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On the Morse–Sard property and level sets
of Wn;1 Sobolev functions on Rn

By Jean Bourgain at Princeton, Mikhail V. Korobkov at Novosibirsk and
Jan Kristensen at Oxford

Abstract. We establish Luzin N and Morse–Sard properties for functions from the
Sobolev space Wn;1.Rn/. Using these results we prove that almost all level sets are finite dis-
joint unions of C1-smooth compact manifolds of dimension n � 1. These results remain valid
also within the larger space of functions of bounded variation BVn.Rn/. For the proofs we
establish and use some new results on Luzin-type approximation of Sobolev and BV-functions
by Ck-functions, where the exceptional sets have small Hausdorff content.

Introduction

The starting point of the paper is the following classical result (see also [11] for more
general expositions):

Theorem (Morse–Sard 1942, [15, 18]). Let f WRn ! Rm be a Ck-smooth mapping
with k � max.n �mC 1; 1/. Then

(1) Lm.f .Zf // D 0;

where Lm denotes the m-dimensional Lebesgue measure and Zf denotes the set of critical
points of f , i.e., Zf D ¹x 2 Rn W rankrf .x/ < mº.

The order of smoothness in the assumptions of this theorem is sharp on the scale Cj

(see, e.g., [21]). However, some analogs of the Morse–Sard theorem remain valid for functions
lacking the required smoothness in the classical theorem. Although (1) may be no longer valid
then, Dubovitskiı̆ [9] obtained some results on the structure of level sets in the case of reduced
smoothness (also see [4]).
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94 Bourgain, Korobkov and Kristensen, On the Morse–Sard property

Another direction of the research was the generalization of the Morse–Sard theorem to
functions in more refined scales of spaces, and especially in Hölder and Sobolev spaces (for
example, see [2, 4, 6, 7, 12, 16]). In particular, De Pascale ([7], see also [12]) proved that (1)
holds when f 2Wk;p.Rn;Rm/ with p > n, k � max.n �mC 1; 2/. Note that in this case v
is C1-smooth by virtue of the Sobolev imbedding theorem, and so the critical set is defined as
usual.

For a historical review for the plane case n D 2, m D 1 see for instance [5]. We
mention only the paper [17] where it was proved that (1) holds for Lipschitz functions f of
class BV2.R2/, where BV2.R2/ is the space of functions f 2 L1.R2/ such that all its partial
(distributional) derivatives of the second order are R-valued Radon measures on R2.

In this paper we consider the case of R-valued Sobolev functions v 2 Wn;1.Rn/. It
is known (see, e.g., [8]) that such a function admits a continuous representative which is
(Fréchet-)differentiable H1-almost everywhere. The critical set Zv is defined as the set of
points x, where v is differentiable with total (Fréchet-)differential v0.x/ D 0. As our main
result we prove that L1.v.Zv// D 0 (see Theorem 4.1).

Also we show that for any v 2 Wn;1.Rn/ and " > 0 there exists ı > 0 such that for all
subsets E � Rn with H1

1.E/ < ı we have L1.v.E// < ", where H1
1 is the Hausdorff con-

tent. In particular, it follows that L1.v.E// D 0 whenever H1.E/ D 0 (see Theorem 2.1). So
the image of the exceptional “bad” set, where the differential is not defined, has zero Lebesgue
measure. This ties nicely with our definition of the critical set and our version of the Morse–
Sard result.

Finally, using these results we prove that almost all level sets of Wn;1-functions defined
on Rn are finite disjoint unions of C1-smooth compact manifolds of dimension n � 1 without
boundary (see Theorem 5.3).

The proof of the last result relies in turn on new Luzin-type approximation results for
Wl;1 Sobolev functions by Ck-functions, k � l , where the exceptional sets are of small Haus-
dorff content (see Theorem 3.1). The Lp analogs of such results are well known when p > 1,
see, e.g., [3, 20, 23], where Bessel and Riesz capacities are used instead of Hausdorff content.
In fact, the exceptional set can be precisely characterized in terms of the Bessel and Riesz
capacities when f 2Wl;p.Rn/ and p > 1.

We extend our results also to the space BVn.Rn/ consisting of functions v 2 L1.Rn/
such that all its partial (distributional) derivatives of the n-th order are R-valued Radon mea-
sures on Rn (see Section 6).

For the plane case n D 2 these results were obtained in [5] by different methods that do
not easily extend to the multidimensional case n > 2 that is the main focus here.

Our proofs rely on the results of [14] on advanced versions of Sobolev imbedding theo-
rems (see Theorem 1.3), of [1] on Choquet integrals of Hardy–Littlewood maximal functions
with respect to Hausdorff content (see Theorem 1.5), and of [22] on the entropy estimate of
near-critical values of differentiable functions (see Theorem 1.6). The key step in the proof of
the assertion of the Morse–Sard theorem is contained in Lemma 4.2.

1. Preliminaries

By an n-dimensional interval we mean a closed cube I D Œa; b�n � Rn with sides
parallel to the coordinate axes. Furthermore we write `.I / D b � a for its sidelength.
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Bourgain, Korobkov and Kristensen, On the Morse–Sard property 95

We denote by Ln.F / the outer Lebesgue measure of a set F � Rn. Denote by Hk , Hk
1

the k-dimensional Hausdorff measure, Hausdorff content, respectively: for any F � Rn,

Hk.F / D lim
˛&0

Hk
˛ .F / D sup

˛>0

Hk
˛ .F /;

where for each 0 < ˛ � 1,

Hk
˛ .F / D inf

° 1X
iD1

.diamFi /
k
W diamFi � ˛; F �

1[
iD1

Fi

±
:

It is well known that Hn.F / � Hn
1.F / � Ln.F / for sets F � Rn.

