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Abstract

This is a survey of results on the Leray problem (1933) for the nonhomogeneous
boundary value problem for the steady Navier–Stokes equations in a bounded
domain with multiple boundary components. The boundary conditions are
assumed only to satisfy the necessary requirement of zero total flux. The authors
have proved that the problem is solvable in arbitrary bounded planar or three-
dimensional axially symmetric domains. The proof uses Bernoulli’s law for
weak solutions of the Euler equations and a generalization of the Morse–Sard
theorem for functions in Sobolev spaces. Similar existence results (without any
restrictions on fluxes) are proved for steady Navier–Stokes system in two- and
three-dimensional exterior domains with multiply connected boundary under
assumptions of axial symmetry. In particular, it was shown that in domains with
two axes of symmetry and for symmetric boundary datum, the two-dimensional
exterior problem has a symmetric solution vanishing at infinity.

1 Introduction

The paper deals with bounded and exterior domains � � R
n, n D 2; 3, with C2-

smooth boundary @� D [NjD0�j consisting of N C 1 disjoint components �j , i.e.,

� D �0 n

0
@

N[
jD1

N�j

1
A ; N�j � �0; j D 1; : : : ; N; (1)

where �j ; j D 1; : : : ; N; are bounded domains, �j D @�j . In the case of exterior
domains, �0 D R

n. Consider in � the stationary Navier–Stokes system with the
nonhomogeneous boundary conditions

8̂
<̂
ˆ̂:

���uC
�
u � r

�
uCrp D f in �;

div u D 0 in �;

u D a on @�:

(2)

In (2) as usual, � > 0 is the kinematical viscosity coefficient, u, p are the (unknown)
velocity and pressure fields, and a and f are the (assigned) boundary value and the
body force density, respectively.

The continuity equation (22) implies the necessary compatibility condition for
the solvability of problem (2):

Z

@�

a � n dS D
NX
jD0

Z

�j

a � n dS D
NX
jD0

Fj D 0; (3)
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where n is a unit vector of the outward (with respect to �) normal to @�. The
compatibility condition (3) means that the total flux of the fluid over the boundary
@� is zero.

Starting from the famous paper of J. Leray [49] published in 1933, problem (2)
has been studied in many papers. However, only recently [36,37,41] the solvability
of the problem (2) was proved in bounded 2D domains and for the axially symmetric
3D case under the sole necessary condition (3). In all previous papers the existence
of a weak solution u 2 W 1;2.�/ to problem (2) was proved only either under
the stronger condition that all fluxes Fj of the boundary value a are equal to zero
separately across each boundary component �j :

Fj D
Z

�j

a � n dS D 0; j D 0; 2; : : : ; N; (4)

(see, e.g., [30, 46, 47, 49, 77]), or for sufficiently small fluxes Fj (see, e.g., [5, 16,
18, 20, 21, 44, 65, 66]), or under certain symmetry conditions on the domain � and
the boundary value a (e.g., [2, 14, 19, 52, 63, 64, 70]). (Note that condition (4) does
not allow the presence of sinks and sources; further, the condition of smallness of
fluxes Fj does not imply the norm of the boundary value a to be small.)

Recently the stationary Navier–Stokes problem with nonhomogeneous boundary
conditions was also studied in domains with non-compact boundaries. In 1999
[57] this problem was solved in an infinite layer on the bottom of which is a
compactly supported sink or source of an arbitrary intensity (without any the
smallness assumption on the flux). Later in 2010 [59, 60], the problem was
considered in unbounded domains � with multiply connected boundaries assuming
the “smallness” assumption on fluxes of the boundary value a over bounded
connected components of the boundary and does not impose any restrictions on
fluxes over infinite parts of @�. In [59, 60] only solutions with finite Dirichlet
integral were studied, what impose some restrictions on the geometry of the flow
domain. In [31,32] these results were extended to a class of solutions which can have
infinite Dirichlet integral in domains � � R

n; n D 2; 3; having paraboloidal and
layer type outlets to infinity. In [53–56] the stationary Navier–Stokes problem was
studied in symmetric two-dimensional multiply connected domains�with channel-
like outlets to infinity containing a finite number of “holes.” Under certain symmetry
assumptions on the domain and the boundary value a, and assuming that a is equal
to zero on the infinite outer boundary, the authors proved that there exists a solution
which tends in every channel to a corresponding Poiseuille flow. Notice that in these
results the fluxes of a over the boundary of each “hole” may be arbitrarily large, but
the sum of them has to be equal to the flux of the corresponding Poiseuille flow
which needs to be sufficiently small. Finally, in [9] the problem was solved in a
symmetric domain � � R

2 with either a paraboloidal or a channel-like outlet to
infinity assuming that the boundary value a is a symmetric function. The boundary
value a could be nonzero on the outer boundary, and there are no restrictions on
the size of the fluxes over both the inner and the outer boundaries. Furthermore, the
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solution may have infinite Dirichlet integral and does not oblige to tend (in the case
of channel-like outlets) to the Poiseuille flow. Therefore, the restriction that the sum
of fluxes has to be small is also relaxed.

Since the study of the existence of a solution to (2) for not small fluxes originates
from Leray’s paper [49], the question whether (2) is solvable in an arbitrary domain
with a multiply connected boundary under the sole condition (3) is today known as
Leray’s problem.

In this paper the results concerning Leray’s problem in bounded and exterior
two-dimensional and axially symmetric three-dimensional domains are presented.
The presentation is based on results obtained by authors in [36]–[43].

The standard notation for Lebesgue and Sobolev spaces, Lq.�/ and W k;q.�/,
W

k;q

loc .�/, VW
k;q.�/, are used in the paper; W k�1=q;q.@�/ is the trace space on @�

of functions from W k;q.�/. C10 .�/ denotes the set of all infinitely differentiable
functions with compact support in �. D.�/ is the Hilbert space of vector-valued
functions formed as the closure of C10 .�/ with respect to the Dirichlet norm
kukD.�/ D krukL2.�/ induced by the scalar product

Œu; v� D
R
�

ru � rv dx; (5)

where ru � rv D
nP

jD1

ruj � rvj D
nP

jD1

nP
kD1

@uj
@xk

@vj

@xk
:

Denote by J10 .�/ the set of all divergence-free (div u D 0) vector fields u from
C10 .�/ and by H.�/ the space formed as the closure of J10 .�/ with respect to
the Dirichlet norm.

2 On Two Leray’s Approaches

Let us describe shortly the history of the topic. Let� be a bounded domain. A weak
solution of the problem (2) is a vector field u such that w D u�A 2 H.�/ satisfies
the integral identity

�
R
�

rw � r� dx D ��
R
�

rA � r� dx C
R
�

�
A � r

�
� � A dx

C
R
�

�
A � r

�
� � w dx C

R
�

�
w � r

�
� � w dx

C
R
�

�
w � r

�
� � A dx C

R
�

f � � dx

(6)

for any � 2 H.�/. Here, A 2 W 1;2.�/ is a solenoidal extension of the boundary
data a 2 W 1=2;2.@�/.

The integral identity (6) can be reduced to an operator equation in the Hilbert
space H.�/:

w D Tw; (7)
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where the compact operator T is defined by the equality

ŒTw; �� D ��1
Z

�

..wC A/ � r/� � w dx C ��1
Z

�

.w � r/� � A dx

�

Z

�

rA � r� dx C ��1
Z

�

.A � r/� � A dx C ��1
Z

�

f � � dx 8 w;� 2 H.�/

(see (5) for the definition of the inner product Œ�; ��). The existence of a fixed point
to (7) follows from the Leray–Schauder Theorem (e.g., [21, 46, 49]). In order to
apply the Leray–Schauder theorem, one needs an a priori estimate of solutions to
the operator equation with a parameter �:

w.�/ D �Tw.�/; � 2 Œ0; 1�: (8)

In [49] J. Leray introduced two different approaches to get this estimate. The
first method uses a special extension of the boundary value a into � as A."; x/ D
curl

�
�."; x/b.x/

�
, where �."; x/ is the so-called Hopf’s cutoff function [29].

For such extension the following estimate

�

Z

�

�
v � r

�
A � v dx � "c

Z

�

jrvj2 dx 8 v 2 VW 1;2.�/; (9)

is valid (e.g., [47]), where " > 0 can be taken arbitrary small and the constant
c is independent of ". This allows to prove the required a priori estimate for the
solutions. Indeed, taking in (6) � D w and using (9), one gets

�
R
�

jrwj2 dx D ���
R
�

rA � rw dx � �
R
�

�
A � r

�
A � w dx

��
R
�

�
w � r

�
A � w dx C �

R
�

f � w dx

� "c
R
�

jrwj2 dx C c"
� R
�

jfj2dx C
R
�

jrAj2 dx C
R
�

jAj4 dx
�
:

(10)

If "c < �, from (10), it follows that

Z

�

jrwj2 dx � c"

0
@
Z

�

jfj2dx C
Z

�

jrAj2 dx C
Z

�

jAj4 dx

1
A : (11)

Usually (9) is called Leray–Hopf’s inequality. It is well known that our boundary
value can be extended into the domain as a curl only if the condition (4) is satisfied.
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The counterexamples in [27, 76], and [15] (see also [21]) show that if the net flux
across some component of the boundary is nonzero, then for arbitrary domain �,
it is impossible, in general, to extend the boundary value a in any manner as a
solenoidal function A satisfying Leray–Hopf’s inequality (9). Thus, this approach
may be applied only when condition (4) is satisfied.

