω) to problem (1.1) was proved only
either under the stronger condition, which requires the fluxes F j of the boundary
value a to be zero separately across each component � j of the boundary ∂Ω1,

F j =
∫

� j

a · n dS = 0, j = 1, 2, . . . , N , (1.3)

(for example [19,23,24,27,41]), or for sufficiently small fluxes F j
2 (for example

[3,9,10,13,14,21,34,35], or under certain symmetry conditions on the domain Ω
and the boundary value a (for example [1,11,31–33,37]).

Another interesting contribution to this problem is due to Fujita and Morim-
oto [12] (see also [36]). They studied problem (1.1) in a plane domainΩ with two
components of the boundary, �1 and �2. Assuming that a = F∇u0 + α, where
F ∈ R, u0 is a harmonic function, and α satisfies condition (1.3), they proved that
there is a countable subset N ⊂ R such that if F �∈ N and α is small (in a suitable
norm), then problem (1.1) has a weak solution. Moreover, ifΩ ⊂ R

2 is an annulus
and u0 = log |x |, then N = ∅.

Problem (1.1), (1.3) can be reduced to an operator equation in a Hilbert space
(with a compact operator) and the existence of a fixed-point to this equation can be
proved by using the Leray–Schauder Theorem (for example [14,23,27]). In order to
apply the Leray–Schauder Theorem, one needs an a priori estimate of solutions to
the operator equation. In [27], Leray initiated two different approaches of getting
this estimate. The first method uses the extension of boundary value a into Ω as
A(ε, x) = curl

(
ζ(ε, x)b(x)

)
, where ζ(ε, x) is Hopf’s cut-off function [18]. For

this extension the estimate

−
∫

Ω

(
v · ∇)

A · v dx � εc
∫

Ω

|∇v|2 dx ∀ v ∈ W̊ 1,2(Ω) (1.4)

holds (for example [24]), where ε > 0 can be taken arbitrarily small and the con-
stant c is independent of ε (in fact, one needs to know only that εc < ν). Usually
(1.4) is called Leray–Hopf’s inequality. It is well known that boundary value can
be extended into the domain as a curl only if condition (1.3) is satisfied. The coun-
terexamples in [39] and [17] show that if the net flux across some component of the
boundary is nonzero, then it is impossible to extend the boundary value a in any
manner as a solenoidal function A satisfying Leray–Hopf’s inequality (1.4). Thus,
this approach may be applied only when condition (1.3) is valid.

The second approach in [27] is to prove an a priori estimate by a contradic-
tion. Such arguments can also be found in the book of Ladyzhenskaya [24].
In [1] the solvability of (1.1) was proved using this method for arbitrary fluxes
F j , assuming only the necessary condition (1.2). However, the problem has been
studied for a special class of plane symmetric domains and symmetric boundary

1 Condition (1.3) does not allow the presence of sinks and sources.
2 This condition does not assumes the norm of the boundary value a to be small.
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values. An effective estimate for the solution of the Navier–Stokes problem with the
above symmetry conditions was first obtained by Sazonov [37], who constructed
a symmetric extension of the boundary data satisfying the Leray–Hopf inequality.
Analogous results were independently obtained by Fujita [11] (see also [31]), who
called the proposed method the “virtual drains method”.

However, the fundamental question whether problem (1.1) is solvable for all
values of F j (Leray’s problem) is still open, despite the efforts of many mathema-
ticians (see the review papers [32,33,42]). In this paper we study problem (1.1) in
a plane domain

Ω = Ω1 \Ω2, Ω2 ⊂ Ω1, (1.5)

where Ω1 and Ω2 are bounded, simply connected domains of R
2 with Lipschitz

boundaries ∂Ω1 = �1, ∂Ω2 = �2. Without loss of generality we may assume that
Ω2 ⊃ {x ∈ R

2 : |x | < 1}. Since Ω has only two components of the boundary,
condition (1.2) may be rewritten in the form

F =
∫

�2

a · n dS = −
∫

�1

a · n dS, (1.6)

where n is an outward normal with respect to the domain Ω . We prove the solv-
ability of problem (1.1) without any restriction on the value of |F |, provided that
F > 0 (inflow condition). Since it is known that problem (1.1) is solvable for
sufficiently small |F | (see [3,9,10,13,21]), we conclude that the solution exists if
F ∈ [−F0,∞), where F0 is some positive number. Note that this is the first result
on Leray’s problem which does not require smallness of the flux or symmetry con-
ditions on the domain and boundary values. The method proposed here works only
for F > 0. We have neither physical nor mathematical arguments for the existence
or nonexistence of the solution to (1.1) in the case F < 0 with large |F |.

The proof of the existence theorem is based on an a priori estimate which we
obtain using the reductio ad absurdum argument proposed by Leray [27]. The
essentially new part in this argument is the use of the weak one-sided maximum
principle for the total head pressure, corresponding to weak solutions of the Euler
equations, and a representation of the total head pressure in the divergence form
(see formula (4.20) ), while the proof of the above maximum principle is based on
the Bernoulli Law for a weak solution to the Euler equations. The results concerning
the Bernoulli Law and the weak one-sided maximum principle for the total head
pressure were obtained in [20]. However, the proofs there were not detailed; some
steps were only sketched. Below (Section 3) we publish the first detailed proofs of
these results.

The paper is organized as follows. Section 2 contains preliminaries. Basically,
this section consists of standard facts3 and we present them only in order to make
the paper self contained. Results of Sections 2.1–2.3 are used in the proof of the
Bernoulli Law, etc., results of Section 2.4 are used for reducing of problem (1.1) to

3 Except for the results of Section 2.2, where we formulate the recent version [4] of the
Morse-Sard Theorem for the space W 2,1(R2), which plays the key role in the Section 3.
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an operator equation (Section 4), and results of Section 2.5 are used for the proof
of the continuity of the pressure in the Euler equations (Theorem 3.2). Section 3 is
devoted to the above-mentioned results for the Euler equation. Finally, Section 4
contains the proof of the existence theorem for problem (1.1).

The authors are deeply indebted to V.V. Pukhnachev for valuable discussions.

2. Notation and Auxiliary Results

2.1. Function Spaces and Definitions

By a domain we mean an open connected set. Let Ω ⊂ R
2 be a bounded

domain with Lipschitz boundary4 ∂Ω . We use standard notations for function
spaces: Ck(Ω),Ck(∂Ω),W k,q(Ω), W̊ k,q(Ω),Wα,q(∂Ω), where α ∈ (0, 1), k ∈
N0, q ∈ [1,+∞]. H1(R2) denotes the Hardy space on R

2. In our notation we do
not distinguish function spaces for scalar and vector valued functions; it is clear
from the context whether we use scalar or vector (or tensor) valued function spaces.
H(Ω) is subspace of all solenoidal vector fields (div u = 0) from W̊ 1,2(Ω) with
the norm ‖u‖H(Ω) = ‖∇u‖L2(Ω). Note that for functions u ∈ H(Ω), the norm
‖ · ‖H(Ω) is equivalent to ‖ · ‖W 1,2(Ω).

Working with Sobolev functions, we always assume that the “best represen-
tatives” are chosen. If w ∈ L1

loc(Ω), then the best representative w∗ is defined
by

w∗(x) =
{

lim
r→0

−
∫

Br (x)
w(z)dz, if the finite limit exists;

0 otherwise,

where −
∫

Br (x)
w(z)dz = 1

meas(Br (x))

∫

Br (x)
w(z)dz, Br (x) = {y : |y − x | < r} is a

ball of radius r centered at x .
Let us discuss some properties of the best representatives of Sobolev functions.

Lemma 2.1. (see, for example, Theorem 1 of Sect. 4.8 and Theorem 2 of Sect.
4.9.2 in [8]) Letw ∈ W 1,s(R2), s � 1. Then there exists a set A1,w ⊂ R

2 such that

(i) H1(A1,w) = 0;
(ii) for each x ∈ Ω \ A1,w

lim
r→0

−
∫

Br (x)
|w(z)− w(x)|2 dz = 0;

(iii) for all ε > 0 there exists a set U ⊂ R
2 such that H1∞(U ) < ε, A1,w ⊂ U

and the function w is continuous in Ω \ U;
(iv) for any unit vector l ∈ ∂B1(0) the restriction w|L is an absolutely continu-

ous function (of one variable) for almost all straight lines L parallel to the
direction l.

4 ∂Ω is Lipschitz, if for every ξ ∈ ∂Ω , there is a neighborhood of ξ in which ∂Ω is the
graph of a Lipschitz continuous function (defined on an open interval).
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Here and henceforth we denote by H1 the one-dimensional Hausdorff measure,
that is, H1(F) = limt→0+ H1

t (F), where H1
t (F) = inf{∑∞

i=1 diamFi : diamFi �
t, F ⊂ ⋃∞

i=1 Fi }.
Remark 2.1. Property (iii) above means that f is quasicontinuous with respect to
the Hausdorff content H1∞. Really, Theorem 1(iii) of Sect. 4.8 in [8] asserts that
f ∈ W 1,s(R2) is quasicontinuous with respect to s-capacity. But it is well known
that for s = 1 the smallness of the 1-capacity of a set F ⊂ R

2 is equivalent to
the smallness of H1∞(F) (see, for example, Theorem 3 of Sect. 5.6.3 in [8] and its
proof.)

Lemma 2.2. Let w ∈ W 1,s(R2), s � 1. Take any function g ∈ C1(R2) and a
closed set F ⊂ R

2 such that ∇g �= 0 on F. Then for almost all y ∈ g(F) and for
all the connected components K of the set F ∩ g−1(y), the equality K ∩ A1,w = ∅
holds and the restriction w|K is an absolutely continuous function.