To simplify the notation, we write kf kL1 instead of kf kL1.Rn/, etc.
The space Wk;1.Rn/ is as usual defined as consisting of those functions f 2 L1.�/

whose distributional partial derivatives of order l � k belong to L1.Rn/ (for detailed defini-
tions and differentiability properties of such functions see, e.g., [8, 10, 23]). Denote by rkf
the vector-valued function consisting of all k-th order partial derivatives of f arranged in some
fixed order. We use the norm

kf kWk;1 D kf kL1 C krf kL1 C � � � C kr
kf kL1 :

Working with Sobolev functions we always assume that the precise representatives are
chosen. If w 2 L1loc.�/, then the precise representative w� is defined by

w�.x/ D

8<: lim
r!0

«
B.x;r/

w.z/ dz; if the limit exists and is finite,

0 otherwise;

where the dashed integral as usual denotes the integral mean,«
B.x;r/

w.z/dz D
1

Ln.B.x; r//

Z
B.x;r/

w.z/ dz;

and B.x; r/ D ¹y W jy � xj < rº is the open ball of radius r centered at x.
The following well-known assertion follows immediately from the definition of Sobolev

spaces.

Lemma 1.1. Let f 2Wl;1.Rn/. Then for any " > 0 there exist functions f0 2C10 .R
n/,

f1 2Wl;1.Rn/, such that f D f0 C f1 and kf1kWl;1 < ".

We need a version of the Sobolev Embedding Theorem that gives inclusions in Lebesgue
spaces with respect to suitably general positive measures. Very general and precise statements
are known, but here we restrict attention to the following class of measures:

Definition 1.2. Let � be a positive measure on Rn. We say that � has property .� � l/
for some l � n, if

�.I / � `.I /n�l

for any n-dimensional interval I � Rn.
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96 Bourgain, Korobkov and Kristensen, On the Morse–Sard property

Theorem 1.3 (see [14, §1.4.3]). If f 2Wl;1.Rn/ and � has property .� � l/, then

(2)
Z
jf jd� � Ckrlf kL1 ;

where C does not depend on �; f .

For a function u 2 L1.I /, I � Rn, define the polynomial PI;kŒu� of degree at most k by
the following rule:

(3)
Z
I

y˛
�
u.y/ � PI;kŒu�.y/

�
dy D 0

for any multi-index ˛ D .˛1; : : : ; ˛n/ of length j˛j D ˛1 C � � � C ˛n � k.
We will often use the following simple technical assertion.

Lemma 1.4. Suppose v 2 Wn;1.Rn/. Then v is a continuous function and for any
k D 0; : : : ; n � 1 and for any n-dimensional interval I � Rn the estimate

(4) sup
y2I

jv.y/ � PI;kŒv�.y/j � C
�krkC1vkL1.I /

`.I /n�k�1
C kr

nvkL1.I /

�
holds, whereC depends on n only. Moreover, the function vI;k.y/ D v.y/�PI;kŒv�.y/, y 2 I ,
can be extended from I to the whole of Rn such that vI;k 2Wn;1.Rn/ and

(5) kr
nvI;kkL1.Rn/ � C0R.I; k/;

where C0 also depends on n only and R.I; k/ denotes the right-hand side of the estimates (4)
(in brackets).

Proof. The existence of a continuous representative for v follows from [14, §1.4.5, Re-
mark 2]. Because of coordinate invariance it is sufficient to prove the estimate (4)–(5) for the
case when I is a unit cube: I D Œ0; 1�n. By results of [14, §1.1.15] for any u 2 Wn;1.I / the
estimates

(6) sup
y2I

ju.y/j � ckukWn;1.I / � c
�
kPI;kŒu�kL1.I / C kr

kC1ukL1.I / C kr
nukL1.I /

�
hold, where c D c.n; k/ is a constant. Taking u.y/ D v.y/ � PI;kŒv�.y/, the first term
on the right-hand side of (6) vanishes and so the inequality (6) turns to the estimates (4)–
(5) (here we used also the following fact: every function u 2 Wn;1.I / can be extended to
a function u 2 Wn;1.Rn/ such that the estimate krnukL1.Rn/ � ckukWn;1.I / holds, see
[14, §1.1.15]).

The following two results are crucial for our proof.

Theorem 1.5 ([1]). If f 2Wk;1.Rn/, where k 2 ¹1; : : : ; n � 1º, thenZ 1
0

Hn�k
1 .¹x 2 Rn WMf .x/ � �º/ d� � C

Z
Rn
jr
kf .y/j dy;
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Bourgain, Korobkov and Kristensen, On the Morse–Sard property 97

where C depends on n; k only and

Mf .x/ D sup
r>0

r�n
Z
B.x;r/

jf .y/j dy

is the usual Hardy–Littlewood maximal function of f .

Theorem 1.6 ([22]). For A � Rm and " > 0 let Ent."; A/ denote the minimal number
of balls of radius " covering A. Then for any polynomial P WRn ! R of degree at most k, for
each ball B � Rn of radius r > 0, and any number " > 0 the estimate

Ent."r; ¹P.x/ W x 2 B; jrP.x/j � "º/ � C�

holds, where C� depends on n; k only.

To apply Theorem 1.5, we need also the following simple estimate and its corollary.

Lemma 1.7 (see [8, Lemma 2]). Let u 2 W1;1.Rn/. Then for any ball B.z; r/ � Rn,
B.z; r/ 3 x, the estimate ˇ̌̌

u.x/ �

«
B.z;r/

u.y/ dy
ˇ̌̌
� Cr.Mru/.x/

holds, where C depends on n only and Mru is a Hardy–Littlewood maximal function of ru.

Corollary 1.8. Let u 2 W1;1.Rn/. Then for any ball B � Rn of a radius r > 0 and
for any number " > 0 the estimate

diam.¹u.x/ W x 2 B; .Mru/.x/ � "º/ � C��"r

holds, where C�� is a constant depending on n only.

We will use the following k-order analog of Lemma 1.7.

Lemma 1.9 (see [8, Lemma 2]). Let u 2Wk;1.Rn/, k � n. Then for any n-dimensional
interval I � Rn, x 2 I , and for any m D 0; 1; : : : ; k � 1 the estimateˇ̌

r
mu.x/ � rmPI;k�1Œu�.x/

ˇ̌
� C`.I /k�m.Mrku/.x/

holds, where the constant C depends on n; k only.