The second approach in Leray’s paper [49] is to prove an a priory estimate by a
contradiction. Such arguments can be found also in the book of O.A. Ladyzhenskaya
[47]. In [2] the solvability of (2) was proved using this method for arbitrary fluxes
Fj assuming only the necessary condition (3). However, the problem was studied
for a special class of plane symmetric domains and symmetric boundary values. An
effective estimate for the solution of the Navier–Stokes problem with the above
symmetry conditions was first obtained by L.I. Sazonov [70], who constructed
a symmetric extension of the boundary data satisfying Leray–Hopf’s inequality.
Analogous results were independently obtained by H. Fujita [19] (see also [52]),
who called the proposed method “virtual drains method.”

Let us describe the second approach of getting an a priory estimate by a
contradiction. Let A 2 W 1;2.�/ be an arbitrary solenoidal extension of the
boundary value a. It is necessary to show that the norms of all possible solutions
w.�/ of the operator equation (8) are uniformly bounded by a constant independent
of � 2 Œ0; 1�. Suppose that this is false. Then there exist sequences f�kgk2N � Œ0; 1�
and fbwk D bw.�k/gk2N 2 H.�/ such that

�

Z

�

rbwk � r� dx � �k

Z

�

�
.bwk C A/ � r

�
� �bwk dx � �k

Z

�

�bwk � r
�
� � A dx

D ��k�

Z

�

rA � r� dx C �k

Z

�

�
A� r

�
� � A dx C �k

Z

�

f � � dx 8� 2 H.�/;

(12)
and

lim
k!1

�k D �0 2 Œ0; 1�; lim
k!1

Jk D lim
k!1

kbwkkH.�/ D1: (13)

Set wk D J
�1
k
bwk . Since kwkkH.�/ D 1, there exists a subsequence fwkl g which

weakly converges in H.�/ to some vector field v 2 H.�/. By compactness of the
imbedding H.�/ ,! Lr.�/ 8 r 2 Œ1;1/ for n D 2, and 8 r 2 Œ1; 6/ for n D 3;

the subsequence fwkl g converges strongly in Lr.�/. Taking in (12) � D J�1kl wkl

and passing in the obtained equality to the limit as kl !1 yield

� D �0

Z

�

�
v � r

�
v � A dx: (14)

In particular it follows from (14) that �0 > 0. Hence, �k are separated from zero.
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Now take in (12) � D J�2kl �, where � is an arbitrary vector field from H.�/.
Passing again to the limit as kl !1 yields the integral identity

Z

�

�
v � r

�
v � � dx D 0 8� 2 H.�/: (15)

Hence, v 2 H.�/ is a weak solution of the Euler equation

8̂
<̂
ˆ̂:

�
v � r

�
vCrp D 0; x 2 �;

div v D 0; x 2 �;

v D 0; x 2 @�:

(16)

The function p in (16) belongs to the space W 1;s.�/, where s 2 Œ1; 2/ for n D 2

and s 2 Œ1; 3=2� for n D 3. Since v D 0 on @�, it can be proved, using the
equations (16), that the pressure p is equal to some constants Opj on the connected
components �j of the boundary @�. More precisely, it was proved in [30, Lemma
4] and independently in [2, Theorem 2.2] that the following equalities

p.x/j�i D Opi ; Opi 2 R; j D 0; 1; : : : ; N: (17)

hold.
Multiply the Euler system (16) by A and integrate the obtained equality over �.

Integrating by parts and using (17), we obtain

Z

�

�
v �r

�
v �A dx D �

Z

@�

pA �n dS D �
NX
iD0

bpi
Z

�i

A �n dS D �
NX
iD0

OpiFi : (18)

IfN D 0 or Fi D 0; i D 0; 1; : : : ; N (the condition (4) is satisfied), then (18) gives

Z

�

�
v � r

�
v � A dx D 0: (19)

The last relation contradicts (14). Therefore, the assumption is wrong and the
norms of all possible solutions w.�/ to the operator equation (8) are uniformly
bounded with respect to � 2 Œ0; 1�. Thus, by the Leray–Schauder theorem,
equation (7) has at least one solution.

An analogous conclusion is obtained when all constantsbpj are equal:

Op0 D Op1 D : : : D OpN : (20)
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Indeed, in virtue of (3),

NX
iD0

OpiFi D bp0
NX
iD0

Fi D 0;

and from (18) again follows (19).
However, in the general case, one cannot claim that all constants Opi are equal.

Amick [2] exhibited a solution to problem (16), for which equalities (20) are
not valid. Let � D fx 2 R

2 W 1 < jxj < 2g be annulus on the plane,
 2 C1.Œ1; 2�/;  0.1/ D  0.2/ D 0, and  00 2 L2..1; 2//. A solution of the
Euler problem (16) is defined by

v.x/ D
�
x2

jxj
 0.jxj/;�

x1

jxj
 0.jxj/

�
2 H.�/; p.x/ D

jxjZ

1

j 0.s/j2

s
ds: (21)

It is easy to see that p.x/jjxjD1 D 0, and p.x/jjxjD2 D
2R
1

j 0.s/j2

s
ds > 0.

3 An Existence Theorem in the General Planar Case

In this section the problem (2) is studied in the general case. For the two-dimensional
domains, the result reads as follows.

Theorem 1. Assume that � � R
2 is a bounded domain with C2-smooth boundary

@�. If f 2 W 1;2.�/ and a 2 W 3=2;2.@�/ satisfies condition (3), then problem (2)
admits at least one weak solution u.

Remark 1. It is well known (see [47]) that under the hypotheses of Theorem 1,
every weak solution u of problem (2) is more regular, i.e., u 2 W 2;2.�/\W 3;2

loc .�/.
Generally speaking, the solution is as regular as the data allow; in particular, u is
C1-smooth when f, a, and @� are C1-smooth.

Similar result holds for the 3D axially symmetric case (see Theorem 6).
Moreover, for the axially symmetric case, also the existence theorem for an exterior
domain could be proved (see Theorem 7).

Below (Sect. 3.4) the main ideas of the proof of Theorem 1 are shown. In order
to make it easer, consider the case when @� has only two connected components of
the boundary and assume that f D 0.

Some needed auxiliary results are formulated in the subsections below.



Leray’s Problem on Existence of Steady State Solutions for the Navier-Stokes Flow 9

3.1 Properties of Sobolev Functions and an Analog of the
Morse–Sard Theorem for Functions from W2,1.R2/

Recall some classical differentiability properties of Sobolev functions. Working
with such functions, we always assume that the “best representatives” are chosen. If
w 2 L1loc.�/, then the best representative w� is defined by

w�.x/ D

(
lim
r!0

�
R
Br .x/

w.z/d z; if the finite limit existsI

0 otherwise;

where �
R
Br .x/

w.z/d z D 1
meas.Br .x//

R
Br .x/

w.z/d z, Br.x/ D fy W jy � xj < rg is a ball
of radius r centered at x.

Lemma 1 (see Proposition 1 in [12]). Let  2 W 2;1.R2/. Then the function  
is continuous, and there exists a set A such that H1.A / D 0 and the function
 is differentiable (in the classical sense) at each x 2 R

2 n A . Furthermore, the
classical derivative at such points x coincides with r .x/ D lim

r!0
�
R
Br .x/
r .z/d z,

and lim
r!0

�
R
Br .x/
jr .z/ � r .x/j2d z D 0.

Here and henceforth, denote by H1 the one-dimensional Hausdorff measure, i.e.,

H1.F / D lim
t!0C

H1t .F /, where H1t .F / D inf

�
1P
iD1

diamFi W diamFi � t; F �
1S
iD1

Fi

	
.

It is well known that for functions w 2 W
1;q

loc .�/, � � R
2, H1-almost all

points x 2 � are the Lebesgue points, i.e., the above limit exists H1-almost
everywhere in �.

The next theorem has been proved recently by J. Bourgain, M. Korobkov, and
J. Kristensen [6] (see also [7, 35] for multidimensional case). The statement (i)
of this theorem is the analog for Sobolev functions of the classical Morse–Sard
Theorem.