Lemma 2.2 follows from Lemma 2.1 (iv) by coordinate transformation (see
[29, Sect. 1.1.7]).

To receive some specific version of the property (iv) in Lemma 2.1, we need

Lemma 2.3. Let f ∈ W 1,s(R2), s � 1, and x0 ∈ R
2 \ A1, f . Suppose

∫

B1(x0)

|∇ f (x)|
|x − x0| dx < ∞. (2.1)

Then the restriction f |Lx0
is an absolutely continuous function (of one variable)

for almost all rays Lx0 starting from x0.

Lemma 2.3 is easily deduced from Lemma 2.1 (iv) using polar coordinates.

Lemma 2.4. Let f ∈ W 1,s(R2), s > 1. Then there exists a set A2, f ⊂ R
2 such

that H1(A2, f ) = 0 and for all x0 ∈ R
2 \ A2, f the restriction f |Lx0

is an absolutely
continuous function (of one variable) for almost all rays Lx0 starting from x0.

Proof. Put

A2, f = A1, f ∪
{

y ∈ R
2 : lim

r→0

∫

Br (y)
|∇ f (x)|s dx

r
> 0

}

.

By [8, Theorem 3, Sect. 2.4.3] the equality H1(A2, f ) = 0 holds. Now take x0 ∈
R

2 \ A2, f . Then there exists C0 > 0 such that
∫

Br (x0)
|∇ f (x)|s dx � C0r for all

r ∈ (0, 1). Denote rk = 1
2k and Bk = Brk (x0). By direct calculation,

∫

Bk\Bk+1

|∇ f (x)|
|x − x0| dx � 2

rk

∫

Bk\Bk+1

|∇ f (x)| dx

� 2

rk

(∫

Bk\Bk+1

|∇ f (x)|s dx

) 1
s
(

3π

4
r2

k

) 1
s∗

�C1r
2

s∗ −1+1
s

k =C1r
1

s∗
k =C1

(
2−

1
s∗

)k
.

Hence the convergence (2.1) follows easily from the last estimate. Now the assertion
of Lemma 2.4 follows from Lemma 2.3. ��
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Remark 2.2. Because of the Sobolev Extension Theorems, the analogs of Lem-
mas 2.1–2.4 are true for functions w ∈ W 1,s(Ω), where Ω ⊂ R

2 is a bounded
domain with Lipschitz boundary. Because of Trace Theorems, each function w ∈
W 1,s(Ω) is “well-defined” for H1-almost all x ∈ ∂Ω . So henceforth we assume
that each function w ∈ W 1,s(Ω) is defined on Ω .

2.2. On Morse-Sard and Luzin N-Properties of Sobolev Functions from W 2,1

First of all, let us recall some classical differentiability properties of Sobolev
functions.

Lemma 2.5. (see Proposition 1 in [7]) Let ψ ∈ W 2,1(R2). Then there exists a set
Aψ ⊃ A1,∇ψ such that H1(Aψ) = 0, and for all x ∈ R

2 \ Aψ , the function ψ
is differentiable (in the classical sense) at the point x; furthermore, the classical
derivative coincides with ∇ψ(x).

The theorems below in this subsection were proved by Bourgain et al. [4].

Theorem 2.1. Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary and

ψ ∈ W 2,1(Ω). Then

(i) for every ε > 0 there exists δ > 0 such that for any set U ⊂ Ω with
H1∞(U ) < δ, the inequality H1(ψ(U )) < ε holds;
(ii) for every ε > 0 there exists an open set V ⊂ R and a function g ∈ C1(R2)

such that H1(V ) < ε, and for each x ∈ Ω ifψ(x) /∈ V , then x /∈ Aψ , the function
ψ is differentiable at the point x, and ψ(x) = g(x),∇ψ(x) = ∇g(x) �= 0.

Theorem 2.2. SupposeΩ ⊂ R
2 is a bounded domain with Lipschitz boundary and

ψ ∈ W 2,1(Ω). Then for H1-almost all y ∈ ψ(Ω) ⊂ R the preimage ψ−1(y) is a
finite disjoint family of C1-curves S j , j = 1, 2, . . . , N (y). Each S j is either a cycle
in Ω(that is, S j ⊂ Ω is homeomorphic to the unit circle S

1) or it is a simple arc
with endpoints on ∂Ω(in this case S j is transversal to ∂Ω). Moreover, the tangent
vector to each S j is an absolutely continuous function.

2.3. Some Facts from Topology

For the further considerations we will also need some topological definitions
and results. By continuum we mean a compact connected set. We understand con-
nectedness in the sense of general topology. A set is called an arc if it is homeo-
morphic to the unit interval [0, 1]. (Sometimes by arc we mean a corresponding
parametrization, for example, a continuous injective function γ : [α, β] → R

2).

Lemma 2.6. Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary and let

K ⊂ Ω be a continuum. Then there exists δ > 0 such that for any continuous
injective function γ : I = [0, 1] → Ω with the properties5 γ (0), γ (1) ∈ K , and
γ ((0, 1)) ⊂ {x ∈ Ω : dist(x, K ) < δ}, the following assertion is valid:

5 γ ((0, 1)) can intersect K or even γ ([0, 1]) ⊂ K .
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(ℵ) For any interval (α, β) adjoining the set Ĩ = γ−1(K ) ( that is, Ĩ is a
compact subset of the interval [0, 1] and 0, 1 ∈ Ĩ , (α, β) is a connected compo-
nent of the open set (0, 1) \ Ĩ ) there exists a continuum Kαβ ⊂ K and a simply
connected domain Ωαβ ⊂ Ω such that Ωαβ ∩ K = ∅, γ (α), γ (β) ∈ Kαβ and
∂Ωαβ = Kαβ ∪ γ ([α, β]).

Lemma 2.6 is proved in the Appendix.
Here we briefly present some results from the classical paper [22] concerning

level sets of continuous functions. Let Q = [0, 1]× [0, 1] be a square in R
2 and let

f be a continuous function defined on Q. Denote by Et a level set of the function f ,
that is, Et = {x ∈ Q : f (x) = t}. A component K of the level set Et containing a
point x0 is a maximal connected subset of Et containing x0. By T f denote a family
of all connected components of level sets of f . Kronrod [22] has established that
T f equipped by a natural topology is a tree. More precisely, he proved the following
result.

Lemma 2.7. Let f ∈ C(Q). Then for any different A, B ∈ T f there exists a unique
arc J = J (A, B) ⊂ T f joining A to B. Moreover, for any inner point C of this arc
the points A, B lie in different connected components of the set T f \ {C}.

We can reformulate the above Lemma in the following equivalent form.

Lemma 2.8. Let f ∈ C(Q). Then for any different A, B ∈ T f there exists an
injective function ϕ : [0, 1] → T f such that

(i) ϕ(0) = A, ϕ(1) = B;
(ii) for any t0 ∈ [0, 1] the convergence lim[0,1]�t→t0 supx∈ϕ(t) dist(x, ϕ(t0)) →

0 holds.
(iii) for any t ∈ (0, 1) the sets A, B lie in the different connected components of

the set Q \ ϕ(t).
Remark 2.3. Under conditions and notation of Lemma 2.8, define a function g :
[0, 1] → R by the rule g(t) = f (x), where x ∈ ϕ(t). Evidently, g will be a
continuous function nonconstant on each subinterval. Consequently, if, in addition,
f ∈ W 2,1(Q), then by Theorem 2.2 there exists a dense subset E of (0, 1) such that
ϕ(t) is a C1-curve for each t ∈ E . Furthermore, ϕ(t) is either a cycle or a simple
arc with endpoints on ∂Q.

Remark 2.4. All results of Lemmas 2.7–2.8 remain valid for level sets of con-
tinuous functions defined on some compact set R ⊂ R

2 whose boundary ∂R is
homeomorphic to the unit circle S

1.

2.4. Some Facts About Solenoidal Functions

The next two lemmas concern the existence of solenoidal extensions of bound-
ary values and the integral representation of the bounded linear functionals vanish
ing on solenoidal functions.
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Lemma 2.9. (see [25]) Let Ω be a bounded domain with Lipschitz boundary.
If a ∈ W 1/2,2(∂Ω) and ∫

∂Ω

a · n dS = 0,

then there exists a solenoidal extension A ∈ W 1,2(Ω) of a such that

‖A‖W 1,2(Ω)� c‖a‖W 1/2,2(∂Ω). (2.2)

Lemma 2.10. (see [38]) LetΩ be a bounded domain with Lipschitz boundary and
let R(η) be a continuous linear functional defined on W̊ 1,2(Ω). If

R(η) = 0 ∀ η ∈ H(Ω),

then there exists a function p ∈ L2(Ω) with
∫

Ω
p(x) dx = 0 such that

R(η) =
∫

Ω

p div η dx ∀ η ∈ W̊ 1,2(Ω).

Moreover, ‖p‖L2(Ω) is equivalent to ‖R‖
(W̊ 1,2(Ω))∗ .

2.5. Some Facts from Harmonic Analysis

Lemma 2.11. Let f ∈ H1(R2) and

J (x) =
∫

R2
log |x − y| f (y) dy. (2.3)

Then

(i) J ∈ C(R2);
(ii) ∇ J ∈ L2(R2), Dα J ∈ L1(R2), |α| = 2.

Lemma 2.11 is well known; the proof of property (i) can be found in
[40, Theorem 5.12 and Corollary 12.12 at pp. 82–83]; the property (ii) is proved,
for example, in [2, Theorem 5.13, p. 208].

Lemma 2.12. Let w ∈ W 1,2(R2) and div w = 0. Then

div
[(

w · ∇)
w

] =
2∑

i, j=1

∂wi

∂x j

∂w j

∂xi
∈ H1(R2).