2. On images of sets of small Hausdorff contents

The main result of this section is the following Luzin N -property for Wn;1-functions:

Theorem 2.1. Let v 2 Wn;1.Rn/. Then for each " > 0 there exists ı > 0 such that for
any set E � Rn if H1

1.E/ < ı, then H1.v.E// < ". In particular, H1.v.E// D 0 whenever
H1.E/ D 0.
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98 Bourgain, Korobkov and Kristensen, On the Morse–Sard property

For the plane case, n D 2, Theorem 2.1 was obtained in the paper [5].
For the remainder of this section we fix a function v 2 Wn;1.Rn/. To prove Theorem

2.1, we need some preliminary lemmas that we turn to next.
By a dyadic interval we understand an interval of the form Œ k1

2m
; k1C1
2m

��� � �� Œ kn
2m
; knC1
2m

�,
where ki ; m are integers. The following assertion is straightforward, and hence we omit its
proof here.

Lemma 2.2. For any n-dimensional interval I � Rn there exist dyadic intervals
Q1; : : : ;Q2n such that I � Q1 [ � � � [Q2n and `.Q1/ D � � � D `.Q2n/ � 2`.I /.

Let ¹I˛º˛2A be a family of n-dimensional dyadic intervals. We say that the family ¹I˛º
is k-regular, if for any n-dimensional dyadic interval Q the following estimate holds:

(7) `.Q/k �
X

˛WI˛�Q

`.I˛/
k :

The next two assertions are the multidimensional analogs of the corresponding plane
results from the paper [5].

Lemma 2.3. Let k 2 ¹1; : : : ; nº and let I˛ be a family of n-dimensional dyadic in-
tervals. Then there exists a k-regular family Jˇ of n-dimensional dyadic intervals such thatS
˛ I˛ �

S
ˇ Jˇ and X

ˇ

`.Jˇ /
k
�

X
˛

`.I˛/
k :

Proof. Define

F D
°
J W J � Rn dyadic intervalI

X
I˛�J

`.I˛/
k
� `.J /k

±
:

Thus I˛ 2 F for each ˛. Denote by F � D ¹Jˇ º the collection of maximal elements of F .
Clearly [

˛

I˛ �
[
ˇ

Jˇ ;

and since dyadic intervals are either disjoint or contained in one another, the ¹Jˇ º are mutually
disjoint1). It follows thatX

ˇ

`.Jˇ /
k
�

X
ˇ

X
I˛�Jˇ

`.I˛/
k
�

X
˛

`.I˛/
k :

Observe also that for any dyadic interval Q � Rn,X
Jˇ�Q

`.Jˇ /
k
� `.Q/k :

1) By disjoint dyadic intervals we mean intervals with disjoint interiors.
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Bourgain, Korobkov and Kristensen, On the Morse–Sard property 99

Indeed, if Jˇ � Q for some ˇ, then clearly either Jˇ D Q or Jˇ ¤ Q. In the first case the
estimate is evident, and in the second case we deduce from maximality of Jˇ that Q 62 F , and
hence that X

Jˇ�Q

`.Jˇ /
k
�

X
I˛�Q

`.I˛/
k < `.Q/k :

Lemma 2.4. Let k D 0; : : : ; n � 1. Then for each " > 0 there exists ı D ı."; v; k/ > 0
such that for any .k C 1/-regular family I˛ � Rn of n-dimensional dyadic intervals we have
if
P
˛ `.I˛/

kC1 < ı, then
P
˛ R.I˛; k/ < ".

Proof. Fix " > 0 and let I˛ � Rn be a .k C 1/-regular family of n-dimensional
dyadic intervals with

P
˛ `.I˛/

kC1 < ı, where ı > 0 will be specified below. By virtue
of Lemma 1.1 we can find a decomposition v D v0 C v1, where krj v0kL1 � K D K."; v/

for all j D 0; 1; : : : ; n and

(8) kr
nv1kL1 < ":

Assume that

(9)
X
˛

`.I˛/
kC1 < ı < 1

KC1
":

Define the measure � by

� D
�X

˛

1

`.I˛/n�k�1
1I˛

�
Ln;

where 1I˛ denotes the indicator function of the set I˛.
Claim. 1

2nCkC2
� has property .� � .k C 1//.

Indeed, write for a dyadic interval Q

�.Q/ D
X
I˛�Q

`.I˛/
kC1
C

X
Q�I˛

`.Q/n

`.I˛/n�k�1
� 2`.Q/kC1;

where we invoked (7) and the fact that Q � I˛ for at most one ˛. Then for any interval I we
have the estimate �.I / � 2nCkC2`.I /kC1 (see Lemma 2.2). This proves the claim.

Now return to the estimate of
P
˛ R.I˛; k/. In addition to (9) we now decrease ı > 0

further such that X
˛

kr
nvkL1.I˛/ <

"
2
:

By definition of R.I; k/ (see Lemma 1.4) and properties (8) and (2) (applied to f D rkC1v1;
l D n � k � 1), we haveX

˛

R.I˛; k/ D
X
˛

kr
nvkL1.I˛/ C

X
˛

1

`.I˛/n�k�1

Z
I˛

jr
kC1vj

�
"
2
C

K
KC1

"C
X
˛

1

`.I˛/n�k�1

Z
I˛

jr
kC1v1j

D C 0"C C

Z
jr
kC1v1j d� � C 00":

Since " > 0 was arbitrary, the proof of Lemma 2.4 is complete.
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100 Bourgain, Korobkov and Kristensen, On the Morse–Sard property

Proof of Theorem 2.1. We have an obvious estimate diam v.I / � CR.I; 0/ for any n-
dimensional interval I � Rn (see Lemma 1.4). Fix " > 0 and take ı D ı."/ from Theorem 2.4
for k D 0, that is, for any 1-regular family I˛ � Rn of n-dimensional dyadic intervals, ifP
˛ `.I˛/ < ı, then

P
˛ R.I˛; 0/ < ", consequently,

P
˛ diam v.I˛/ < C". Now the assertion

of Theorem 2.1 follows from Lemmas 2.2 and 2.3 (by these lemmas, there exists ı1 > 0 such
that if H1

1.E/ < ı1, then E can be covered by a 1-regular family I˛ � Rn of n-dimensional
dyadic intervals with

P
˛ `.I˛/ < ı).

3. On approximation of Wl;1 Sobolev functions

Theorem 3.1. Let k; l 2 ¹1; : : : ; nº, k � l . Then for any f 2 Wl;1.Rn/ and for each
" > 0 there exist an open set U � Rn and a function g 2 C k.Rn/ such that Hn�lCk

1 .U / < "

and f � g, rmf � rmg on Rn n U for m D 1; : : : ; k.