Theorem 2. Let � � R
2 be a bounded domain with Lipschitz boundary and  2

W 2;1.�/. Then

(i) H1.f .x/ W x 2 � n A & r .x/ D 0g/ D 0;
(ii) for every " > 0, there exists ı > 0 such that H1. .U // < " for any set U � �

with H11.U / < ı; in particular, H1. .A // D 0;
(iii) for every " > 0, there exists an open set V � R with H1.V / < " and a

function g 2 C1.R2/ such that for each x 2 � if  .x/ … V , then x … A and
 .x/ D g.x/, r .x/ D rg.x/ ¤ 0;

(iv) for H1–almost all y 2  .�/ � R, the preimage  �1.y/ is a finite disjoint
family of C1-curves Sj , j D 1; 2; : : : ; N .y/. Each Sj is either a cycle in �
.i.e., Sj � � is homeomorphic to the unit circle S

1/ or a simple arc with
endpoints on @� .in this case Sj is transversal to @�/.
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3.2 Some Facts from Topology

Below some topological definitions and results will be needed. By continuum we
mean a compact connected set. The connectedness is understood in the sense
of general topology. A subset of a topological space is called an arc if it is
homeomorphic to the unit interval Œ0; 1�. A locally connected continuum T is
called a topological tree, if it does not contain a curve homeomorphic to a circle
or, equivalently, if any two different points of T can be joined by a unique arc. This
definition implies that T has topological dimension 1. A point C 2 T is an endpoint
of T (resp., a branching point of T ), if the set T nfC g is connected (resp., if T nfC g
has more than two connected components).

Let us shortly present some results from the classical paper of A.S. Kronrod [45]
concerning level sets of continuous functions. Let Q D Œ0; 1� � Œ0; 1� be a square in
R
2, and let f be a continuous function onQ. Denote byEt a level set of the function

f , i.e., Et D fx 2 Q W f .x/ D tg. A connected component K of the level set Et
containing a point x0 is a maximal connected subset of Et containing x0. By Tf
denote a family of all connected components of level sets of f . It was established
in [45] that Tf equipped by a natural topology is a one-dimensional topological
tree.

�
The convergence in Tf is defined by the following rule: Tf 3 Ci ! C iff

sup
x2Ci

dist.x; C / ! 0.) Endpoints of this tree are the components C 2 Tf which do

not separate Q, i.e., Q n C is a connected set. Branching points of the tree are the
components C 2 Tf such thatQnC has more than two connected components (see
[45, Theorem 5]). By results of [45, Lemma 1], see also [51] and [62], the set of all
branching points of Tf is at most countable. The main property of a tree is that any
two points could be joined by a unique arc. Therefore, the same is true for Tf .

Lemma 2 (see Lemma 13 in [45]). If f 2 C.Q/, then for any two different points
A 2 Tf and B 2 Tf , there exists a unique arc J D J .A;B/ � Tf joining A
to B . Moreover, for every inner point C of this arc, the points A;B lie in different
connected components of the set Tf n fC g.

Remark 2. The assertion of Lemma 2 remains valid for level sets of continuous
functions f W � ! R, where � is a multi-connected bounded domain of
type (1), provided f � 	j D const on each inner boundary component �j with
j D 1; : : : ; N . Indeed, f can be extended to the whole �0 by putting f .x/ D 	j
for x 2 �j , j D 1; : : : ; N . The extended function f will be continuous on the set
�0 which is homeomorphic to the unit square Q D Œ0; 1�2.

3.3 Euler Equation

Most of the results of this section are obtained under the following assumptions.
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(E) Let � � R
2 be a bounded domain of type (1) with Lipschitz boundary.

Assume that v 2 W 1;2.�/ and p 2 W 1;s.�/, s 2 Œ1; 2/, satisfy the Euler equations
( �

v � r
�
vCrp D 0;

div v D 0;
(22)

for almost all x 2 �, and let
Z

�i

v � n ds D 0; i D 0; 1; : : : ; N; (23)

where �i are connected components of the boundary @�.
If instead of (23) the solution v satisfies the homogeneous boundary conditions

vj�i D 0; i D 0; 1; : : : ; N; (24)

it will be said that v satisfies the condition Eı.
Under the conditions (E), it is easy to see that there exists a stream function

 2 W 2;2.�/ such that r D .�v2; v1/ (note that by the Sobolev embedding

theorem,  is continuous in �). Denote by ˆ D p C
jvj2

2
the total head pressure

corresponding to the solution .v; p/. Obviously, ˆ 2 W 1;s.�/ for all s 2 Œ1; 2/. By
direct calculations one easily gets the identity

rˆ �

�
@v2

@x1
�
@v1

@x2

� �
v2;�v1

�
D !r in �; (25)

where ! denotes the corresponding vorticity: ! D @2v
1 � @1v

2 D � . Since the
stream lines in our case coincide with the level sets of  , from (25), in the case of
smooth functions  ;ˆ, the classical Bernoulli law follows immediately:

The total head pressure ˆ is constant along any stream line.
But the Sobolev case is more delicate: now the stream function  2 W 2;1.�/

is not C1-smooth, and the total head pressure ˆ belongs to the spaces W 1;q.�/

with q < 2, but functions of this space need not to be continuous and they are
well defined everywhere except for some “bad” set of H1-measure zero (see, e.g.,
Theorem 1 of §4.8 and Theorem 2 of §4.9.2 in [13]). So the formulation of the
Bernoulli law for solutions in Sobolev spaces has to be modulo negligible “bad”
set Av of one dimensional Hausdorff measure zero. Such version of Bernoulli’s law
was obtained in [34, Theorem 1] (see also [36, Theorem 3.2] for a more detailed
proof).

Theorem 3 (The Bernoulli law). Assume the conditions (E). Then there exists
a set Av with H1.Av/ D 0 such that any point x 2 � n Av is a Lebesgue point for
v; ˆ, and for every compact connected set K � �, the following property holds: if

 
ˇ̌
K
D const; (26)
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then

ˆ.x1/ D ˆ.x2/ for all x1; x2 2 K n Av: (27)

(Here, in order to define a Lebesgue point at x 2 @�, the usual Sobolev extension
of v; ˆ to the whole R

2 is considered.)

Remark 3. In particular, if v D 0 on @� .in the sense of trace/, then by the Morse–
Sard Theorem 2, there exist constants 	0; : : : ; 	N 2 R such that  .x/ � 	j on each
component �j , j D 0; : : : ; N (Indeed, if v D 0 on @�, then r D 0 on @�,
and by Theorem 2 (i)–(ii), the image  .@�/ has zero H1-measure. This implies, by
continuity of  , that  � const on each connected subset of @�.). Therefore, by
the above Bernoulli law, the pressure p.x/ is constant on @�. Note that p.x/ could
take different constant valuesbpj D p.x/

ˇ̌
�j

on different connected components �j
of the boundary @�. This fact was already mentioned in Sect. 2 (see example (21)).

Using the assertion of Remark 3, one could prove the following regularity result
for the pressure.

Theorem 4. Let the conditions .Eı/ be satisfied. Then

p 2 C.�/ \W 2;1.�/: (28)

The proof of this theorem is based on the div–curl lemma with two cancelations
(e.g., [10, Theorem II.1]) and classical results concerning the Poisson equation (see,
e.g., [48, Chapter II]).

Under .Eı/-conditions by Remarks 2 and 3, one can apply Kronrod’s results to
the stream function  . Define the total head pressure on the Kronrod tree T (see
Sect. 3.2) as follows. Let K 2 T with diamK > 0. Take any x 2 K n Av and put
ˆ.K/ D ˆ.x/. This definition is valid by Bernoulli’s law (see Theorem 3).

Lemma 3. Assume that the conditions .Eı/ are satisfied. LetA;B 2 T , diamA >

0; diamB > 0. Consider the corresponding arc ŒA; B� � T joining A to B (see
Lemma 2). Then the restriction ˆjŒA;B� is a continuous function.

Remark 4. The continuity of ˆjŒA;B� was proved in [41, Lemma 3.5]. The proof
relies on the fact that each Sobolev function is continuous (in classical sense) on
almost all straight line. Note that the total head pressure ˆ.x/ itself is not necessary
continuous function in the whole� since about the velocity field v, it is only known
that v 2 W 1;2.�/.

For x 2 � denote by Kx the connected component of the level set fz 2 � W
 .z/ D  .x/g containing the point x. Under .Eı/-conditions by Remark 3, Kx \
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@� D ; for every y 2  .�/ n f	0; : : : ; 	N g and for every x 2  �1.y/. Thus,
Theorem 2 (ii), (iv) implies that for almost all y 2  .�/ and for every x 2  �1.y/,
the equality Kx \ Av D ; holds, and the component Kx � � is a C1– curve
homeomorphic to the circle. Such Kx is called an admissible cycle.

The next lemma was obtained in [36, Lemma 3.3].

Lemma 4. Let the conditions .Eı/ be satisfied. Assume that there exists a sequence
of functions fˆ
g such that ˆ
 2 W

1;q
loc .�/ and ˆ
 * ˆ in the space W 1;q

loc .�/ for
all q 2 Œ1; 2/. Then there exists a subsequence ˆkl such that ˆkl jS converges to
ˆjS uniformly ˆkl jS � ˆjS on almost all admissible cycles S .here, “almost all
cycles” means cycles in preimages  �1.y/ for almost all values y 2  .�//.