Lemma 2.12 follows from the div-curl lemma with two cancellations (for
example, [6, Theorem II.1]).

Lemma 2.13. Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary and

h ∈ C(∂Ω). If h can be extended into domain Ω as a function H ∈ W 1,2(Ω),
then there exists a unique weak solution v ∈ W 1,2(Ω) of the problem

{−�v = 0 in Ω,

v = h on ∂Ω
(2.4)

such that v ∈ C(Ω).

The proof of Lemma 2.13 can be found in [28] (see also [26, Theorem 4.2]).
Note that not every function h continuous on ∂Ω can be extended intoΩ as a func-
tion H from W 1,2(Ω). In this case there exists a weak solution v of (2.4) satisfying
only v ∈ W 1,2

loc (Ω) ∩ C(Ω) (see [26, Chapter II]).
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3. Euler Equation

In this section we prove some properties of a solution to the Euler system
{(

w · ∇)
w + ∇ p = 0,

div w = 0.
(3.1)

Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary. Assume that

w ∈ W 1,2(Ω) and p ∈ W 1,s(Ω), s ∈ [1, 2), satisfy the Euler equations (3.1)
for almost all x ∈ Ω , and let

∫

�i
w · n dS = 0, i = 1, 2, . . . , N , where �i are

connected components of the boundary ∂Ω . Then there exists a stream function
ψ ∈ W 2,2(Ω) such that ∇ψ = (−w2, w1) (note that by Sobolev Embedding The-

orem ψ is continuous in Ω). Denote by � = p + |w|2
2

the total head pressure

corresponding to the solution (w, p). Obviously, � ∈ W 1,s(Ω) for all s ∈ [1, 2).
By direct calculations one easily gets the identity

∇� ≡
(∂w2

∂x1
− ∂w1

∂x2

)(
w2,−w1

) = (�ψ)∇ψ. (3.2)

Applying Lemmas 2.1, 2.2, 2.4, 2.5, and Remark 2.2 to the functions w, ψ,�,
we get the following

Theorem 3.1. There exists a set Aw ⊂ Ω such that:

(i) H1(Aw) = 0;
(ii) for all x ∈ Ω \ Aw

lim
r→0

−
∫

Br (x)
|w(z)− w(x)|2dz = lim

r→0
−
∫

Br (x)
|Φ(z)−Φ(x)|2dz = 0;

moreover, the function ψ is differentiable at x and ∇ψ(x) = (−w2(x), w1(x));
(iii) for all ε > 0 there exists a set U ⊂ R

2 such that H1∞(U ) < ε, Aw ⊂ U and
the functions w,� are continuous in Ω \ U;
(iv) for any two points a, b ∈ Ω \ Aw there exists a Lipschitz function (an
arc)γ : [0, 1] → Ω \ Aw, γ (0) = a, γ (1) = b, γ ((0, 1)) ⊂ Ω such that�◦γ
is an absolutely continuous function and

[
�(γ (t))

]′ ≡ [
�ψ(γ (t))

]∇ψ(γ (t)) · γ ′(t) f or almost all t ∈ [0, 1].
(3.3)

(v) Take any function g ∈ C1(R2) and a closed set F ⊂ Ω such that ∇g �= 0 on
F. Then for almost all y ∈ g(F) and for all connected components K of the set
F ∩ g−1(y) the equality K ∩ Aw = ∅ holds and the restriction�|K is absolutely
continuous. Moreover, for any C1-smooth parametrization γ : [0, 1] → K , γ ′ �=
0 on [0, 1], the identity (3.3) holds.

If all functions are smooth, then from (3.2) the classical Bernoulli law follows
immediately:

The total head pressure �(x) is constant along any streamline of the flow.
In the general case the following assertion holds.
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Theorem 3.2. LetΩ ⊂ R
2 be a bounded, multiply connected domain with Lipschitz

boundary ∂Ω = ∪N
i=1�i . Assume that w ∈ W 1,2(Ω) and p ∈ W 1,s(Ω), s ∈ [1, 2),

satisfy Euler equations (3.1) for almost all x ∈ Ω and
∫

�i
w · n dS = 0, i =

1, . . . , N. Then for any connected set K ⊂ Ω such that

ψ
∣
∣
K = const, (3.4)

the assertion

∃C = C(K ) Φ(x) = C for H1-almost all x ∈ K (3.5)

holds.

Theorem 3.2 was obtained in [20, Theorem 1]. But the proofs in [20] were not
detailed, some steps were only sketched. Here we publish the first detailed proof
of this result.

Proof. (i) Fix any ε > 0 and consider a function g ∈ C1(R2) and an open set V with
H1(V ) < ε from Theorem 2.1 (ii) applied to the functionψ . Put F = Ω \ψ−1(V ).
Then ψ(x) = g(x) and ∇ψ(x) = ∇g(x) �= 0 for any x ∈ F . Thus, by Theo-
rem 3.1 (v) for almost all y ∈ ψ(Ω) \ V = g(F), for any connected component K
of the set ψ−1(y) (that is, for any streamline) and for any C1-smooth parametriza-
tion γ : [0, 1] → K the restrictionΦ|K is absolutely continuous, and identity (3.3)
gives

[Φ(γ (t))]′ = [�ψ(γ (t))]∇ψ(γ (t)) · γ ′(t) = [�ψ(γ (t))]∇g(γ (t)) · γ ′(t) = 0.

The last equality is valid because g(x) = const on K and, hence, ∇g(γ (t))·γ ′(t) =
0, so we haveΦ(x) = const on K . In view of arbitrariness of ε > 0, we have proved
that for almost all y ∈ ψ(Ω) and for all connected components K of the setψ−1(y),
the equality K ∩ Aw = ∅ holds6 andΦ(x) = const on K . Notice that the last iden-
tity is valid everywhere on K , instead of almost everywhere, but for almost all
y ∈ ψ(Ω) only. Here (only during this proof!) such components K will be called
regular components.

(ii) Now take an arbitrary value y ∈ ψ(Ω) and a connected component K of
the level set ψ−1(y) and fix them. Take also any pair of points a, b ∈ K \ Aw. We
shall prove that

Φ(a) = Φ(b). (3.6)

Consider a Lipschitz function γ : [0, 1] → Ω \ Aw from the assertion (iv) of
Theorem 3.1. There is considerable arbitrariness in the choice of this γ (recall,
that Φ is absolutely continuous along almost all straight segments) and we can
choose γ to satisfy the condition (ℵ) of Lemma 2.6. Now take any interval (α, β)
adjoining the set Ĩ = γ−1(K ), and consider the corresponding subdomain Ωαβ .
Denote by T the family of all connected components of level sets of the function

6 For this equality see Theorems 3.1 (i) and 2.1 (i).
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ψαβ = ψ |Ωαβ
. According to Lemma 2.7 the topological space T is a tree. Let

t0 ∈ (α, β), K0 � γ (t0) be a connected component of the level set of ψαβ , and
let Kαβ ⊂ K be a continuum from the property (ℵ). Denote by J = J (Kαβ, K0)

the arc (of the tree T ) joining the points Kαβ and K0 (see Lemmas 2.7–2.8). Take
a sequence of regular components Ci ∈ J \ {Kαβ, K0},Ci → Kαβ (this is possi-
ble because of Remark 2.3). Then the sets K0 � γ (t0), Kαβ ⊃ {γ (α), γ (β)} lie
in different connected components of the set Ωαβ \ Ci for all i . Therefore, there
exist ti ∈ (α, t0) and si ∈ (t0, β) such that γ (ti ), γ (si ) ∈ Ci . Since Ci → Kαβ ,
we obtain ti → α, si → β. By paragraph (i) Φ(x) ≡ const on Ci . In partic-
ular, G(ti ) = G(si ), where by G we denote the absolutely continuous function
G(t) = Φ(γ (t)). Since G is continuous, it follows that G(α) = G(β) for any
interval (α, β) adjoining the set Ĩ and, since the absolutely continuous function
G(t) is differentiable almost everywhere, we obtain

∫ β

α

G ′(t)dt = 0.

Hence,
∫ ν

μ

G ′(t)dt = 0 (3.7)

if μ, ν ∈ Ĩ and the interval (μ, ν) contains only a finite number of points from Ĩ .
Now consider the closed set I∞ = {t ∈ [0, 1]: in any neighborhood of the point

t there exist infinitely many points from Ĩ }. It follows from (3.7) that
∫

[0, 1]\I∞
G ′(t)dt = 0. (3.8)

According to properties (ii) and (iv) in Theorem 3.1, the function ψ is differentia-
ble at any point γ (t), t ∈ (0, 1). Furthermore, the properties of Lipschitz functions
imply that the function γ (t) is differentiable for almost all t ∈ [0, 1]. Clearly, if for
t ∈ I∞ there exists γ ′(t), then γ ′(t) ·∇ψ(γ (t)) = 0 (since ψ is equal to a constant
at points γ (I∞) ⊂ γ ( Ĩ ) ⊂ K ). In view of formula (3.3), we then immediately
derive

∫

I∞
G ′(t)dt = 0. (3.9)

Summing formulas (3.8) and (3.9) we get

G(1)− G(0) =
∫ 1

0
G ′(t)dt = 0.

The last relation is equivalent to equality (3.6). The theorem is proved. ��
Remark 3.1. Really, we have proved in Theorem 3.2 that the identity

Φ(a) = Φ(b) ∀a, b ∈ K \ Aw

holds for any connected set K ⊂ Ω with ψ |K = const.
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Remark 3.2. In particular, if w = 0 on ∂Ω(in the sense of trace), then the pressure
p(x) is constant on ∂Ω . Note that p(x) could take different constant values p j =
p(x)

∣
∣
� j

on different connected components� j of the boundary ∂Ω . This statement
was also proved in [19, Lemma 4] and in [1, Theorem 2.2].