The proof of Theorem 3.1 is based on the results of [1, 8] and on the classical Whitney
Extension Theorem:

Theorem 3.2. Let k 2 N and let f D f0; f˛ be a finite family of functions defined
on the closed set E � Rn, where ˛ ranges over all multi-indices ˛ D .˛1; : : : ; ˛n/ with
j˛j D ˛1 C � � � C ˛n � k. For x; y 2 E and a multi-index ˛, j˛j � k, put

T˛.xIy/ D
X

jˇ j�k�j˛j

1

ˇŠ
f˛Cˇ .x/ � .y � x/

ˇ ; R˛.xIy/ D f˛.y/ � T˛.xIy/:

Suppose that there exists a function !W Œ0;C1/! Œ0;C1/ such that !.t/! 0 as t & 0 and
for each multi-index ˛, j˛j � k, and for all x; y 2 E the estimate

jR˛.xIy/j � !.jx � yj/jx � yj
k�j˛j

holds. Then there exists a function g 2 C k.Rn/ such that f � g, f˛ � @˛g on E for j˛j � k.

Proof of Theorem 3.1. Let the assumptions of Theorem 3.1 be fulfilled. For the case
k D l the assertion of the theorem is well known (see, e.g., [3, 13, 23]).

Now fix k < l . Then the gradientsrmf .x/,m � k, are well-defined for all x 2 RnnAk ,
where Hn�lCk.Ak/ D 0 (see [8]). For a multi-index ˛ with j˛j � k denote by T˛.f; xIy/ the
Taylor polynomial of order at most k � j˛j for the function @˛f with the center at x:

T˛.f; xIy/ D
X

jˇ j�k�j˛j

1

ˇŠ
@˛Cˇf .x/ � .y � x/ˇ :

By virtue of the Whitney Extension Theorem 3.2, we finish the proof of Theorem 3.1 by check-
ing that for each multi-index ˛ with j˛j � k the corresponding Taylor remainder term satisfies
the estimate @˛f .y/ � T˛.f; xIy/ D o.jx � yjk�j˛j/ uniformly for x; y 2 Rn n U , where
Hn�lCk
1 .U / is small.

Take a sequence fi 2 C10 .R
n/ such that

kr
lfi � r

lf kL1 < 4
�i :
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Bourgain, Korobkov and Kristensen, On the Morse–Sard property 101

Denote Qfi D f � fi . Put

Bi D
®
x 2 Rn W .Mrk Qfi /.x/ > 2

�i
¯
; Gi D Ak [

� 1[
jDi

Bj

�
:

Then by Theorem 1.5 we have
Hn�lCk
1 .Bi / � c 2

�i ;

and consequently,
Hn�lCk
1 .Gi / < C 2

�i :

By construction,

(10) jr
k Qfj .x/j � 2

�j

for all x 2 Rn n Gi and all j � i . For a multi-index ˛ with j˛j � k � 1 denote by
T˛;k�1.f; xIy/ the Taylor polynomial of order k � 1 � j˛j for the function @˛f with the
center at x:

T˛;k�1.f; xIy/ D
X

jˇ j�k�1�j˛j

1

ˇŠ
@˛Cˇf .x/ � .y � x/ˇ :

In our notation,

T˛.f; xIy/ D T˛;k�1.f; xIy/C
X

jˇ jDk�j˛j

1

ˇŠ
@˛Cˇf .x/ � .y � x/ˇ :

We start by estimating the remainder term @˛ Qfj .y/�T˛;k�1. Qfj ; xIy/ for a multi-index ˛ with
j˛j � k � 1. Fix x; y 2 Rn n Gi , j � i , and an n-dimensional interval I such that x; y 2 I ,
jx � yj � `.I /. By construction and Lemma 1.9,ˇ̌

@˛ Qfj .y/ � @
˛PI;k�1Œ Qfj �.y/

ˇ̌
� C`.I /k�j˛j.Mrk Qfj /.y/ � C jx � yj

k�j˛j2�j :

For the same reasons we find for any multi-index ˇ with jˇj � k � 1 � j˛j thatˇ̌
@˛Cˇ Qfj .x/ � @

˛CˇPI;k�1Œ Qfj �.x/
ˇ̌
� C`.I /k�j˛j�jˇ j.Mrk Qfj /.x/

� C jx � yjk�j˛j�jˇ j2�j :

Consequently,ˇ̌
@˛ Qfj .y/ � T˛;k�1. Qfj ; xIy/

ˇ̌
�
ˇ̌
@˛ Qfj .y/ � @

˛PI;k�1Œ Qfj �.y/
ˇ̌
C
ˇ̌
@˛PI;k�1Œ Qfj �.y/ � T˛;k�1. Qfj ; xIy/

ˇ̌
� C jx � yjk�j˛j2�j

C

X
jˇ j�k�1�j˛j

1

ˇŠ

ˇ̌�
@˛Cˇ Qfj .x/ � @

˛CˇPI;k�1Œ Qfj �.x/
�
� .y � x/ˇ

ˇ̌
� C1jx � yj

k�j˛j2�j :
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102 Bourgain, Korobkov and Kristensen, On the Morse–Sard property

Finally from the last estimate and (10) we haveˇ̌
@˛f .y/ � T˛.f; xIy/

ˇ̌
�
ˇ̌
@˛ Qfj .y/ � T˛. Qfj ; xIy/

ˇ̌
C
ˇ̌
@˛fj .y/ � T˛.fj ; xIy/

ˇ̌
�
ˇ̌
@˛ Qfj .y/ � T˛;k�1. Qfj ; xIy/

ˇ̌
C jr

k Qfj .x/j � jx � yj
k�j˛j

C !fj .jx � yj/ � jx � yj
k�j˛j

� C 0jx � yjk�j˛j2�j C !fj .jx � yj/ � jx � yj
k�j˛j

D
�
C 02�j C !fj .jx � yj/

�
� jx � yjk�j˛j;

where !fj .r/! 0 as r ! 0 (the latter holds since fj 2 C10 .R
n/). We emphasize that the last

inequality is valid for all j � i and x; y 2 Rn nGi . Take an open set Ui � Gi such that

Hn�lCk
1 .Ui / < C2

�i :

Put Ei D Rn n Ui . Then by constructionˇ̌
@˛f .y/ � T˛.f; xIy/

ˇ̌
�
�
C 02�j C !fj .jx � yj/

�
� jx � yjk�j˛j

for all j � i , j˛j � k, and x; y 2 Ei . Then the assumptions of the Whitney Extension
Theorem 3.2 are fulfilled, and hence the proof of Theorem 3.1 is complete.