In connection with Lemma 4, note that in [2] Amick proved the uniform
convergence ˆk � ˆ on almost all circles. However, his method can be easily
modified to prove the uniform convergence on almost all level lines of every C1-
smooth function with nonzero gradient. Such modification was done in the proof of
Lemma 3.3 of [36].

Below assume (without loss of generality) that the subsequenceˆkl of Lemma 4
coincides with ˆk . Admissible cycles S satisfying the statement of Lemma 4 will
be called regular cycles.

Let� be a bounded domain with Lipschitz boundary. The function f 2 W 1;s.�/

is said to satisfy a one-side maximum principle locally in � if

ess sup
x2�0

f .x/ � ess sup
x2@�0

f .x/ (29)

holds for any strictly interior subdomain �0 (� 0 � �/ with the boundary @�0

not containing singleton connected components. (In (29) negligible sets are the sets
of two-dimensional Lebesgue measure zero in the left esssup and the sets of one-
dimensional Hausdorff measure zero in the right esssup.)

If (29) holds for any �0 � � (not necessary strictly interior) with the boundary
@�0 not containing singleton connected components, then f 2 W 1;s.�/ satisfies a
one-side maximum principle in � (in particular, we can take �0 D � in (29)).

Using Lemma 4, it could be proved that the one-side maximum principle is
inherited by the limiting solutions.

Theorem 5. Let the conditions .E/ be satisfied. Assume that there exists a sequence
of functions fˆ
g such that ˆ
 2 W

1;q
loc .�/ and ˆ
 * ˆ in the space W 1;q

loc .�/ for
all q 2 Œ1; 2/. If all ˆ
 satisfy the one-side maximum principle locally in �, then ˆ
satisfies the one-side maximum principle in �.

Theorem 5 was obtained in [34, Theorem 2] (see also [36, Theorem 3.4] for the
detailed proof).
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Note that some version of a local weak one-side maximum principle was proved
by Ch. Amick [2] (see Theorem 3.2 and Remark thereafter in [2]).

3.4 Arriving at a Contradiction

To prove the solvability of problem (2), we follow the arguments described in
Sect. 2. First repeating Leray’s argument of getting an a priori estimate by a
contradiction, we arrive to the following assertion:

Lemma 5. Assume that � � R
2 is a bounded domain with C2-smooth boundary

@�, f 2 W 1;2.�/, and the boundary value a 2 W 3=2;2.@�/ satisfies the necessary
condition (3). Then, if problem (2) admits no weak solutions, then there exists a
sequence of functions uk 2 W 1;2.�/, pk 2 W 1;q.�/ and numbers �k ! 0C,
�k ! �0 > 0 with the following properties:

(E-NS) the norms kukkW 1;2.�/, kpkkW 1;q.�/ are uniformly bounded for every q 2
Œ1; 2/, and the pairs .uk; pk/ satisfy the system of equations

8̂
<̂
ˆ̂:

��k�uk C
�
uk � r

�
uk Crpk D fk; x 2 �;

div uk D 0; x 2 �;

uk D ak; x 2 @�;

(30)

with fk D
�k�

2
k

�2
f, ak D

�k�k

�
a, and

krukkL2.�/ ! 1; uk * v in W 1;2.�/; pk * p in W 1;q.�/ 8 q 2 Œ1; 2/;

where the pair of functions v 2 W 1;2.�/, p 2 W 1;q.�/ is a solution to the Euler
system (16).

(In this lemma uk D wk C J
�1
k A, �k D .�kJk/

�1�; fk D �k�
2
k�
�2f, where the

objects Jk;wk were defined in Sect. 2.)
Assume, in what follows, that the conditions (E-NS) are satisfied. As it is shown

in Sect. 2, if all the fluxes Fi are zero (see (4)), then the conditions (E-NS) lead to
a contradiction, thereby proving that (2) is solvable. In this section the goal is to
demonstrate that these conditions also lead to a contradiction in the general case
when the boundary data satisfy only the necessary condition (3). This will justify
the existence of Theorem 1.

Assume for simplicity that @� consists of two connected components �0 and �1.
Moreover, suppose that f D 0. The pressure p is equal to constants on �0 and �1:

pj�0 D Op0; pj�1 D Op1
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(see (17)). If Op0 D Op1, then, as it is shown in Sect. 2, a contradiction arises with
the equality (14), and the required a priori estimate follows. Assume that bp0 ¤ Op1.
Normalizing the pressure (and changing the numeration of the components �i , if
necessary), one can assume without loss of generality that

Op0 D 0; Op1 < 0: (31)

Introduce the main idea of the proof in a heuristic way. It is well known that total
head pressures ˆk D pk C

1
2
u2k (under above assumptions f D 0) satisfy the linear

elliptic equation

�ˆk D !
2
k C

1

�k
div .ˆkuk/; (32)

where !k D @2u1k � @1u
2
k is the corresponding vorticity. By Hopf’s maximum

principle, in a subdomain �0 b � with C2– smooth boundary @�0, the maximum
of ˆk is attained at the boundary @�0, and if x� 2 @�0 is a maximum point, then
the normal derivative of ˆk at x� is strictly positive. It is not sufficient to apply
this property directly. Instead we will use some “integral analogs” that lead to a
contradiction by using the Coarea formula. Namely, we construct a set Ei � �

consisting of level lines of ˆk such that ˆkjEi ! 0 as i !1 and Ei separates the
boundary component �0 (where ˆ D 0) from the boundary component �1 (where
ˆ < 0). On the one hand, the length of each of these level lines is bounded from
below by a positive constant (since they separate the boundary components), and
by the Coarea formula, this implies the estimate from below for

R
Ei
jrˆkj. On

the other hand, elliptic equation (32) for ˆk and boundary conditions allow us to
estimate

R
Ei
jrˆkj

2 from above, and this asymptotically contradicts the previous
one.

Describe this heuristic idea in more details. From (32) and the mentioned Hopf
theorem, one concludes that all ˆk satisfy the strong maximum principle globally
in �. Then by conditions (E-NS) and Theorem 5, the limiting total head pressure ˆ
satisfies the weak maximum principle globally in �, i.e.,

max
jD1;2

bpj D ess sup
x2�

ˆ.x/ D 0: (33)

Using the results of Kronrod (see Sect. 3.2), one can construct a decreasing
sequence of domains with the following properties. Let T be a family of all
connected components of level sets of . TakeB0;B1 2 T ,B0 � �0, andB1 � �1,
and set

˛ D min
C2ŒB1;B0�

ˆ.C / < 0:

(this minimum exists by Lemma 3). Let ti 2 .0;�˛/; tiC1 D 1
2
ti and ti is such that

ˆ.C/ D �ti ) C 2 .B1; B0/ is a regular cycle:
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0

0
iA

tk

tk

tk

)(tSik

)(tWik
0
1iA

1 kh

n

k

Fig. 1 The case of annulus-type domain (here, Ai is denoted as A0i )

(See the definition of the regular cycles in the commentary to Lemma 4.) Note that
the existence of such a sequence ti follows from the fact that

H1
�
fˆ.C/ W C 2 ŒB1; B0� and C is not a regular cycleg

�
D 0I

see [41, Corollary 3.2]. The proof of this equality is based on the Coarea for-
mula (see [41]).

Denote by Ai an element from the set fC 2 ŒB1; B0� W ˆ.C/ D �tig which is
closest to �0. Let Vi be a connected component of the set�nAi such that �0 � @Vi ,
i.e., @Vi D Ai [ �0. Obviously, Vi � ViC1 (since tiC1 D 1

2
ti ). Note that Ai are

regular cycles and, therefore, ˆkjAi � ˆjAi D �ti .
Take t 2 Œ 5

8
ti ;

7
8
ti �. Let Wik.t/ be the connected component of the set fx 2

Vi n V iC1 W ˆk.x/ > �tg such that @Wik.t/ � AiC1 (see Fig. 1). Put Sik.t/ D
.@Wik.t// \ Vi n V iC1. Then ˆkjSik.t/ D �t , @Wik.t/ D Sik.t/ [ AiC1. Since
ˆk 2 W

2
2;loc.�/, by the Morse–Sard theorem for almost all t 2 Œ 5

8
ti ;

7
8
ti �, the level

set Sik.t/ consists of a finite number of C1-cycles; moreover, ˆk is differentiable at
every point x 2 Sik.t/ and rˆk.x/ ¤ 0. Such values t are called .k; i/-regular.

By construction

Z

Sik.t/

rˆk � ndS D �
Z

Sik.t/

jrˆkjdS < 0;
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where n outward with respect to Wik.t/ normal to @Wik.t/ (see Fig. 1). Indeed,
Sik.t/ is a subset of the level set fx 2 � W ˆ.x/ D �tg, and by construction the
nonzero gradient rˆ.x/ is directed inside the domain Wik.t/ for x 2 Sik.t/, i.e.,
rˆk.x/
jrˆk.x/j

D �n.
The key step in the proof is the following estimate

Lemma 6. For any i 2 N, there exists k.i/ 2 N such that the inequality

Z

Sik.t/

jrˆk.x/jdS � C�t

holds for every k 	 k.i/ and for almost all t 2 Œ 5
8
ti ;

7
8
ti �. The constant C� is

independent of t; k, and i .