Theorem 3.3. Let Ω ⊂ R
2 be a bounded, multiply connected domain with Lips-

chitz boundary ∂Ω = ⋃N
i=1 �i . Assume that (w, p) satisfy the Euler equations

(3.1) for almost all x ∈ Ω,w ∈ W 1,2(Ω) and w(x)
∣
∣
∂Ω

= 0. Then

p ∈ C(Ω) ∩ W 1,2(Ω). (3.10)

Proof. From the Euler equations (3.1) it follows that p ∈ W 1,s(Ω) for any s ∈
[1, 2) and

‖p‖W 1,s (Ω) � c‖w‖2
H(Ω).

Multiply (3.1) by ϕ = ∇ξ , where ξ ∈ C∞
0 (Ω):

∫

Ω

∇ p · ∇ξ dx = −
∫

Ω

(
w · ∇)

w · ∇ξ dx ∀ξ ∈ C∞
0 (Ω).

Thus, p ∈ W 1,s(Ω) can be interpreted as the unique weak solution of the Dirichlet
boundary value problem for the Poisson equations

{−�p = div
[(

w · ∇)
w

]
in Ω,

p(x) = pi on �i , i = 1, . . . , N ,
(3.11)

where pi are constants. According to Lemma 2.12, div
[(

w ·∇)
w

] ∈ H1(R2) (here
we assume that w ∈ H(Ω) is extended by zero to R

2). Define the function J1(x)
by the formula

J1(x) = − 1

2π

∫

R2
log |x − y| divy

[(
w(y) · ∇y

)
w(y)

]
dy.

In virtue of Lemma 2.11, J1 ∈ C(R2),∇ J1 ∈ L2(R2), Dα J1 ∈ L1(R2), |α| = 2.
Since −�J1(x) = div

[(
w · ∇)

w
]

in R
2, we get for J2(x) = p(x) − J1(x) the

following problem

{−�J2 = 0 in Ω,

J2
∣
∣
∂Ω

= j2 − j1 on ∂Ω,
(3.12)

where j1(x) = J1(x)
∣
∣
∂Ω
, j2(x) = pi on �i , i = 1, . . . , N . The function j1 is

a trace on ∂Ω of J1 ∈ W 1,2(Ω) ∩ C(Ω), while j2 ∈ C(∂Ω) and j2 obviously
could be extended toΩ as a function from W 1,2(Ω). Thus, by Lemma 2.13, prob-
lem (3.12) has a unique weak solution J2 ∈ W 1,2(Ω) such that J2 ∈ C(Ω). By
uniqueness p(x) = J1(x) + J2(x). Hence, p ∈ C(Ω) ∩ W 1,2(Ω). The lemma is
proved. ��
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LetΩ be a bounded domain with Lipschitz boundary. We say that the function
f ∈ W 1,s(Ω) satisfies a one-sided maximum principle locally in Ω , if

ess sup
x∈Ω ′

f (x) � ess sup
x∈∂Ω ′

f (x) (3.13)

holds for any strictly interior subdomain Ω ′ (Ω ′ ⊂ Ω) with the boundary ∂Ω ′
not containing singleton connected components. (In (3.13) negligible sets are the
sets of two-dimensional Lebesgue measure zero in the left ess sup, and the sets of
one-dimensional Hausdorff measure zero in the right ess sup.)

If (3.13) holds for anyΩ ′ ⊂ Ω (not necessary strictly interior) with the bound-
ary ∂Ω ′ not containing singleton connected components, then we say that f ∈
W 1,s(Ω) satisfies a one-sided maximum principle in Ω (in particular, we can take
Ω ′ = Ω in (3.13)).

Theorem 3.4. LetΩ ⊂ R
2 be a bounded, multiply connected domain with Lipschitz

boundary ∂Ω = ∪N
i=1�i . Let w ∈ W 1,2(Ω) and p ∈ W 1,s(Ω), s ∈ [1, 2), satisfy

Euler equations (3.1) for almost all x ∈ Ω and
∫

�i
w · n dS = 0, i = 1, . . . , N.

Assume that there exists a sequence of functions {Φμ} such that Φμ ∈ W 1,s
loc (Ω)

and Φμ ⇀ Φ in the space W 1,s
loc (Ω) for some s ∈ [4/3, 2). If all Φμ satisfy the

one-sided maximum principle locally inΩ , thenΦ satisfies the one-sided maximum
principle in Ω .

Theorem 3.4 was obtained in [20, Theorem 2]. But the proofs in [20] were not
detailed, some steps were only sketched. Below we publish the first detailed proof
of this result, but first we need some auxiliary results.

Lemma 3.1. Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary and

ψ ∈ W 2,1(Ω). Suppose that Ω ′ ⊂ Ω is a domain, � ⊂ ∂Ω ′ is a compact con-
nected set, ψ |� �= const, and K0 ⊂ Ω ′ is a connected component of some level
set of ψ |Ω̄ ′ such that

K0 ∩Ω ′ �= ∅, K0 ∩ � �= ∅. (3.14)

Then for any set E ⊂ Ω with H1(E) = 0 there exists a sequence of connected com-
pact sets Ki ⊂ Ω ′\E and points xi ∈ Ki such thatψ |Ki ≡ ci = const, Ki ∩∂Ω ′ �=
∅, diam Ki � δ for some δ > 0, and xi → x0 ∈ K0.

Proof. Fix a set E ⊂ Ω with H1(E) = 0. Here (during this proof) a value y ∈
ψ(Ω) is called admissible if ψ−1(y) ∩ E = ∅ and the assertions of Theorem 2.2
are fulfilled. From Theorems 2.1 (i), 2.2 it follows that H1-almost all y ∈ ψ(Ω)

are admissible.
Let ψ |K0 ≡ y0. Take a sequence of admissible values y+

i → y0 + 0, y−
i →

y0 − 0. Denote by Ci the connected component of the compact set {x ∈ Ω ′ :
ψ(x) ∈ [y−

i , y+
i ]} such that K0 ⊂ Ci . Then, obviously, Ci → K0 with respect to

the Hausdorff distance.7

7 Recall that the Hausdorff distance dH between two compact sets A, B ⊂ R
n is defined

as follows: dH (A, B) = max
(

sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)
)

(see, for example, Sect. 7.3.1



198 Mikhail V. Korobkov, Konstantin Pileckas & Remigio Russo

Denote Ti = Ω ′ ∩ ∂Ci . Clearly,

ψ(x) = y+
i or ψ(x) = y−

i for any x ∈ Ti .

We shall say that a connected component S of the set Ti is interesting if S̄ ∩
∂Ω ′ �= ∅; otherwise S is called uninteresting. Since the values y+

i , y−
i are admis-

sible (see the beginning of the proof), we see that
(**) Each uninteresting component S of the set Ti is a C1-smooth curve homeo-

morphic to the unit circle. Moreover the set R
2 \ S has two connected components

U, V such that U ∩ Ci = ∅ and V ∩ {x ∈ R
2 : dist(x, S) < δS} ⊂ Ci , where

δS > 0.
Denote by {T i

j } the family of all interesting connected components of Ti . To
finish the proof of the Lemma, it is sufficient to check the convergence

lim
i→∞ sup

j
diam T i

j > 0. (3.15)

Suppose the convergence (3.15) does not hold, that is,

lim
i→∞ sup

j
diam T i

j = 0. (3.16)

Take any point z ∈ � such that ψ(z) �= y0. Then there exists δ > 0 such that

Bδ(z) ∩ Ci = ∅ for sufficiently large i, (3.17)

where Bδ(z) is a ball with center z and radius δ. Now fix points z0 ∈ K0 ∩Ω ′, z1 ∈
Bδ(z) ∩ Ω ′. Take an arc γ joining z0 to z1 in Ω ′. More precisely, γ : [0, 1] →
Ω ′ is a continuous injective function such that γ (0) = z0, γ (1) = z1. Denote
ti = sup{t ∈ [0, 1] : γ (t) ∈ Ci }. Evidently, γ (ti ) ∈ Ti for sufficiently large i .
From (3.16) and the inequality inf t∈[0,1] dist(γ (t), ∂Ω ′) > 0 it follows that γ (ti )
belongs to the uninteresting component Si of the set Ti for i � i0. Denote by Ui , Vi

the corresponding components of R
2 \ Si (see (**) ). Then by construction we see

that γ (t) ∈ Ui for all i � i0 and t ∈ (ti , 1]; in particular, z1 ∈ Ui . From (3.17) it
follows that Bδ(z)∩ Si = ∅. Hence Bδ(z) ⊂ Ui . From the definition of uninterest-
ing components it follows that Si ∩ � = ∅, consequently, � ⊂ Ui ⊂ R

2 \ Ci . The
last inclusions contradict assumption (3.14) and, hence, inequality (3.15) is valid.
The lemma is proved. ��

Footnote 7 continued
in [5]). By the Blaschke Selection Theorem, if X ⊂ R

n is a compact set, then the space of all
compact subsets of X equipped with the Hausdorff distance is a compact set, as well [ibid].
In other words, for any uniformly bounded sequence of compact sets Ai ⊂ R

n , there exists
a subsequence Ai j which converges to some compact set A0 with respect to the Hausdorff
distance. Of course, if all Ai are compact connected sets and diam Ai � δ for some δ > 0,
then the limit set A0 is also connected and diam A0 � δ (we will use these elementary
properties below).
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Lemma 3.2. Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary and let

w, p satisfy the conditions of Theorem 3.2. Assume that Ki ⊂ Ω is a sequence of
connected compact sets such that diam Ki � δ > 0 and ψ |Ki ≡ ci = const. Take
any converging sequence of points Ki � xi → x0, and denote by Kx0 the connected
component of the level set {x ∈ Ω : ψ(x) = ψ(x0)} containing x0. Then for any
yi ∈ Ki \ Aw and for any y0 ∈ Kx0 \ Aw the equality

lim
i→∞Φ(yi ) = Φ(y0) (3.18)

holds.