Remark 3.3. Using the extension formula and the methods from the proof of Theo-
rem 6.2 (see Section 6 below; this approach was originally introduced in [3]), one can prove
that for k < l the function g from the assertion of Theorem 3.1 can be constructed such that in
addition the estimate kf � gkWkC1;1 < " holds.

4. Morse–Sard theorem in Wn;1.Rn/

Recall that if v 2 Wn;1.Rn/ and k D 1; : : : ; n, then rkv.x/ is well-defined for Hk-
almost all x 2 Rn (see [8]). In particular, v is differentiable (in the classical Fréchet sense)
and the classical derivative coincides with rv.x/ D limr!0

ª
B.x;r/ rv.z/ dz at all points

x 2 Rn n Av, where H1.Av/ D 0. Consequently, in view of Theorem 2.1, H1.v.Av// D 0.
Denote Zv D ¹x 2 Rn n Av W rv.x/ D 0º. The main result of the section is as follows:

Theorem 4.1. If v 2Wn;1.Rn/, then H1.v.Zv// D 0.

For the remainder of the section we fix a function v 2Wn;1.Rn/.
The key point of the proof is contained in the following lemma.

Lemma 4.2. For any n-dimensional dyadic interval I � Rn the estimate

H1.v.Zv \ I // � Ckr
nvkL1.I /

holds, where C depends on n only.
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Bourgain, Korobkov and Kristensen, On the Morse–Sard property 103

Proof. Note that by formula (5) it is sufficient to prove the estimate

H1.v.Zv \ I // � Ckr
nvI;n�1kL1.Rn/;

where the function vI;n�1 was defined in Lemma 1.4.
Fix an n-dimensional dyadic interval I � Rn. To simplify the notation, we will write vI

and PI instead of vI;n�1 and PI;n�1Œv� respectively. In particular, vI .x/ D v.x/ � PI .x/ for
all x 2 I . Denote

� D krnvIkL1.Rn/; Ej D
®
x 2 Rn W .MrvI /.x/ 2 .2

j�1; 2j �
¯
; j 2 Z:

Denote also ıj D H1
1.Ej /: Then by Theorem 1.5,

1X
jD�1

ıj 2
j
� C1�;

where C1 depends on n only. By construction, for each j 2 Z there exists a family of balls
Bij � Rn of radii rij such that

Ej �

1[
iD1

Bij and
1X
iD1

rij � 3ıj :

Denote
Zij D Zv \ I \Ej \ Bij and Z1 D Zv \ I n

�[
i;j

Zij

�
:

By construction Z1 � ¹x 2 Rn W .MrvI /.x/ D 1º, so by Theorem 1.5, H1.Z1/ D 0 and
hence by Theorem 2.1, H1.v.Z1// D 0. Thus it is sufficient to estimate H1.v.Zij //.

Since rPI .x/D�rvI .x/ at each point x 2Zv\I , we have by construction for all i; j :

Zij �
®
x 2 Bij W jrPI .x/j D jrvI .x/j � .MrvI /.x/ � 2

j
¯
:

Applying Theorem 1.6 and Corollary 1.8 to functions PI , vI , respectively, with B D Bij and
" D 2j , we find a finite family of balls Tk � R each of radius .1CC��/2j rij , k D 1; : : : ; C�,
such that

C�[
kD1

Tk � v.Zij /:

Therefore
H1.v.Zij // � 2C�.1C C��/2

j rij ;

and consequently,

H1.v.Zv \ I // �

1X
jD�1

1X
iD1

2C�.1C C��/2
j rij � 6C�.1C C��/

1X
jD�1

2j ıj � C
0�:

The last estimate finishes the proof of the lemma.

From the last result and the absolute continuity of the Lebesgue integral we infer
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104 Bourgain, Korobkov and Kristensen, On the Morse–Sard property

Corollary 4.3. For any " > 0 there exists ı > 0 such that for any set E � Rn if
Hn
1.E/ � ı, then H1.v.Zv \ E// � ". In particular, H1.v.Zv \ E// D 0 for any E � Rn

with Hn
1.E/ D 0.

Because of the classical Morse–Sard theorem for g 2 C n.Rn/, Theorem 3.1 (applied to
the case k D n ) implies

Corollary 4.4. There exists a set Z0;v of n-dimensional Lebesgue measure zero such
that H1.v.Zv nZ0;v// D 0. In particular, H1.v.Zv// D H1.v.Z0;v//.

From Corollaries 4.4 and 4.3 we conclude the proof of Theorem 4.1.

5. Application to the level sets of Wn;1 functions

Theorem 3.1 for the case k D 1 implies

Theorem 5.1. Let v 2 Wn;1.Rn/. Then for any " > 0 there exist an open set U � Rn

and a function g 2 C1.Rn/ such that H1
1.U / < " and v � g, rv � rg on Rn n U .

If we apply Theorems 2.1 and 4.1 to the last assertion, we obtain

Corollary 5.2. Let v 2 Wn;1.Rn/. Then for any " > 0 there exist an open set V � R
and a function g 2 C1.Rn/ such that H1.V / < ", v.Av/ � V and vjv�1.RnV / D gjv�1.RnV /,
rvjv�1.RnV / D rgjv�1.RnV / ¤ 0.

Finally we have

Theorem 5.3. Let v 2 Wn;1.Rn/. Then for almost all y 2 R the preimage v�1.y/ is a
finite disjoint family of .n� 1/-dimensional C1-smooth compact manifolds (without boundary)
Sj , j D 1; : : : ; N.y/.

Proof. The inclusion v 2 Wn;1.Rn/ and Lemma 1.4 easily imply the following state-
ment:

(i) For any " > 0 there exists R" 2 .0;C1/ such that jv.x/j < " for all x 2 Rn nB.0;R"/.