The proof of Lemma 6 is based on the integration of the equality (32) over the
suitable subdomain�k.t/with @�k.t/ D Sik.t/[�hk , where the cycle �hk D fx 2
� W dist.x; �0/ D hkg lies near the boundary component �0 and the parameter hk is
taken in such a way that

Z

�hk

ˆ2k ds < �
2;

ˇ̌
ˇ̌
Z

�hk

rˆk � n ds

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

�hk

!ku?k � n ds

ˇ̌
ˇ̌ < "; (34)

Z

�hk

jukj2 ds < C"�2k; (35)

where � and " are some fixed sufficiently small numbers and C" does not depend
on k and � . For sufficiently large k 	 k.i/ such hk can be found, using the weak
convergences ˆk * ˆ, uk ! v from the assumptions (E-NS) and the boundary
conditions kukkL2.@�/ 
 �k , v � 0, ˆ � 0 on @� (see (303) and (163))

When Lemma 6 is proved, the required contradiction can be obtained using
the Coarea formula. For i 2 N and k 	 k.i/, put

Ei D
[

t2Œ 58 ti ;
7
8 ti �

Sik.t/:

By the Coarea formula (see, e.g., [50]), for any integrable function g W Ei ! R, the
equality

Z

Ei

gjrˆkj dx D

7
8 tiZ

5
8 ti

Z

Sik.t/

g.x/ dH1.x/ dt
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holds. In particular, taking g D jrˆkj and using Lemma 6 yield

Z

Ei

jrˆkj
2 dx D

7
8 tiZ

5
8 ti

Z

Sik.t/

jrˆkj dH
1.x/dt �

7
8 tiZ

5
8 ti

C�t dt D C��t
2
i :

Now, taking g D 1 in the Coarea formula and using the Hölder Inequality, we get

7
8 tiZ

5
8 ti

H1
�
Sik.t/

�
dt D

Z

Ei

jrˆkj dx

�

0
@
Z

Ei

jrˆkj
2 dx

1
A

1
2 �

meas.Ei /
� 1
2 �

p
C��ti

�
meas.Ei /

� 1
2 :

By construction, for almost all t 2 Œ 5
8
ti ;

7
8
ti �, the set Sik.t/ is a smooth cycle and

Sik.t/ separates Ai from AiC1. Thus, each set Sik.t/ separates �0 from �1. In
particular, H1.Sik.t// 	 C D min

�
diam�0; diam�1/. Hence,

7
8 tiZ

5
8 ti

H1
�
Sik.t/

�
dt 	

1

4
C ti :

So, it holds

1

4
C ti �

p
C��ti

�
meas.Ei /

� 1
2 ;

or

1

4
C �

p
C��

�
meas.Ei /

� 1
2 : (36)

By construction meas.Ei / � meas
�
Vi n ViC1

�
. But since Vi � ViC1 is a decreasing

sequence of bounded sets, we have meas
�
Vi n ViC1

�
! 0 as i ! 1; therefore,

inequality (36) gives the contradiction. Thus, our assumption is wrong; the norms
of all possible solutions w.�/ to the operator equation (8) are uniformly bounded
with respect to � 2 Œ0; 1�, and by the Leray–Schauder theorem, the equation (7) and
equivalently the problem (2) has at least one solution.

Hence, in the case when f D 0, Theorem 1 is proved. If f ¤ 0, then the maximum
principle is not valid, and one has to consider two cases
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(a) Maximum of ˆ is attained on the boundary @�:

maxf Op0;bp1g D ess sup
x2�

ˆ.x/:

(b) Maximum of ˆ is not attained on @�:

maxf Op0;bp1g < ess sup
x2�

ˆ.x/

(the case ess sup
x2�

ˆ.x/ D C1 is also possible).

In the case (a) the proof is literally the same as above, while in the case (b) it
can be proved that there exists a regular cycle F 2 T such that diamF > 0,
F \ @� D ;, and ˆ.F / > ˇ, where ˇ D maxf Op0; Op1g. For such F we consider
the behavior of ˆ on the Kronrod arcs ŒBj ; F �, j D 0; 1. The remaining part of the
proof is similar to that of the proof for the case (a) with the following difference:
F plays now the role which was played before by B0, and the calculations become
easier since F lies strictly inside �.

The main idea of the proof for a general multiply connected domain is the same
as in the case of annulus-like domains (when @� D �1 [ �0). The proof has an
analytical nature and unessential differences concern only well-known geometrical
properties of level sets of continuous functions of two variables.

4 3D Axially Symmetric Case

First, specify some notations. Let Ox1;Ox2 ;Ox3 be the coordinate axis in R
3 and

� D arctg.x2=x1/, r D .x21 C x
2
2/
1=2, z D x3 be the cylindrical coordinates. Denote

by v� ; vr ; vz the projections of the vector v on the axes �; r; z.
A function f is said to be axially symmetric if it does not depend on � . A vector-

valued function h D .hr ; h� ; hz/ is called axially symmetric if hr , h� , and hz do not
depend on � . A vector-valued function h0 D .hr ; h� ; hz/ is called axially symmetric
with no swirl if h� D 0, while hr and hz do not depend on � .

4.1 Bounded 3D Axially Symmetric Domains

The main result of this section is as follows.

Theorem 6 ([37,41]). Assume that� � R
3 is a bounded axially symmetric domain

of type (1) with C2-smooth boundary @� (Fig. 2). If f 2 W 1;2.�/, a 2 W 3=2;2.@�/

are axially symmetric and a satisfies condition (3), then (2) admits at least one weak
axially symmetric solution. Moreover, if f and a are axially symmetric with no swirl,
then (2) admits at least one weak axially symmetric solution with no swirl.
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Fig. 2 Axially symmetric
domain (N D 3) x3

0

1

2

3

The proof of Theorem 6 follows the same ideas as for the two-dimensional case,
so it is not discussed here. (Some specific details for axially symmetric case could
be found in the next section where the more complicated case of exterior domains
is discussed.)

4.2 Exterior 3D Axially Symmetric Domains

This section is based on results of the paper [39]. Consider the Navier–Stokes
problem

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

���uC
�
u � r

�
uCrp D f in �;

div u D 0 in �;

u D a on @�;

lim
jxj!C1

u.x/ D u0

(37)

in the exterior domain of R3

� D R
3 n
� NS
jD1

N�j

�
; (38)
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where �i are bounded domains with connected C2-smooth boundaries �i , N�j \
N�i D ; for i ¤ j , and u0 is a constant assigned vector.

Let

Fi D
Z

�i

a � n dS; i D 1; : : : N; (39)

where n is the unit outward normal to @�. Under suitable regularity hypotheses on
� and a and assuming that

Fi D 0; i D 1; : : : N; (40)

in the celebrated paper [49] of 1933, J. Leray showed that (37) has a solution u with
finite Dirichlet integral:

Z

�

jruj2 dx < C1; (41)

and u satisfies (374) in a suitable sense for general u0 and uniformly for u0 D 0. In
the 1950s, the problem was reconsidered by R. Finn [16] and O.A. Ladyzhenskaya
[46, 47]. They showed that the solution satisfies the condition at infinity uniformly.
Moreover, condition (40) and the regularity of a have been relaxed by requiring
NP
iD1

jFi j to be sufficiently small [16] and a 2 W 1=2;2.@�/ [47].

In 1973 K.I. Babenko [4] proved that if .u; p/ is a solution to (37), (41) with
u0 ¤ 0, then .u � u0; p/ behaves at infinity as the solutions to the linear Oseen
system. In particular,

u.x/ � u0 D O.r�1/; p.x/ D O.r�2/: (42)

(See also [21]. Here the symbol f .x/ D O.g.r// means that there is a positive
constant c such that jf .x/j � cg.r/ for large r .) However, nothing is known, in
general, on the rate of convergence at infinity for u0 D 0. (For small kakL1.@�/
existence of a solution .u; p/ to (37) such that u D O.r�1/ is a simple consequence
of Banach contractions theorem [69]. Moreover, one can show that p D O.r�2/,
and the derivatives of order k of u and p behave at infinity as r�k�1, r�k�2,
respectively [75]; see also [21, 58].)

One of the most important problems in the theory of the steady-state Navier–
Stokes equations concerns the possibility to prove the existence of a solution to (37)
without any assumptions on the fluxes Fi (see, e.g., [21]). To the best of our
knowledge, the most general assumptions assuring the existence is expressed by

NX
iD1

max
�i

jFi j
jx � xi j

< 8
� (43)
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(see [67]), where Fi is defined by (39) and xi is a fixed point of �i (see also [5] for
analogous conditions in bounded domains).