Proof. We may assume without loss of generality that

Ki → K0 with respect to the Hausdorff distance (3.19)

(see the footnote in the previous proof of Lemma 3.1). Then, by our assumptions,
K0 is a compact connected set, K0 ⊂ Kx0 , and diam K0 � δ > 0. Take a straight
line L such that the projection of K0 on L is not a singleton. Since K0 is a connected
set, we see that this projection is a segment. By I0 denote the interior of this seg-
ment. For z ∈ I0, by Lz denote the straight line such that z ∈ Lz and Lz ⊥ L . From
Lemma 2.1 (iv) it follows that for H1-almost all z ∈ I0, we have Lz ∩Ω ⊂ Ω \ Aw
and the restriction Φ|Ω∩Lz

is continuous. Fix a point z ∈ I0 with the above prop-

erties. Then by construction ∅ �= Ki ∩ Lz ⊂ Ω \ Aw for sufficiently large i . Now
take a sequence yi ∈ Ki \ Aw and a point y0 ∈ Kx0 \ Aw. From Remark 3.1 it
follows that Φ(yi ) = Φ(x) for any x ∈ Ki \ Aw. Hence, we may assume without
loss of generality that yi ∈ Lz and limi→∞ yi = y∗ ∈ Lz ∩ K0 ⊂ Ω \ Aw. By
continuity of Φ|Ω∩Lz

,
lim

i→∞Φ(yi ) = Φ(y∗).

By Remark 3.1, Φ(y0) = Φ(y∗) and we get the required equality (3.18). ��
Under conditions of Theorem 3.2, let Ω ′ be an arbitrary subdomain of Ω and

let Kx be a connected component of the level set {z ∈ Ω : ψ(z) = ψ(x)} con-
taining the point x . Denote X = XΩ ′ = {x ∈ Ω ′ : Kx ∩ ∂Ω ′ = ∅}. By The-
orems 2.1 (i), 2.2, for almost all y ∈ ψ(X) and for any x ∈ X ∩ ψ−1(y), the
component Kx ⊂ Ω ′ \ Aw is a C1-smooth curve homeomorphic to the circle and
∇ψ �= 0 on Kx . Below, we call such Kx an admissible cycle (note that if X �= ∅
then the setψ(X) contains an interval; hence, it has positive measure and the family
of admissible cycles is nonempty).

Lemma 3.3. LetΩ ⊂ R
2 be a bounded, multiply connected domain with Lipschitz

boundary. Let w ∈ W 1,2(Ω) and p ∈ W 1,s(Ω) satisfy Euler equations (3.1) for
almost all x ∈ Ω and

∫

�i
w · n dS = 0, i = 1, . . . , N. Assume that there exists a

sequence of functions {Φμ} such that Φμ ∈ W 1,s
loc (Ω) and Φμ ⇀ Φ in W 1,s

loc (Ω)

for some s ∈ [4/3, 2). Then for any subdomain Ω ′ ⊂ Ω with X = XΩ ′ �= ∅
the functions Φμ|K are continuous on almost all8 admissible cycles K and the
sequence {Φμ|K } converges to Φ|K uniformly: Φμ|K ⇒ Φ|K .

8 “Almost all cycles” means cycles in preimages ψ−1(y) for almost all values y ∈ ψ(X).
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Proof. Fix an arbitrary ε > 0 and take a set V ⊂ R and a function g ∈ C1(R2)

from Theorem 2.1 (ii). Put Xg = XΩ ′ \ ψ−1(V ) and take arbitrary point x0 ∈
Xg, ψ(x0) = y0. Then by construction we have g(x0) = y0,∇ψ(x) = ∇g(x) �= 0
for x ∈ Kx0 , and the C1-smooth cycle Kx0 coincides with the connected component
of the level set {z ∈ R

2 : g(z) = y0} containing the point x0. Take small ε0 > 0
and denote by X0 the connected component of the preimage {z ∈ R

2 : g(z) ∈
[y0 − ε0, y0 + ε0]} containing x0. By construction, ∀y ∈ [y0 − ε0, y0 + ε0], the
preimage g−1(y) ∩ X0 is a C1-smooth cycle where ∇g �= 0. Now it is easy to
construct a C1-smooth diffeomorphism F = ( f1, f2) : X0 → [0, 1] × S

1 such
that f1 = l ◦ g, where l : R → R is a linear function which maps the segment
[y0 − ε0, y0 + ε0] onto [0, 1] (in particular, the level sets of f1 coincides with the
level sets of g).9

Let G = G(t, θ) = F−1, that is, G : [0, 1] × S
1 → X0 is a C1-diffeomor-

phism such that for any t ∈ [0, 1] the image {G(t, θ) : θ ∈ [0, 2π)} coincides
with the connected component of the level set {z ∈ R

2 : g(z) = g(G(t, 0))}
containing G(t, 0). Put Φ̃(t, θ) = Φ(G(t, θ)), etc.

The rest of the proof repeats the argument of the proof of Theorem 3.2 in [1].
For the reader’s convenience we repeat these arguments. Denote

zμ(t) =
∫ 2π

0
|Φ̃μ(t, θ)− Φ̃(t, θ)|

∣
∣
∣
∂

∂θ
Φ̃μ(t, θ)− ∂

∂θ
Φ̃(t, θ)

∣
∣
∣dθ.

Then
∫ 1

0
zμ(t)dt �

(∫ 1

0

∫ 2π

0
|Φ̃μ(t, θ)− Φ̃(t, θ)|qdθdt

) 1
q

×
(∫ 1

0

∫ 2π

0

∣
∣
∣
∂

∂θ
Φ̃μ(t, θ)− ∂

∂θ
Φ̃(t, θ)

∣
∣
∣
s
dθdt

) 1
s

� c‖Φμ −Φ‖Lq (X0)‖∇(Φμ −Φ)‖Ls (X0), (3.20)

where
1

q
+ 1

s
= 1, X0 = X0 ⊂ Ω . SinceΦμ ⇀ Φ in W 1,s

loc (Ω), by the Embedding

Theorem Φμ → Φ in Lq∗(X0) for q∗ = 2s
2−s � s

s−1 = q (the last inequality
follows from the assumption s � 4/3), and it follows from (3.20) that zμ → 0 in
L1([0, 1]). Thus, there exists a subsequence (we denote it again by {zμ}) converging
to zero almost everywhere on [0, 1].

Define

Hμ(t) = 1

2π

∫ 2π

0
Φ̃μ(t, θ)dθ, H(t) = 1

2π

∫ 2π

0
Φ̃(t, θ)dθ.

9 The second function f2 : X0 → S
1 can be constructed as follows. First of all, let

h : Kx0 → S
1 be C1-diffeomorphism. Then take a C∞-smooth vector field ξ(x), x ∈ X0,

which is close to ∇g(x) in C-norm. Consider integral lines of this vector field. Then each
integral line intersects the cycle Kx0 at one point. So we have a C1-smooth function f̃ :
X0 → Kx0 . Finally take f2 = h ◦ f̃ . Because level sets of f2 are “almost orthogonal” to
the level sets of g, the mapping F = ( f1, f2) is a diffeomorphism.
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SinceΦμ ⇀ Φ in W 1,s(X0), by the Embedding Theorem we conclude that Hμ →
H in C([0, 1]) as μ → ∞. Moreover, Φ̃μ, Φ̃ ∈ W 1,s([0, 1] × S

1) and, hence,
Φ̃μ(t, ·), Φ̃(t, ·) are absolutely continuous functions with respect to θ for almost
all t ∈ [0, 1].

Let us fix arbitrary t∗ ∈ [0, 1] such that zμ(t∗) → 0 and that the functions
Φ̃μ(t∗, ·), Φ̃(t∗, ·) are continuous. Let θμ ∈ [0, 2π ] be such that

Φ̃μ(t∗, θμ)− Φ̃(t∗, θμ) = Hμ(t∗)− H(t∗).

Then

max
θ∈[0,2π ] |Φ̃μ(t∗, θ)− Φ̃(t∗, θ)|2 � |Φ̃μ(t∗, θμ)− Φ̃(t∗, θμ)|2

+
∫ 2π

0

∣
∣
∣
∂

∂θ

(
Φ̃μ(t∗, θ)− Φ̃(t∗, θ)

)2
∣
∣
∣dθ = |Hμ(t∗)− H(t∗)|2 + 2zμ(t∗) → 0

asμ → ∞. Thus, the continuity of Φ̃μ(t, ·) and the uniform convergence Φ̃μ(t, ·) ⇒
Φ̃(t, ·) are proved for almost all t ∈ [0, 1], that is, for almost all level sets of
function g|X0 . Since X0 was a neighborhood of an arbitrary admissible cycle
Kx0 ⊂ Xg , the claim of the lemma is proved for almost all admissible cycles
K ⊂ Xg = XΩ ′ \ψ−1(V ). Because H1(V ) < ε and ε > 0 is arbitrary, the lemma
is proved completely. ��
Proof of Theorem 3.4. Let Ω ′ ⊂ Ω be an arbitrary domain with the boundary
∂Ω ′ not containing a singleton connected component (in particular, we can take
Ω ′ = Ω). Denote

σ1 = ess sup
x∈∂Ω ′

Φ(x), σ2 = ess sup
x∈Ω ′

Φ(x). (3.21)

Assume that the claim of Theorem 3.4 is false, that is,

σ1 < σ2. (3.22)

Then for all σ ∈ (σ1, σ2) the set {x ∈ Ω ′ \ Aw : Φ(x) > σ } is nonempty. Denote by
Kx the connected component of the level set {y ∈ Ω : ψ(y) = ψ(x)} containing
the point x . There are two possibilities:

(i) there exists a point y0 ∈ Ω ′ \ Aw such thatΦ(y0) > σ1 and Ky0 ∩∂Ω ′ �= ∅;
(ii) for any x ∈ Ω ′ \ Aw such that Φ(x) > σ1, the equality Kx ∩ ∂Ω ′ = ∅

holds.