Fix arbitrary " > 0. Take the corresponding set V and function g 2 C 1.Rn/ from
Corollary 5.2. Let 0 ¤ y 2 v.Rn/ n V . Denote Fv D v�1.y/, Fg D g�1.y/. We assert the
following properties of these sets.

(ii) Fv is a compact set.

(iii) Fv � Fg .

(iv) rv D rg ¤ 0 on Fv.

(v) The function v is differentiable (in the classical sense) at each x 2 Fv, and the classical
derivative coincides with rv.x/ D limr!0

ª
B.x;r/ rv.z/ dz.
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Bourgain, Korobkov and Kristensen, On the Morse–Sard property 105

Indeed, property (ii) follows from (i), properties (iii)–(iv) follow from Corollary 5.2, and
property (v) follows from the condition v.Av/ � V of Corollary 5.2.

We require one more property of these sets:

(vi) For any x0 2 Fv there exists r > 0 such that Fv \ B.x0; r/ D Fg \ B.x0; r/.

Indeed, take any point x0 2 Fv and suppose the claim (vi) is false. Then there exists a
sequence of points Fg n Fv 3 xi ! x0. Denote by Ix the straight line segment of length r
with the center at x parallel to the vector rv.x0/ D rg.x0/. Evidently, for sufficiently small
r > 0 the equality Ix \ Fg D ¹xº holds for any x 2 Fg \ B.x0; r/. Then by construction
Ixi \ Fv D ; for sufficiently large i . Hence for sufficiently large i either v > y on Ixi or
v < y on Ixi . For definiteness, suppose v > y on Ixi for all i 2 N. In the limit we obtain the
inequality v � y D v.x0/ on Ix0 . But the last assertion contradicts (iv)–(v). This contradiction
finishes the proof of (vi).

Obviously, (ii)–(vi) imply that each connected component of the set Fv D v�1.y/ is a
compact .n � 1/-dimensional C 1-smooth manifold (without boundary).

6. On the case of BVn functions

For signed or vector-valued Radon measures � we denote by k�k the total variation
measure of �. The space BVk.Rn/ is as usual defined as consisting of those functions
f 2 Wk�1;1.Rn/ whose distributional partial derivatives of order k are Radon measures with
kDkf k.Rn/ < 1, where we denote by Dkf the vector-valued measure consisting of all k-
order partial derivatives of f (for detailed definitions and differentiability properties of such
functions see, e.g., [8, 10, 23]). In particular, the following fact is well known.

Lemma 6.1. Let f 2 BVk.Rn/. Then there exists a sequence fi 2 C10 .R
n/ such that

kfi � f kWk�1;1 ! 0; krkfikL1 � C; and kr
kfikL1.U / ! kD

kf k.U /

for any open subset U � Rn with kDkf k.@U / D 0.

The results obtained in the previous sections were established for functions of class
BV2.R2/ in [5], hence in the present section we consider only functions of class BVn.Rn/
for n � 3. Recall that in this case rkv.x/ is well-defined for Hk-almost all x 2 Rn,
k D 1; : : : ; n � 2 (see [8]). In particular, v is differentiable (in the classical Fréchet sense)
at all points x 2 Rn n Av, where H1.Av/ D 0. Denote Zv D ¹x 2 Rn n Av W rv.x/ D 0º.
Most of the results from the previous sections remain valid for functions v 2 BVn.Rn/. More
precisely, Theorem 2.1, Lemma 2.4 for k � n � 2, and Theorems 4.1, 5.1, 5.3 are also true
in this more general BV context. Except for Theorem 4.1, whose proof we discuss below,
the proofs are entirely analogous. Also, the assertion of Approximation Theorem 3.1 remains
valid for f 2 BVl.Rn/, k; l 2 ¹1; : : : ; nº, k � l , k ¤ l � 1 (for the case k D l it follows
immediately from the results of [8] and [13]; the proof for k � l � 2 will be discussed below).

On the other hand, the assertion of Lemma 2.4 for k D n � 1 is not valid for a gen-
eral v 2 BVn.Rn/. Also the assertion of the Approximation Theorem 3.1 is not valid for
f 2 BVl.Rn/ when k D l � 1.
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106 Bourgain, Korobkov and Kristensen, On the Morse–Sard property

In order to prove the assertion of the Approximation Theorem 3.1 for f 2 BVl.Rn/,
k; l 2 ¹1; : : : ; nº when k � l � 2, one can repeat the arguments from the proof for the Sobolev
case (see Section 3). Proceeding in this manner, one notices that in the first step it is necessary
to have a sequence of functions fi 2 Ck.Rn/ with kf � fikBVl ! 0. Such a sequence exists
because of the following result.

Theorem 6.2. Let f 2 BVl.Rn/, l � n. Then for any " > 0 there exists a function
g 2 BVl.Rn/ such that

(i) kf � gkBVl < ";

(ii) g 2 Cl�2;1.Rn/; i.e., g 2 Cl�2.Rn/ and rl�2g is a Lipschitz function;

(iii) there exists an open set U � Rn such that Hn�1
1 .U / < " and f � g, rmf � rmg on

Rn n U for m D 1; : : : ; l � 2.

Very similar results were proved in [3] for the case of Sobolev functions f 2 Wl;p.Rn/
with p > 1, and our proof follows the ideas from [3].

To prove Theorem 6.2, we need some preliminary results.

Lemma 6.3. Let f 2 BVl.Rn/, l � n. Then for each " > 0 there exists ı > 0 such
that for any open set U � Rn we have that if Hn�1

1 .U / < ı then kDlf k.U / < ".

Proof. It is an easy consequence of the Coarea Formula, and we leave details to the
interested reader (or see [5, Lemma 2.4]).

Remark 6.4. Using the methods of the proof of [8, Lemma 2], one can prove the fol-
lowing result. Let u 2 BVkC1.Rn/, k C 1 � n. Then for any n-dimensional interval Q � Rn

and any point x 2 Rn with dist.x;Q/ � 9n`.Q/ the estimatesˇ̌
r
kPQ;kŒu�.x/

ˇ̌
� C.Mrku/.x/;ˇ̌

r
mu.x/ � rmPQ;kŒu�.x/

ˇ̌
� C`.Q/k�m.Mrku/.x/

hold for each m 2 ¹0; : : : ; k � 1º, where the constant C depends on n only.