In the recent paper [39], the above question was solved for the axially symmetric
case. Note that for axially symmetric solutions u of (37), the vector u0 has to be
parallel to the symmetry axis. The main result is as follows.

Theorem 7 ([39]). Assume that � � R
3 is an exterior axially symmetric

domain (38) with C2-smooth boundary @�, u0 2 R
3 is a constant vector parallel to

the symmetry axis, and f 2 W 1;2.�/ \ L6=5.�/, a 2 W 3=2;2.@�/ are axially
symmetric. Then (37) admits at least one weak axially symmetric solution u
satisfying (41). Moreover, if a and f are axially symmetric with no swirl, then (37)
admits at least one weak axially symmetric solution with no swirl satisfying (41).

Remark 5. It is well known (see, e.g., [47]) that under hypothesis of Theorem 7,
every weak solution u of the problem (37) is more regular, i.e., u 2 W 2;2

loc .�/ \

W
3;2

loc .�/.

Emphasize that Theorem 7 furnishes the first existence result without any
assumption on the fluxes for the stationary Navier–Stokes problem in exterior three-
dimensional domains.

4.2.1 Extension of the Boundary Values
The next lemma concerns the existence of a solenoidal extensions of boundary
values.

Lemma 7 (see, e.g., [39]). Let � � R
3 be an exterior axially symmetric

domain (38). If a 2 W 3=2;2.@�/, then there exists a solenoidal extension
A 2 W 2;2.�/ of a such that A.x/ D � .x/ for sufficiently large jxj, where

� .x/ D �
x

4
jxj3

NX
iD1

Fi (44)

and Fi are defined by (39). Moreover, the following estimate

kAkW 2;2.�/ � ckakW 3=2;2.@�/ (45)

holds. Furthermore, if a is axially symmetric (axially symmetric with no swirl), then
A is axially symmetric (axially symmetric with no swirl) too.

4.2.2 Leray’s Argument “Invading Domains”
Consider the Navier–Stokes problem (37) with f 2 W 1;2.�/ \ L6=5.�/ in the C2-
smooth axially symmetric exterior domain � � R

3 defined by (38). Without loss
of generality, assume that f D curl b 2 W 1;2.�/ \ L6=5.�/. (By the Helmholtz–
Weyl decomposition, f can be represented as the sum f D curl bCr' with curl b 2
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W 1;2.�/ \ L6=5.�/, and the gradient part is included then into the pressure term;
see, e.g., [21, 47].)

Below the proof of Theorem 7 will be discussed in the case

u0 D 0:

The proof for u0 ¤ 0 follows the same steps with minor standard modification.
A function u is called a weak solution of problem (37) if w�A 2 H.�/ and the

integral identity

�
R
�

rw � r� dx D ��
R
�

rA � r� dx �
R
�

�
A � r

�
A � � dx

�
R
�

�
A � r

�
w � � dx �

R
�

�
w � r

�
w � � dx

�
R
�

�
w � r

�
A � � dx C

R
�

f � � dx

(46)

holds for any � 2 J10 .�/. Here A is the extension of the boundary data constructed
in Lemma 7. We shall look for the axially symmetric (axially symmetric with no
swirl) weak solution of problem (37) and find this solution as a limit of weak
solution to the Navier–Stokes problem in a sequence of bounded domain �k that in
the limit exhausts the unbounded domains � (this is the main idea of the “invading
domain” method). Namely, consider the sequence of the boundary value problems

8̂
<
:̂

���buk C .buk � r/buk Cr Opk D f in �k;

divbuk D 0 in �k;

buk D A on @�k;

(47)

where �k D Bk \ � for k 	 k0, Bk D fx W jxj < kg, 1
2
Bk0 �

NS
iD1

N�i . By

Theorem 6, each problem (47) has an axially symmetric solutionbuk D ACbwk with
bwk 2 H.�k/.

To prove the assertion of Theorem 7, it is sufficient to establish the uniform
estimate

Z

�

jrbwkj
2 � c: (48)

Estimate (48) will be proved following a classical reductio ad absurdum argument
of J. Leray and O.A. Ladyzhenskaia (see [47, 49]). Indeed, if (48) is not true, then
there exists a sequence fbwkgk2N such that

lim
k!C1

J 2k D C1; J 2k D

Z

�k

jrbwkj
2:
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The sequence wk D bwk=Jk is bounded in H.�/. Extracting a subsequence (if
necessary), one can assume that wk converges weakly in H.�/ and strongly in
L
q
loc.�/ .q < 6/ to a vector field v 2 H.�/ with

Z

�

jrvj2 � 1: (49)

It is easy to check that v 2 H.�/ is a weak solution to the Euler equations, and for
some p 2 D1;3=2.�/ the pair .v; p/ satisfies the Euler equations almost everywhere:

8̂
<̂
ˆ̂:

�
v � r

�
vCrp D 0 in �;

div v D 0 in �;

v D 0 on @�:

(50)

Adding some constants to p (if necessary) by virtue of the Sobolev inequality (see,
e.g., [21] II.6), it may be assumed without loss of generality that

kpkL3.�/ � const: (51)

Put �k D .Jk/�1�. Multiplying equations (47) by 1

J 2k
D

�2k
�2

, one sees that the pair�
uk D 1

Jk
bwk C

1
Jk

A; pk D 1

J 2k
Opk
�

satisfies the following system:

8̂
<̂
ˆ̂:

��k�uk C
�
uk � r

�
uk Crpk D fk in �k;

div uk D 0 in �k;

uk D ak on @�k;

(52)

where fk D
�2k
�2

f, ak D
�k
�

A, uk 2 W
3;2

loc .�/, pk 2 W
2;2

loc .�/ (the interior regularity
of the solution depends on the regularity of f 2 W 1;2.�/, but not on the regularity of
the boundary value a; see [47]). Using the classical local estimates for ADN-elliptic
problems (see [1, 73]), one could prove the following uniform estimate:

kukkL6.�k/ C krpkkL3=2.�k/ � C; (53)

where C does not depend on k. By construction, there holds the weak convergences
uk * v in W

1;2
loc .�/; pk * p in W

1;3=2
loc .�/ (the weak convergence in

W
1;2

loc .�/ means the weak convergence in W 1;2.�0/ for every bounded subdomain
�0 � �).

As in the two-dimensional case, in conclusion, one can prove the following
lemma.
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Lemma 8. Assume that � � R
3 is an exterior axially symmetric domain of

type (38) with C2-smooth boundary @�, and a 2 W 3=2;2.@�/, f D curl b 2
W 1;2.�/ \ L6=5.�/ are axially symmetric. If the assertion of Theorem 7 is false,
then there exist v; p with the following properties.

(E-AX) The axially symmetric functions v 2 H.�/, p 2 D1;3=2.�/ satisfy the
Euler system (50) and kpkL3.�/ <1.

(E-NS-AX) Condition (E-AX) is satisfied, and there exist sequences of axially
symmetric functions uk 2 W 1;2.�k/, pk 2 W 1;3=2.�k/, �k D � \ BRk ,
Rk ! 1 as k ! 1, and numbers �k ! 0C, such that estimate (53) holds,

the pair .uk; pk/ satisfies (52) with fk D
�2k
�2

f, ak D
�k
�

A (here A is solenoidal
extension of a from Lemma 7), and

krukkL2.�k/ ! 1; uk * v in W
1;2

loc .�/; pk * p in W
1;3=2

loc .�/; (54)

� D

Z

�

.v � r/v � A dx (55)

Moreover, uk 2 W
3;2

loc .�/ and pk 2 W
2;2

loc .�/.

4.2.3 Euler Equation in 3D Axially Symmetric Case (Exterior Domains)
Suppose that the assumptions (E-AX) (from Lemma 8) are satisfied, and, for
definiteness, assume that

(SO) � is the domain (38) symmetric with respect to the axis Ox3 and

�j \Ox3 ¤ ;; j D 1; : : : ;M 0;

�j \Ox3 D ;; j DM 0 C 1; : : : ; N:

(The cases M 0 D N or M 0 D 0, i.e., when all components (resp., no components)
of the boundary intersect the axis of symmetry, are also allowed.)

Denote PC D f.0; x2; x3/ W x2 > 0; x3 2 Rg, D D � \ PC, Dj D �j \ PC.
Of course, on PC the coordinates x2; x3 coincide with coordinates r; z.

Then v and p satisfy the following system in the plane domain D:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

@p

@z
C vr

@vz

@r
C vz

@vz

@z
D 0;

@p

@r
�
.v� /

2

r
C vr

@vr

@r
C vz

@vr

@z
D 0;

v�vr

r
C vr

@v�

@r
C vz

@v�

@z
D 0;

@.rvr /

@r
C
@.rvz/

@z
D 0

(56)

(these equations are fulfilled for almost all x 2 D).
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There hold the following integral estimates: v 2 W 1;2
loc .D/,

Z

D

r jrv.r; z/j2 drd zC
Z

D

r jv.r; z/j6 drd z <1: (57)

Also, the inclusions rp 2 L3=2.�/, p 2 L3.�/ can be rewritten in the following
two-dimensional form:

Z

D

r jrp.r; z/j3=2 drd zC
Z

D

r jp.r; z/j3 drd z <1: (58)

The next statement was proved in [30, Lemma 4] and in [2, Theorem 2.2].