We shall prove that in both cases (i) and (ii) the assumption (3.22) leads to a
contradiction.

(i) Let �′ be a connected component of ∂Ω ′ such that Ky0 ∩�′ �= ∅. Ifψ(x) =
const on �′, then by Remark 3.1Φ(x) = Φ(y0) > σ1 for any x ∈ �′\Aw ⊂
∂Ω ′. However, the last equality contradicts the definition (3.21) of σ1.
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Now let ψ(x) �= const on �′. Take any set E ⊂ ∂Ω ′ with H1(E) = 0. In
virtue of Lemma 3.1, there exists a sequence of connected compact sets Ki ⊂
Ω ′ \ (Aw ∪ E) and points xi ∈ Ki such that ψ |Ki ≡ ci = const, Ki ∩ ∂Ω ′ �=
∅, diam Ki � δ > 0 and xi → x0 ∈ Ky0 . Let yi ∈ Ki ∩ ∂Ω ′. By Lemma 3.2,

lim
i→∞Φ(yi ) = Φ(y0) > σ1.

Thus supx∈∂Ω ′\(Aw∪E) Φ(x) � Φ(y0) > σ1. Because of arbitrariness of E ⊂ ∂Ω ′
with H1(E) = 0 we have ess supx∈∂Ω ′ Φ(x) > σ1, and we obtain the contradic-
tion.10

(ii) These assumptions imply that the family of all admissible cycles is non-
empty (the definition of an admissible cycle is given in the commentary above
Lemma 3.3). By Lemma 3.3, on almost all admissible cycles K , the functions
Φμ|K are continuous and the sequence {Φμ|K } converges toΦ|K uniformly. Here
(during this proof) admissible cycles having this property are called uniformly
regular.

Let us fix σ ∈ (σ1, σ2) such that there exists an admissible cycle K σ with the
property Φ(x) ≡ σ for all x ∈ K σ .11 A uniformly regular cycle K is called red, if
Φ(x) < σ for x ∈ K . We need the following claim.

(***) For any z ∈ ∂Ω ′ there exists a red cycle K and an open neighborhood
U (z) such that U (z) and K σ lie in different connected components of the set R

2\K .
To prove (***), take any z ∈ ∂Ω ′. Because of the Sobolev Extension Theorem

we can assume that ψ ∈ W 2,1(R2). Fix a square Q ⊃ Ω ′ and apply Lemmas 2.7–
2.8 to the function f = ψ . Consider the corresponding arc J = J (K σ , Kz)

from these Lemmas, parameterized by the injective function ϕ : [0, 1] → J such
that ϕ(0) = K σ and ϕ(1) = Kz (below during this proof by Kx we denote the
connected component of the level set {y ∈ Q : ψ(y) = ψ(x)} containing x).
From the definition of admissible cycles it follows that K σ ∩ ∂Ω ′ = ∅. By con-
tinuity of ϕ we have ϕ(t) ∩ ∂Ω ′ = ∅ for t ∈ [0, δ], δ is sufficiently small. Put
t∗ = sup{t ∈ [0, 1] : ϕ(τ) ∩ ∂Ω ′ = ∅ ∀τ ∈ [0, t)}. Clearly,

ϕ(t∗) ∩ ∂Ω ′ �= ∅. (3.23)

Take a sequence ti → t∗ − 0 such that Ki = ϕ(ti ) are uniformly regular cycles. If
there exists i such that the cycle Ki is red, then the assertion of (***) is true and
there is nothing to prove. Assume now that Ki are not red for all i , that is,

Φ � σ on all Ki . (3.24)

To finish the proof of (***), we need to obtain a contradiction. By �′ denote the
connected component of ∂Ω ′ containing z. Since Ki ∩ ∂Ω ′ = ∅, we see that the

10 Note that in arguments of this paragraph we do not use the fact that the functions Φμ
converge to Φ.
11 It follows from Remark 3.1 that for any admissible cycle Kx the identity Φ(z) = Φ(x)

holds ∀z ∈ Kx .
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sets �′, K σ lie in the different connected components of the set R
2 \ Ki for all

i . Hence diam Ki � min(diam K σ , diam �′) > 0. We may assume without loss
of generality that Ki converges to some set K0 ⊂ Ω ′ with respect to the Haus-
dorff distance (see the footnote in the proof of Lemma 3.1), and xi → x0, where
xi ∈ Ki , x0 ∈ K0. From the previous properties we have K0 ⊂ ϕ(t∗), diam K0 �
min(diam K σ , diam �′) > 0, ψ ≡ const on K0. Now from Lemma 3.2 and (3.24)
we conclude that

Φ(x) � σ for all x ∈ K0 \ Aw.

From the last inequality and from the assumption ess supx∈∂Ω ′ Φ(x) = σ1 < σ it
follows that there exists a point x∗ ∈ K0 ∩Ω ′ \ Aw; moreover, Φ(x∗) > σ1. Then
by assumption (ii) we obtain the equality Kx∗ ∩ ∂Ω ′ = ∅.12 Thus Kx∗ = ϕ(t∗), but
the last equality contradicts (3.23). This contradiction finishes the proof of (***).

Combining (***) with the compactness of ∂Ω ′ (that is, for any open covering
of the compact set ∂Ω ′ it is possible to extract a finite subcovering), we get that
there exist finitely many red cycles separating K σ from all the points of ∂Ω ′. In
other words, there is a strictly interior subdomain Ω∗ ⊂ Ω ′ (Ω ∗ ⊂ Ω ′) such that
K σ ⊂ Ω∗ and the boundary ∂Ω∗ is the union of a finite number of uniformly
regular cycles S(1), . . . , S(M) such that

Φ|S( j) < σ, j = 1, . . . ,M.

Therefore,

σ > sup
x∈∂Ω∗

Φ(x) = max
j=1,...,M

sup
x∈S( j)

Φ(x) = lim
μ→∞

(

max
j=1,...,M

sup
x∈S( j)

Φμ(x)

)

= lim
μ→∞ sup

x∈∂Ω∗
Φμ(x).

Since by the assumptions the functionsΦμ satisfy the one-sided maximum principle
locally in Ω , we have the estimate

lim
μ→∞ ess sup

x∈Ω∗
Φμ(x) � lim

μ→∞ ess sup
x∈∂Ω∗

Φμ(x) < σ,

and because of the weak convergence Φμ ⇀ Φ in W 1,s(Ω∗), the inequality

ess sup
x∈Ω∗

Φ(x) < σ (3.25)

is valid. However, by the construction K (σ ) ⊂ Ω∗ \ Aw, thus the inequality (3.25)
contradicts the identity Φ|K (σ ) = σ . The contradiction obtained completes the
proof. ��

12 Remark, that in this case the connected component of the level set {y ∈ Q : ψ(y) =
ψ(x∗)} containing x∗ coincides with the connected component of the level set {y ∈ Ω ′ :
ψ(y) = ψ(x∗)} containing x∗.
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Remark 3.3. In particular, it follows from Theorem 3.4 and Remark 3.2, that if
w

∣
∣
∂Ω

= 0 (in the sense of traces), then

ess sup
x∈Ω

Φ(x) � ess sup
x∈∂Ω

Φ(x) = max{p1, p2, . . . , pN }, (3.26)

where p(x)|�i = pi = const.

Remark 3.4. Note that some version of a local weak one-sided maximum principle
was proved by Amick [1] (see Theorem 3.2 and Remark thereafter).

4. Existence Theorem

Now consider Navier–Stokes problem (1.1) in the domain Ω ⊂ R
2 defined by

(1.5) and assume that ∂Ω is Lipschitz. If the boundary datum a ∈ W 1/2,2(∂Ω)

satisfies condition (1.2), that is,

∫

∂Ω

a · n dS =
∫

�1

a · n dS +
∫

�2

a · n dS = 0,

then by Lemma 2.9 there exists a solenoidal extension A ∈ W 1,2(Ω) of a and
estimate (2.2) holds. Using this fact and standard results (for example [24]) we can
find a weak solution U ∈ W 1,2(Ω) of the Stokes problem such that U−A ∈ H(Ω)
and

ν

∫

Ω

∇U · ∇η dx = 0 ∀ η ∈ H(Ω). (4.1)

Moreover,

‖U‖W 1,2(Ω) � c‖a‖W 1/2,2(∂Ω). (4.2)

By a weak solution of problem (1.1) we understand a function u such that
w = u − A ∈ H(Ω) and

ν

∫

Ω

∇w · ∇η dx −
∫

Ω

(
(w + U) · ∇)

η · w dx −
∫

Ω

(
w · ∇)

η · U dx

=
∫

Ω

(
U · ∇)

η · U dx ∀η ∈ H(Ω). (4.3)

We shall prove the following

Theorem 4.1. Assume that a ∈ W 1/2,2(∂Ω) and let condition (1.6) be fulfilled.
If F = ∫

�2
a · n dS � 0, then problem (1.1) admits at least one weak solution.
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Proof.
1. We follow a contradiction argument of Leray [27]. Although this argument

has also been used in many other papers (for example [1,19,23,24]), we reproduce,
for the reader’s convenience, some of its details. It is well known (for example
[24]) that integral identity (4.3) is equivalent to an operator equation in the space
H(Ω) with a compact operator. Therefore, by virtue of the Leray–Schauder The-
orem, to prove the existence of a weak solution to Navier–Stokes problem (1.1) it
is sufficient to show that all possible solutions of the integral identity