Proof of Theorem 6.2. Fix " 2 .0; 1/. Let U be an open set such that

Hn�1
1 .U / < ";

kDlf k.U / < ";(11)

.Mrl�1f /.x/ � C" for all x 2 Rn n U :(12)

The existence of U follows from Lemma 6.3 and Theorem 1.5, that remains valid for
f 2 BVl.Rn/ provided the L1 norm is replaced by the total variation norm (see [1]). Denote
F D Rn n U . Take a Whitney cube decomposition U D

S1
jD1Qj , where all cubes Qj

are dyadic, and select an associated smooth partition of unity ¹'j ºj2N . Recall the standard
properties of Qj , 'j (see [19, Chapter VI]):

(i) diam.Qj / � dist.Qj ; F / � 4 diam.Qj / < 1.
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Bourgain, Korobkov and Kristensen, On the Morse–Sard property 107

(ii) Every point x 2 U is covered by at most N D .12/n different cubes Q�j , where the cube
Q�j has the same center as Qj and `.Q�j / D

9
8
`.Qj /.

(iii) For each j 2 N, we have supp'j � Q�j � U , moreover, jrm'j j � Cm`.Qj /�m for all
m 2 N.

(iv) All 'j � 0 and
P1
jD1 'j .x/ � 1 on U .

Now we define the function gWRn ! R by

g.x/ D

´
f .x/; if x 2 F ,P1
jD1 'j .x/PQ�j ;l�1

Œf �.x/; if x 2 U .

Recall the following properties of the polynomials PQ�
j
;l�1Œf �.x/ (see [8, p. 1034]):Z

Q�
j

ˇ̌
r
mf .z/ � rmPQ�

j
;l�1Œf �.z/

ˇ̌
dz � C`.Q�j /

l�m
kDlf k.Q�j /IDl.f � PQ�

j
;l�1Œf �/

.Q�j / D kDlf k.Q�j /;
where m 2 ¹0; 1; : : : ; l � 1º. From these properties and assumption (11) we get by direct
calculation for each m D 0; : : : ; l � 1 the estimates

1X
jD1

rm�'j .f � PQ�
j
;l�1Œf �/

�
L1.Q�

j
/
� CkDlf k.U / < C":

Analogously,

1X
jD1

kDl
�
'j .f � PQ�

j
;l�1Œf �/

�
k.Q�j / � CkD

lf k.U / < C":

From the convergence of the above series and from the completeness of the space
BVl.Rn/ it follows readily that f � g D

P1
jD1 'j .f � PQ�j ;l�1

Œf �/ 2 BVl.Rn/. Con-
sequently,

g 2 BVl.R
n/ and kf � gkBVl < C":

Thus to finish the proof of the theorem, it is sufficient to check that

(13) kr
l�1gkL1 <1:

From (12) by construction it follows that

ess supF jr
l�1gj D ess supF jr

l�1f j � C":

Now estimate jrl�1g.y/j for y 2 U . Let y 2 Qj0 . Take x 2 F such that

dist.x;Qj0/ D dist.F;Qj0/:

Then C0`.Q�j / � jy � xj � C1`.Q
�
j / for each Q�j 3 y. Consider the .l � 2/-order Taylor

polynomial

T .f; xIy/ D
X
jˇ j�l�2

1

ˇŠ
@ˇf .x/ � .y � x/ˇ :
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108 Bourgain, Korobkov and Kristensen, On the Morse–Sard property

From assumption (12) and Remark 6.4 (with k D l�1) it follows that for arbitrary multi-index
˛ with j˛j � l � 1ˇ̌

@˛.PQ�
j
;l�1Œf �.y/ � T .f; xIy//

ˇ̌
�
ˇ̌
r
l�1PQ�

j
;l�1Œf �.x/

ˇ̌
� jx � yjl�1�˛

C

X
jˇ j�l�2�j˛j

1

ˇŠ

ˇ̌�
@˛CˇPQ�

j
;l�1Œf �.x/ � @

˛Cˇf .x/
�
� .y � x/ˇ

ˇ̌
� C2jx � yj

l�1�j˛j
� C3`.Q

�
j /
l�1�j˛j:

From the last estimate we have

jr
l�1g.y/j D

ˇ̌
r
l�1.g.y/ � T .f; xIy//

ˇ̌
D

ˇ̌̌ X
j WQ�

j
3y

r
l�1
�
'j .y/.PQ�

j
;l�1Œf �.y/ � T .f; xIy//

�ˇ̌̌

�

X
j WQ�

j
3y

l�1X
mD0

jr
l�1�m'j .y/j �

ˇ̌
r
m.PQ�

j
;l�1Œf �.y/ � T .f; xIy//

ˇ̌
� C4;

where the constant C4 does not depend on y 2 U . The last estimate finishes the proof of the
target assertion (13).

Now we discuss the proof of Theorem 4.1 in the BV-case, which is more delicate than
the Sobolev case.

The assertion of the key Lemma 4.2 remains valid for v 2 BVn.Rn/ with identical proof
if we replace in its formulation krnvkL1.I / by kDnvk.I / � kDnvI;n�1k.Rn/. From the last
fact using the standard covering lemmas one can easily deduce the following:

Lemma 6.5. Let v 2 BVn.Rn/. Then for each " > 0 there exists ı > 0 such that for
any Borel set E � Rn the estimate H1.v.Zv \ E// � CkD

nvk.E/ holds, where C does not
depend on E; v.

From this lemma and from Lemma 6.3 we infer easily

Corollary 6.6. Let v 2 BVn.Rn/. Then for each " > 0 there exists ı > 0 such that for
any Borel set E � Rn we have that if Hn�1

1 .E/ < ı then H1.v.Zv \E// � ". In particular,
H1.v.Zv \E// D 0 whenever Hn�1.E/ D 0.

We need a more refined version of Lemma 1.4 in the BV case.