Theorem 8. Let the conditions (E-AX) be fulfilled. Then

8j 2 f1; : : : ; N g 9 Opj 2 R W p.x/ � Opj for H2 � almost all x 2 �j : (59)

In particular, by axial symmetry,

p.x/ � Opj for H1 � almost all x 2 M�j : (60)

Here and below the following convenient agreement is used: for a set A � R
3

put MA WD A \ PC, and for B � PC denote by QB the set in R
3 obtained by rotation

of B around Oz-axis.
The following result gives more precise information about the constants from the

previous theorem.

Corollary 1 ([39]). Assume that the conditions (E-AX) are satisfied. Then ˆj�j �
0 whenever �j \Oz ¤ ;, i.e.,

Op1 D � � � D OpM 0 D 0;

where Opj are the constants from Theorem 8.

This phenomenon is connected with the fact that the symmetry axis can be
approximated by stream lines (see Theorem 10 below), where the total head pressure
is constant according to the Bernoulli law (see Theorem 9 below). To formulate the
last result, some preparation is needed.

Below without loss of generality, assume that the functions v; p are extended to
the whole half-plane PC as follows:

v.x/ WD 0; x 2 PC nD; (61)

p.x/ WD Opj ; x 2 PC \ NDj ; j D 1; : : : ; N: (62)
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Obviously, the extended functions inherit the properties of the previous ones.
Namely, v 2 W 1;2

loc .PC/, p 2 W
1;3=2

loc .PC/, and the Euler equations (56) are fulfilled
almost everywhere in PC.

The last equality in (56) (which is fulfilled, after the above extension agreement,
in the whole half-plane PC) implies the existence of a continuous stream function
 2 W 2;2

loc .PC/ such that

@ 

@r
D �rvz;

@ 

@z
D rvr : (63)

Denote by ˆ D p C
jvj2

2
the total head pressure corresponding to the solution

.v; p/. From (57) we get

Z

PC

r jˆ.r; z/j3 drd zC
Z

PC

r jrˆ.r; z/j3=2 drd z <1: (64)

By direct calculations one easily gets the identity

vrˆr C vzˆz D 0 (65)

for almost all x 2 PC. The identities (61)–(62) mean that

ˆ.x/ � Opj 8x 2 PC \ NDj ; j D 1; : : : ; N: (66)

Theorem 9 (Bernoulli law for Sobolev solutions [39]). Let the conditions (E-AX)
be valid. Then there exists a set Av � PC with H1.Av/ D 0, such that every
point x 2 PC n Av is a Lebesgue point for v; ˆ, and for any compact connected
set K � PC, the following property holds : if

 
ˇ̌
K
D const; (67)

then

ˆ.x1/ D ˆ.x2/ for all x1; x2 2 K n Av: (68)

Theorem 9 is a space version of the above Theorem 3 (for the plane case). For
the axially symmetric bounded domains, the result was proved in [37, Theorem 3.3].
The proof for exterior axially symmetric domains is similar: one has to overcome
two obstacles. First difficulty is the lack of the classical regularity, and here the
results of [6] have a decisive role (according to these results, almost all level
sets of plane W 2;1-functions are C1-curves; see Sect. 3.1). The second obstacle
is the set where r .x/ D 0 ¤ rˆ.x/, i.e., where vr.x/ D vz.x/ D 0, but
v� .x/ ¤ 0. Namely, without assuming the boundary conditions (503), in general,
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the equality (67) even for smooth functions does not imply (68). For example, if
vr D vz D 0 in the whole domain, v� D r , then  � const on the whole domain,
while ˆ D r2 ¤ const. Without the boundary assumptions, one can prove only that
ˆ.r; z/ D f .r/ along every level setK of the stream function for some absolutely
continuous function f .r/ (see [39, Lemma 4.5]). But the last equality together with
the boundary conditions (503), (66) easily implies Theorem 9.

For " > 0 and R > 0 denote by S";R the set S";R D f.r; z/ 2 PC W r 	

"; r2 C z2 D R2g. From the assumptions (64) one gets

Lemma 9. For any " > 0, there exists a sequence �j > 0, �j ! C1, such that
S";�j \ Av D ; and

sup
x2S";�j

jˆ.x/j ! 0 as j !1: (69)

One of the main results of this section is the following.

Theorem 10. Assume that the conditions (E-AX) are satisfied. Let Kj be a
sequence of continuums with the following properties:Kj � NDnOz,  jKj D const,
and lim

j!1
inf

.r;z/2Kj
r D 0, lim

j!1

sup
.r;z/2Kj

r > 0. Then ˆ.Kj /! 0 as j !1. Here we

denote by ˆ.Kj / the corresponding constant cj 2 R such that ˆ.x/ D cj for all
x 2 Kj n Av (see Theorem 9).

4.2.4 Obtaining a Contradiction
From now on assume that the assumptions (E-NS-AX) (see Lemma 8) are satisfied.
The goal is to prove that they lead to a contradiction. This implies the validity of
Theorem 7.

For simplicity assume that f D 0, N D 2 and M 0 D 1, i.e., the boundary @�
splits into the two components @� D �1 [ �2, where

�1 \Oz ¤ ;; �2 \Oz D ;: (70)

The main idea of the proof is similar to that for the two-dimensional case. Since
every ˆk D pk C 1

2
jukj2 satisfies the linear elliptic equation

�ˆk D !
2
k C

1

�k
div .ˆkuk/; (71)

where !k D curl uk and !k.x/ D j!k.x/j, a contradiction is obtained by using
some “integral analog” of Hopf’s maximum principle and the Coarea formula.

Consider the constants Opj from Theorem 8 (see also Theorem 1). From the
equality (55), the Euler equations (501), and the regularity assumptions (64), the
identity follows
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� � D

NX
jDM 0C1

OpjFj D bp2F2 (72)

(since Op1 D 0 by Theorem 1). Therefore, Op2 ¤ 0.
Further consider separately three possible cases.

(a) The maximum of ˆ is attained at infinity, i.e., it is zero:

0 D ess sup
x2�

ˆ.x/: (73)

(b) The maximum of ˆ is attained on a boundary component which does not
intersect the symmetry axis:

0 < Op2 D max
jDM 0C1;:::;N

bpj D ess sup
x2�

ˆ.x/; (74)

(c) The maximum of ˆ is not zero and it is not attained on @�:

max
jDM 0C1;:::;N

bpj < ess sup
x2�

ˆ.x/ > 0 (75)

(the case ess sup
x2�

ˆ.x/ D C1 is not excluded).

4.2.5 The Case ess sup
x2�

ˆ.x/ D 0.

Let us consider the case (73). By Theorem 1,

Op1 D ess sup
x2�

ˆ.x/ D 0: (76)

Then Op2 < 0.
The arguments below are similar to the plane situation (see Sect. 3.4). Take the

positive constant ıp D � Op2. The first goal is to separate the boundary components
where ˆ < 0 from infinity and from the singularity axis Oz by level sets of ˆ
compactly supported in D. More precisely, for any t 2 .0; ıp/ we construct
a continuum A.t/ b PC with the following properties:

(i) The set M�j (recall that for a set A � R
3 by definition MA WD A \ PC) lies in

a bounded connected component of the open set PC n A.t/;
(ii)  jA.t/ � const, ˆ.A.t// D �t ;

(iii) (monotonicity) If 0 < t1 < t2 < ıp , then the set A.t1/ [ M�1 lies in
the unbounded connected component of the set PC n A.t2/ (in other words,
A.t2/[ M�2 lies in the bounded connected component of the set PC nA.t1/; see
Fig. 3).
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Fig. 3 The surface Sk.t1; t2; t/ ( here A.t/ is denoted as A2.t/)

For this construction, the results of Sect. 3.2 are used for the restrictions of the
stream function  on suitable compact subdomains of PC (see details in [39]).

We have also one additional property (cf. with Lemma 4 for the plane case):

(iv) There exists a set T � .0; ıp/ of full measure (i.e., meas
�
.0; ıp/ n T

�
D 0)

such that for all t 2 T the set A.t/ is a regular cycle, i.e., it is a C1-curve
homeomorphic to the circle and

ˆk.x/� ˆ.x/ � �t on A.t/: (77)

Let t1; t2 2 T and t1 < t 0 < t 00 < t2. The very important issue is to construct
for sufficiently large k 	 k0 and for almost all t 2



t 0; t 00

�
a C1-circle Sk.t/ which

separates A.t1/ from A.t2/ and satisfies ˆkjSk.t/ � �t . Moreover, the gradient of
ˆk is directed toward �1.