ν

∫

Ω

∇w · ∇η dx − λ

∫

Ω

(
(w + U) · ∇)

η · w dx − λ

∫

Ω

(
w · ∇)

η · U dx

= λ

∫

Ω

(
U · ∇)

η · U dx ∀ η ∈ H(Ω) (4.4)

are uniformly bounded (with respect to λ ∈ [0, 1]) in H(Ω). Assume this is false.
Then there exist sequences {λk}k∈N ⊂ [0, 1] and {wk}k∈N ∈ H(Ω) such that

ν

∫

Ω

∇wk · ∇η dx − λk

∫

Ω

(
(wk + U) · ∇)

η · wk dx − λk

∫

Ω

(
wk · ∇)

η · U dx

= λk

∫

Ω

(
U · ∇)

η · U dx ∀ η ∈ H(Ω), (4.5)

and

lim
k→∞ λk = λ0 ∈ [0, 1], lim

k→∞ Jk = lim
k→∞ ‖wk‖H(Ω) = ∞. (4.6)

Let us take in (4.5) η = J−2
k wk and denote ŵk = J−1

k wk . Since
∫

Ω

(
(wk + U) · ∇)

wk · wk dx = 0,

we get

ν

∫

Ω

|∇ŵk |2 dx = λk

∫

Ω

(
ŵk · ∇)

ŵk · U dx + J−1
k λk

∫

Ω

(
U · ∇)

ŵk · U dx . (4.7)

Since ‖ŵk‖H(Ω) = 1, there exists a subsequence {ŵkl } converging weakly in H(Ω)
to a vector field ŵ ∈ H(Ω). Because of the compact embedding

H(Ω) ↪→ Lr (Ω) ∀ r ∈ (1,∞),

the subsequence {ŵkl } converges strongly in Lr (Ω). Therefore, passing to a limit
as kl → ∞ in equality (4.7) we obtain

ν = λ0

∫

Ω

(
ŵ · ∇)

ŵ · U dx . (4.8)

2. Let us return to integral identity (4.5). Consider the functional

Rk(η) =
∫

Ω

(
ν∇wk · ∇η − λk

(
(wk + U) · ∇)

η · wk − λk
(
wk · ∇)

η · U
)

dx

−λk

∫

Ω

(
U · ∇)

η · U dx ∀ η ∈ W̊ 1,2(Ω).
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Obviously, Rk(η) is a linear functional, and using (4.2) and Sobolev Embedding
Theorem, we get the estimate

∣
∣Rk(η)

∣
∣ � c

(
‖wk‖H(Ω) + ‖wk‖2

H(Ω) + ‖a‖2
W 1/2,2(∂Ω)

)
‖η‖H(Ω),

with constant c independent of k. It follows from (4.5) that

Rk(η) = 0 ∀ η ∈ H(Ω).

Therefore, by Lemma 2.10, there exist functions pk ∈ L̂2(Ω) = {q ∈ L2(Ω) :∫

Ω
q(x) dx = 0} such that

Rk(η) =
∫

Ω

pk div η dx ∀ η ∈ W̊ 1,2(Ω)

and

‖pk‖L2(Ω) � c
(
‖wk‖H(Ω) + ‖wk‖2

H(Ω) + ‖a‖2
W 1/2,2(∂Ω)

)
. (4.9)

The pair
(
wk, pk) satisfies the integral identity

ν

∫

Ω

∇wk · ∇η dx − λk

∫

Ω

(
(wk + U) · ∇)

η · wk dx − λk

∫

Ω

(
wk · ∇)

η · U dx

−λk

∫

Ω

(
U · ∇)

η · U dx =
∫

Ω

pk div η dx ∀ η ∈ W̊ 1,2(Ω). (4.10)

Let uk = wk + U. Then identity (4.10) takes the form (see (4.1))

ν

∫

Ω

∇uk · ∇η dx −
∫

Ω

pk div η dx = −λk

∫

Ω

(uk · ∇)
uk · η dx ∀ η ∈ W̊ 1,2(Ω).

Thus,
(
uk, pk) might be considered as a weak solution to the Stokes problem

⎧
⎨

⎩

−ν�uk + ∇ pk = fk in Ω,

div uk = 0 in Ω,

uk = a on ∂Ω,

with the right-hand side fk = −λk
(
uk ·∇)

uk . Obviously, fk ∈ Ls(Ω) for s ∈ (1, 2)
and

‖fk‖Ls (Ω) � c‖(uk · ∇)
uk‖Ls (Ω) � c‖uk‖L2s/(2−s)(Ω)‖∇uk‖L2(Ω)

� c
((‖wk‖H(Ω) + ‖U‖W 1,2(Ω)

)2
)

� c
(
‖wk‖2

H(Ω) + ‖a‖2
W 1/2,2(∂Ω)

)
,

where c is independent of k. By well known local regularity results for the Stokes
system (see [14,24]) we have wk ∈ W 2,s

loc (Ω), pk ∈ W 1,s
loc (Ω), and the estimate

‖wk‖W 2,s (Ω ′) + ‖pk‖W 1,s (Ω ′) � c
(
‖fk‖Ls (Ω) + ‖uk‖W 1,2(Ω) + ‖pk‖L2(Ω)

)

� c
(
‖wk‖2

H(Ω) + ‖wk‖H(Ω) + ‖a‖W 1/2,2(∂Ω) + ‖a‖2
W 1/2,2(∂Ω)

)

(4.11)
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holds, where Ω ′ is an arbitrary domain with Ω ′ ⊂ Ω and the constant c depends
on dist (Ω ′, ∂Ω) but not on k.

Denote p̂k = J−2
k pk . It follows from (4.9) and (4.11) that

‖ p̂k‖L2(Ω) � const, ‖ p̂k‖W 1,s (Ω ′) � const

for any Ω ′ ⊂ Ω and s ∈ (1, 2). Hence, from the sequence { p̂kl } we can extract
a subsequence, still denoted by { p̂kl }, which converges weakly in L̂2(Ω) and
W 1,s

loc (Ω) to some function p̂ ∈ W 1,s
loc (Ω) ∩ L̂2(Ω). Let ϕ ∈ C∞

0 (Ω). Taking
in (4.10) η = J−2

kl
ϕ and letting kl → ∞ yields

−λ0

∫

Ω

(
ŵ · ∇)

ϕ · ŵ dx =
∫

Ω

p̂ divϕ dx ∀ϕ ∈ C∞
0 (Ω).

Integrating by parts in the last equality, we derive

λ0

∫

Ω

(
ŵ · ∇)

ŵ · ϕ dx = −
∫

Ω

∇ p̂ · ϕ dx ∀ϕ ∈ C∞
0 (Ω). (4.12)

Hence, the pair
(
ŵ, p̂

)
satisfies, for almost all x ∈ Ω , the Euler equations

{
λ0

(
ŵ · ∇)

ŵ + ∇ p̂ = 0,
div ŵ = 0,

(4.13)

and ŵ
∣
∣
∂Ω

= 0. By Theorem 3.3, p̂ ∈ C(Ω) ∩ W 1,2(Ω) and the pressure p̂(x) is
constant on �1 and �2 (see Remark 3.2). Denote by p̂1 and p̂2 values of p̂(x) on
�1 and �2, respectively.

Multiplying equations (4.13) by U and integrating by parts we derive

λ0

∫

Ω

(
ŵ · ∇)

ŵ · U dx = −
∫

Ω

∇ p̂ · U dx = −
∫

∂Ω

p̂ a · n dS

= − p̂1

∫

�1

a · n dS − p̂2

∫

�2

a · n dS = F( p̂1 − p̂2) (4.14)

(see formula (1.6)). If either F = 0 or p̂1 = p̂2, then from (4.14) it follows that

λ0

∫

Ω

(
ŵ · ∇)

ŵ · U dx = 0. (4.15)

This last relation contradicts equality (4.8). Therefore, the norms ‖w‖H(Ω) of all
possible solutions to identity (4.4) are uniformly bounded with respect to λ ∈ [0, 1]
and by the Leray–Schauder Theorem problem (1.1) admits at least one weak solu-
tion u ∈ W 1,2(Ω).

3. Up to this point our arguments have been standard and have followed those
of Leray [27] (see also [19] and [1]). However, by our assumptions F > 0 and,
in general, p̂2 �= p̂1 (see a counterexample in [1]). Thus, (4.15) may be false. In
order to prove that p̂1 and p̂2 do coincide in the case F > 0, we use the fact that(
ŵ, p̂

)
was obtained as a limit (in some sense) of solutions to the Navier–Stokes
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equations. Note that the possibility of using this fact was already pointed up by
Amick [1].

Let Φkl = pkl + λkl

2
|ukl |2, where ukl = wkl + U, be total head pressures

corresponding to the solutions
(
wkl , pkl

)
of integral identities (4.10). Then Φkl ∈

W 2,s
loc (Ω), s ∈ (1, 2), satisfy almost everywhere in Ω the equations

ν�Φkl − λkl

(
ukl · ∇)

Φkl = ν
(∂u1kl

∂x2
− ∂u2kl

∂x1

)2
.