Lemma 6.7. Suppose v 2 BVn.Rn/ and S � Rn is an .n�1/-dimensional C1-smooth
compact manifold (without boundary). Then there exists ı D ı.S/ > 0 such that for any ball
B D B.z; r/ with z 2 S and r < ı the estimates

sup
y2 NBC

ˇ̌
v.y/ � PBC;n�1Œv�.y/

ˇ̌
� CkDnvk.BC/;

sup
y2 NB�

ˇ̌
v.y/ � PB�;n�1Œv�.y/

ˇ̌
� CkDnvk.B�/
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hold, where C depends on n only, BC; B� are the connected components of the open set
B n S , and the polynomials PB˙;n�1Œv� are defined by formula (3) with I replaced by B˙,
respectively. Moreover, each function vB˙.y/ D v.y/ � PB˙;n�1Œv�.y/, y 2 B˙, can be
extended from NB˙ to the whole of Rn such that vB˙ 2 BVn.Rn/ and

kDnvB˙k.R
n/ � C0kD

nvk.B˙/;

where C0 also depends on n only.

The proof of this lemma is similar to the proof of Lemma 6.7 with the following addi-
tion: we must apply the advanced version of the Sobolev Extension Theorem from bounded
Lipschitz domains to the whole of Rn with the estimate of the norm of the extension operator
depending on n and on the Lipschitz constant of the domain only (see [19, Chapter VI, §3.2,
Theorem 5’]).

From Lemmas 6.7 and 4.2 (more precisely, from its proof), we have

Corollary 6.8. Suppose v 2 BVn.Rn/ and S � Rn is an .n � 1/-dimensional
C1-smooth compact manifold (without boundary). Then there exists ı D ı.S/ > 0 such that
for any ball B D B.z; r/ with z 2 S and r < ı the estimate

H1.v.Zv \ B \ S// � CkD
nvk.BC/

holds, where C depends on n only and BC is a connected component of the open set B n S .

The next lemma follows from the elementary observation that for any finite measure �
we have that �.¹x 2 Rn W 0 < dist.x; S/ < "º/! 0 as "& 0.

Lemma 6.9. Suppose v 2 BVn.Rn/ and S � Rn is an .n�1/-dimensional C1-smooth
compact manifold (without boundary). Then for any " > 0 there exists a finite family of balls
Bj D B.zj ; rj /, j D 1; : : : ; N , such that zj 2 S , rj < ", and

S �

N[
jD1

Bj ;

NX
jD1

kDnvk.B
j
C
/ < ":

Combining these results we find

Corollary 6.10. Suppose v 2 BVn.Rn/ and S � Rn is an .n � 1/-dimensional
C1-smooth compact manifold. Then H1.v.Zv \ S// D 0.

Recall that a set K � Rn is called .n� 1/-rectifiable, if there exists an at most countable
family of C1-surfaces Si � Rn of dimension .n � 1/ such that Hn�1.K n

S
i Si / D 0:

We can therefore reformulate Corollaries 6.10 and 6.6 in the following form.

Corollary 6.11. Suppose v 2 BVn.Rn/ andK � Rn is an .n�1/-rectifiable set. Then
H1.v.Zv \K// D 0.

The following fact is well known.
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Theorem 6.12 (see [8, Theorems B and 1]). Suppose that v 2 BVn.Rn/. Then there
exists a decomposition Rn D Kv [Gv with the following properties:

(i) Kv is .n � 1/-rectifiable.

(ii) Each x 2 Gv is a Lebesgue point for rn�1v, moreover, rn�2v is differentiable at x in
the following integral sense:

(14)
«
B.x;r/

ˇ̌
r
n�2v.y/ � rn�2v.x/ � rn�1v.x/ � .y � x/

ˇ̌
dy D o.r/ as r & 0.

Now we are able to prove the following main result:

Theorem 6.13. Suppose v 2 BVn.Rn/. Then H1.v.Zv// D 0.

Proof. In view of Corollary 6.6 and Theorem 6.2 it is sufficient to prove the target equal-
ity H1.v.Zv// D 0 only for a case when v 2 BVn.Rn/ \ Cn�2;1.Rn/, i.e., v 2 Cn�2.Rn/
and rn�2v satisfies the Lipschitz condition

(15)
ˇ̌
r
n�2v.y/ � rn�2v.x/

ˇ̌
� Ljy � xj for all x; y 2 Rn

and for some constant L > 0. Consider the sets Kv, Gv from Theorem 6.12. In view of
Corollary 6.11 we have

H1.v.Zv \Kv// D 0:

So we need only to prove that H1.v.Zv \Gv// D 0.
Take the decomposition (nondisjoint in general) Gv D G1 [G2 [G3, where

G1 D
®
x 2 Gv W 9m D 2; : : : ; n � 2 W r

mv.x/ ¤ 0
¯
;

G2 D
®
x 2 Gv W r

n�1v.x/ D 0
¯
;

G3 D
®
x 2 Gv W rv

n�2.x/ D 0; rvn�1.x/ ¤ 0
¯
:

Because of Corollary 6.10 and the Implicit Function Theorem for smooth functions we have

H1.v.Zv \G1//

�

n�2X
mD2

H1
�
v
�®
x 2 Gv W rv.x/ D � � � D r

m�1v.x/ D 0; rmv.x/ ¤ 0
¯��
D 0:

On the other hand, by the Coarea Formula (see [10]) kDnvk.G2/ D 0, hence by Lemma 6.5,

H1.v.Zv \G2// D 0:

Now estimate v.Zv \ G3/. From the integral differentiability (14) and the Lipschitz condi-
tion (15) it follows that rn�2v is differentiable in the classical sense for each x 2 Gv, i.e., we
have for all x 2 Gvˇ̌

r
n�2v.y/ � rn�2v.x/ � rn�1v.x/ � .y � x/

ˇ̌
D o.r/ as r & 0.

Let ei , i D 1; : : : ; n, be the unit coordinate vectors of Rn. Denote

Ei;j;k D
®
x 2 G3 W jrv

n�2.x C tei /j �
1
j
jt j for all t 2 Œ� 1

k
; 1
k
�
¯
:
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By construction,
G3 D

[
j;k2N; iD1;:::;n

Eijk :

It is easy to see (using the Lipschitz condition (15)) that locally each setEijk is a graph of some
Lipschitz function of .n � 1/ variables .x1; : : : ;bxi ; : : : ; xn/, i.e., Eijk is .n � 1/-rectifiable.
Then by Corollary 6.11, H1.v.Zv \Eijk// D 0.
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