It is well known [15,16] (see also [30]) that Φkl satisfy the one-sided maximum
principle locally in Ω (the boundary ∂Ω is only Lipschitz and functions Φkl do
not have second derivatives up to the boundary). Set Φ̂kl = J−2

kl
Φkl . From (4.9),

(4.11) it follows that the sequence {Φ̂kl } weakly converges to Φ̂ = p̂ + λ0

2
|ŵ|2 in

the space L2(Ω) ∩ W 1,s
loc (Ω), s ∈ (1, 2). Therefore, by Theorem 3.4, Φ̂ satisfies

the weak one-sided maximum principle in Ω:

ess sup
x∈Ω

Φ̂(x) � ess sup
x∈∂Ω

Φ̂(x) = max{ p̂1, p̂2}. (4.16)

From equalities (4.8) and (4.14) we conclude that

( p̂1 − p̂2)F = ν > 0. (4.17)

So, if F > 0, then

p̂2 < p̂1. (4.18)

Now, from (4.16), (4.18) it follows that
∫

Ω

Φ̂(x) dx � ess sup
x∈Ω

Φ̂(x)|Ω| � p̂1|Ω|, (4.19)

where |Ω| = meas(Ω).
On the other hand, from equation (4.131) we obtain the identity

0 = x · ∇ p̂(x)+ λ0x · (
ŵ(x) · ∇)

ŵ(x) = div
[
x p̂(x)+ λ0

(
ŵ(x) · x

)
ŵ(x)

]

− p̂(x) div x − λ0|ŵ(x)|2 = div
[
x p̂(x)+ λ0

(
ŵ(x) · x

)
ŵ(x)

] − 2Φ̂(x).

(4.20)

Integrating this identity over Ω we derive

2
∫

Ω

Φ̂(x) dx =
∫

∂Ω

p̂(x)
(
x · n

)
dS = p̂1

∫

�1

(
x · n

)
dS + p̂2

∫

�2

(
x · n

)
dS

= p̂1

∫

Ω1

div x dx − p̂2

∫

Ω2

div x dx = 2
(

p̂1|Ω1| − p̂2|Ω2|
)
.

Hence,
∫

Ω

Φ̂(x) dx = p̂1|Ω1| − p̂2|Ω2| = p̂1|Ω| + (
p̂1 − p̂2

)|Ω2|. (4.21)
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Inequalities (4.19) and (4.21) yield

p̂1 � p̂2.

This contradicts inequality (4.18). Thus, all solutions of integral identity (4.4) are
uniformly bounded in H(Ω) and by the Leray–Schauder Theorem there exists at
least one weak solution of problem (1.1). ��
Remark 4.1. The arguments of the first two steps in the proof of Theorem 4.1 also
remain valid (with obvious changes) in the three-dimension case.

Remark 4.2. Let Ω = {x : 1 < |x | < 2} be the annulus and (r, θ) be the polar
coordinates in R

2. If f ∈ C∞
0 (1, 2), then the pair ŵ = (

ŵr , ŵθ
)

and p̂ with

ŵr (r, θ) = 0, ŵθ (r, θ) = f (r), p̂(r, θ) = λ0

r∫

1

f 2(t)

t
dt (4.22)

satisfy both equations (4.13) and the boundary condition ŵ
∣
∣
∂Ω

= 0 (ŵr and ŵθ
are components of the velocity field in polar coordinate system). However,

0 = p̂(x)
∣
∣
r=1 �= p̂(x)

∣
∣
r=2 = λ0

∫ 2

1

f 2(t)

t
dt > 0.

This simple example, due to Amick [1] (see also [13], v. II, p. 59), shows that,
in general, the pressure p̂ corresponding to the solution of Euler equations (4.13)
could have different constant values on different components of the boundary.

It is interesting to observe that for a solution like (4.22) the inequality p̂1 =
p̂(x)

∣
∣
r=2 > p̂2 = p̂(x)

∣
∣
r=1 necessarily holds. Thus the solution (4.22) cannot be a

limit of solutions to the Navier–Stokes problem (in the sense described in the proof
of Theorem 4.1). If it were, then we would conclude from (4.8), (4.14) that F > 0.
But this, as proved in Theorem 4.1, leads to a contradiction.

We emphasize that in the case when F < 0, problem (1.1) remains unsolved.
However, in this case we do not know a counterexample showing that for the solu-
tion to Euler equations (4.13) the inequality p̂2 > p̂1 holds.

It is well known (see [3,13]) that independently of the sign of the flux F , prob-
lem (1.1) has a solution, if |F | is sufficiently small. Using this result Theorem 4.1
can be strengthened as follows

Theorem 4.2. Assume that a ∈ W 1/2,2(∂Ω) and let condition (1.6) be fulfilled.
Then there exists F0 > 0 such that for any F ∈ [−F0,+∞), problem (1.1) admits
at least one weak solution.
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Appendix (Proof of Lemma 2.6)

In order to prove Lemma 2.6 we need some simple additional statements.

Lemma A.1. Let U ⊂ R
2 be a bounded, simply connected domain and let γ :

[α, β] → U be a continuous injective function (an arc) such that γ (α), γ (β) ∈ ∂U
and γ ((α, β)) ⊂ U. Then γ divides U into two simply connected domains. More
precisely, U \ γ ((α, β)) = V1 ∪ V2, V1 ∩ V2 = ∅, each Vj is a simply connected
domain, ∂Vj = γ ((α, β)) ∪ K j , where K j ⊂ ∂U are continua.

Lemma A.2. Let Ω∗ ⊂ R
2 be a bounded domain with ∂Ω∗ homeomorphic to

the unit circle, let K ⊂ Ω∗ be a continuum, and let an arc γ : [α, β] → Ω∗
have the properties γ (α), γ (β) ∈ K and γ ((α, β)) ⊂ Ω∗ \ K . Then there exists a
connected componentΩγ,K of the open set R

2 \ (
K ∪γ ([α, β])) such thatΩγ,K is

a bounded, simply connected domain, Ωγ,K ⊂ Ω∗ and ∂Ωγ,K = γ ([α, β]) ∪ Kγ ,
where Kγ ⊂ K is a continuum.

Lemma A.3. Let Ω∗ ⊂ R
2 be a bounded domain with ∂Ω∗ homeomorphic to the

unit circle, let K ⊂ Ω∗ be a continuum, and let Ω1 ⊂ Ω∗ \ K be a subdomain.
Suppose Ω1 is contained in the unbounded connected component of the open set
R

2\K . Then there exists δ > 0 such that for any arc γ : [α, β] → Ω∗ with the prop-
erties γ (α), γ (β) ∈ K and γ ((α, β)) ⊂ {x ∈ Ω∗ : dist(x, K ) < δ} \ (K ∪Ω1),
the equality Ωγ,K ∩Ω1 = ∅ holds, where Ωγ,K is an arbitrary simply connected
domain from Lemma A.2.

Lemma A.4. Let Ω ⊂ R
2 be a bounded domain with a Lipschitz boundary and

let K ⊂ Ω be a continuum. Then for any δ > 0 and for any pair a, b ∈ K
there exists an arc γ : [0, 1] → Ω with the properties γ (0) = a, γ (1) = b, and
γ ((0, 1)) ⊂ {x ∈ Ω : dist(x, K ) < δ}.

Lemmas A.1–A.4 are easy consequences of the classical well-known facts of
general topology, so we omit their proofs.

Proof of Lemma 2.6. Because of the definition of a domain with a Lipschitz

boundary, the following representation Ω = Ω∗ \
(

⋃k
i=1Ω i

)

holds, where

Ω i ∩ Ω j = ∅ for i �= j,Ω i ⊂ Ω∗, and each set Ω∗,Ωi is a bounded domain
whose boundary is homeomorphic to the unit circle. Denote by U j the connected
components of the open set Ω∗ \ K . Then for any Ωi there exists an index j (i)
such that Ωi ⊂ U j (i). We may assume without loss of generality that

(�) For each U j there exists at most one Ωi ⊂ U j .
(Really, if (�) is not true, for example if there exist two domainsΩ1∪Ω2 ⊂ U j , then we

can take a simply connected Lipschitz domain Ω̃1 such thatΩ1∪Ω2 ⊂ Ω̃1 ⊂ U j , Ω̃1 � Ω∗,
and consider (instead ofΩ ) the Lipschitz domain Ω̃ = Ω∗ \ Cl

(
Ω̃1 ∪Ω3 ∪ · · · ∪Ωk

)
, etc.)

Take δ1 > 0 and a continuous injective function γ : [0, 1] → Ω with the
properties γ (0), γ (1) ∈ K , and γ ((0, 1)) ⊂ {x ∈ Ω : dist(x, K ) < δ1}. Let
(α, β) be an interval adjoining the set K̃ = γ−1(K ). Then there exists U j such that
γ ((α, β)) ⊂ U j . Now we have the following possibilities.

(I) U j ∩Ωi = ∅ for all i = 1, . . . , k. Then we putΩαβ = Ωγαβ,K , Kαβ = Kγαβ ,
where γαβ is the restriction γ |[α,β] andΩγαβ,K , Kγαβ are objects from Lemma A.2.
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(II) U j ⊃ Ωi for some i = 1, . . . , k. This possibility splits into two cases.
(II a)Ωi is contained in the unbounded connected component of the set R

2 \ K .
Then Ωα,β, Kαβ are the same as in case (I), above. This definition satisfies all the
requirements in (ℵ) for sufficiently small δ1 > 0 because of Lemma A.3.

(II b) Ωi is contained in the bounded connected component of the set R
2 \ K .

Of course, in our case this component coincides with U j . Then, obviously, U j is
a simply connected domain, ∂U j ⊂ K . Take a decomposition U j \ γ ((α, β)) =
V1 ∪ V2 from Lemma A.1. Since γ ((α, β)) ∩ Ωi = ∅, we have either Ωi ⊂ V1
or Ωi ⊂ V2. Suppose, for definiteness, that the first equality is valid. Then take
Ωαβ = V2, Kαβ = K2 (see Lemma A.1).

We have consider all possible cases, so Lemma 2.6 is proved. ��
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