For this purpose, for t 2 Œt 0; t 00� denote by Wk.t1; t2I t / the bounded connected
component of the open set fx 2 PC n A.t1/ W ˆk.x/ > �tg such that
@Wk.t1; t2I t / � A.t1/ (see Fig. 3). This definition is valid since for sufficiently large
k by the convergence (77), the estimates

ˆkjA.t1/ > �t; ˆkjA.t2/ < �t 8t 2 Œt 0; t 00� (78)

hold. Now put

Sk.t1; t2I t / D .@Wk.t1; t2I t // n A.t1/:
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Clearly, ˆk � �t on Sk.t1; t2I t /. Moreover, Sk.t1; t2I t / separates A.t1/ from A.t2/

because of the monotonicity property (iii) and (78) (see Fig. 3).
Recall, that for a set A � PC, QA denotes the set in R

3 obtained by rotation of A
around Oz-axis. By construction, for every regular value t 2 Œt 0; t 00� b .t1; t2/, the
set Sk.t1; t2I t / is a C1-circle; consequently, QSk.t1; t2I t / is a torus, and

Z

QSk.t1;t2It/

rˆk � n dS D �
Z

QSk.t1;t2It/

jrˆkj dS < 0; (79)

where n is the unit outward normal vector to @ QWk.t1; t2I t /.
Now formulate the key estimate.

Lemma 10. For any t1; t2; t 0; t 00 2 T with t1 < t 0 < t 00 < t2, there exists
k� D k�.t1; t2; t

0; t 00/ such that for every k 	 k� and for almost all t 2 Œt 0; t 00�,
the inequality

Z

QSk.t1;t2It/

jrˆkj dS < F t; (80)

holds with the constant F independent of t; t1; t2; t 0; t 00 and k.

Proof. Fix t1; t2; t 0; t 00 2 T with t1 < t 0 < t 00 < t2. Below always assume that k is
sufficiently large; in particular, the set QSk.t1; t2I t / is well defined for all t 2 Œt 0; t 00�.

The main idea of the proof of (80) is quite simple: to integrate the equation

�ˆk D !
2
k C

1

�k
div .ˆkuk/ (81)

over the suitable domain �k.t/ with @�k.t/ � QSk.t1; t2I t / such that the corre-
sponding boundary integrals

ˇ̌
ˇ̌

Z

�
@�k.t/

�
n QSk.t1;t2It/

rˆk � n dS

ˇ̌
ˇ̌ (82)

1

�k

ˇ̌
ˇ̌

Z

�
@�k.t/

�
n QSk.t1;t2It/

ˆkuk � n dS

ˇ̌
ˇ̌ (83)

are negligible. Such domain �k.t/ can be constructed because of the weak
convergences ˆk * ˆ, uk ! v from the assumption (E-NS-AX) and the boundary
conditions kukkL2.@�/ 
 �k , v � 0, ˆ � 0 on @� (see (523) and (503)).
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The following technical fact from the one-dimensional real analysis is needed.

Lemma 11. Let f W S ! R be a positive decreasing function defined on
a measurable set S � .0; ı/ with measŒ.0; ı/ nS � D 0. Then

sup
t1;t22S

Œf .t2/�
4
3 .t2 � t1/

.t2 C t1/.f .t1/ � f .t2//
D1: (84)

The proof of this fact is elementary (see, e.g., [39, Appendix]).
For t 2 T denote by U.t/ the bounded connected component (the torus) of the

set R3 n QA.t/. By construction, U.t2/ b U.t1/ for t1 < t2.
From estimate (80), the isoperimetric inequality and from the Coarea formula,

one can easily deduce

Lemma 12. For any t1; t2 2 T with t1 < t2, the estimate

measU.t2/
4
3 � C

t2 C t1

t2 � t1



measU.t1/ �measU.t2/

�
(85)

holds with the constant C independent of t1; t2.

The proof of this lemma is based on the same idea (Coarea formula for
R
jrˆkj

and
R
jrˆkj

2 ) as in Lemma 6 discussed for the plane case.
The last estimate leads us to the main result of this subsection.

Lemma 13. Assume that � � R
3 is an exterior axially symmetric domain of

type (38) with C2-smooth boundary @� and f 2 W 1;2.�/ \ L6=5.�/, a 2
W 3=2;2.@�/ are axially symmetric. Then the assumptions (E-NS-AX) and (73) lead
to a contradiction.

Proof. By construction, U.t1/ � U.t2/ for t1; t2 2 T , t1 < t2. Thus the just
obtained estimate (85) contradicts Lemma 11. This contradiction finishes the proof
of Lemma 13. ut

4.2.6 The Case ess sup
x2�

ˆ.x/ > 0.

The cases (b) and (c), where ess sup
x2�

ˆ.x/ > 0 (see (74) and (75)), are easily reduced

to the plane case, because now one can separate, by the level sets of ˆ, the region
where ˆ is close to maximum both from infinity and from the singularity axis Oz

and carry out all arguments in the constructed bounded plane domain.
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4.3 A Simple Proof of the Existence Theorem in the Case Without
Swirl

Here we discuss an alternative (and much more simple) approach to the existence
result for the 3D exterior domain in the axially symmetric case without swirl. The
proof is based on the idea of [36] of using some divergence identities for solutions
to the Euler equations (see also [42]).

4.3.1 Some Identities for Solutions to the Euler System
Let the conditions (E-AX) from Lemma 8 be fulfilled, i.e., the axially symmetric
functions .v; p/ satisfy the Euler equations (50) and

v 2 L6.R3/; p 2 L3.R3/;

rv 2 L2.R3/; rp 2 L3=2.R3/; r2p 2 L1.R3/

(these properties were discussed in Sect. 4.2.3; without loss of generality, assume
that v is extended by zero into R

3 n � and put p.x/ D Opj for x 2 �j , j D
1; : : : ; N ). Assume also that (73) is valid, i.e.,

ˆ.x/ � 0: (86)

First of all, discuss the integrability properties of these functions on half-plane PC.
For any axially symmetric vector function g D .g� ; gr ; gz/, the following equality

jrgj2 D
jg� j

2

r2
C
jgr j

2

r2
C j@rgr j

2 C j@zgr j
2 C j@rg� j

2

Cj@zg� j
2 C j@rgzj

2 C j@zgzj
2

(87)

holds. Thus, jgr j
r
� jrgj. Applying this formula to g D rp D .@rp; 0; @zp/ we get,

by virtue of r2p 2 L1.R3/,

@rp

r
2 L1.R3/: (88)

Hence @rp 2 L1.PC/. Since p.r; z/! 0 for each z 2 R as r !1, the inclusion

p.r; �/ 2 L1.R/ (89)

is valid for each r > 0; moreover,

Z

R

p.t; z/ d z D �

1Z

t

Z

R

@rp.r; z/ d z dr ! 0 as t !1: (90)
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From the last formula and the inequality ˆ � 0, it follows that

jvj2.r; �/ 2 L1.R/ (91)

for each r > 0. Further, (87) and rv 2 L2.R3/ imply

jv� j
2

r
C
jvr j

2

r
2 L1.PC/: (92)

From the Euler system (50), it follows by direct calculation that for any smooth
function g, the following identity

div Œp gC .v � g/v� D p div gC


.v � r/g

�
� v (93)

holds. Apply this formula two times for g D rer and g D 1
r
er , where er is the unit

vector parallel to the r-axis.

(I) g D rer , div Œp gC .v � g/v� D 2pC v2� C v
2
r . Integrating this identity over the

3D infinite cylinder Ct D

�
.x1; x2; x3/ 2 R

3 W r D
q
x21 C x

2
2 < t

	
yields

t 2
Z

R



p.t; z/C v2r .t; z/

�
d z D

“

Pt

r


2p C v2� C v

2
r

�
d z dr; (94)

where Pt D f.r; z/ 2 PC W r < tg.
(II) g D 1

r
er , div Œp g C .v � g/v� D 1

r2
.v2� � v

2
r /. Since there is an essential

singularity at r D 0, one needs to integrate this identity over Ct0t D�
.x1; x2; x3/ 2 R

3 W r D
q
x21 C x

2
2 2 .t0; t/

	
to obtain

R
R



p.t; z/C v2r .t; z/

�
d z �

R
R



p.t0; z/C v2r .t0; z/

�
d z

D
’
Pt0t



1
r
.v2� � v

2
r /
�
d z dr;

(95)

where Pt0t D f.r; z/ 2 PC W r 2 .t0; t/g.

Since
R
R



p.t; z/C v2r .t; z/

�
d z! 0 as t !C1 and

“

PC

ˇ̌1
r

�
v2� � v

2
r

� ˇ̌
d z dr <1;
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it follows from the above formulas that
Z

R



p.t; z/C v2r .t; z/

�
d z D

“

Pt1

�
1

r

�
v2r � v

2
�

�

d z dr; (96)

where Pt1 D f.r; z/ 2 PC W r 2 .t;C1/g.

4.3.2 Proof of the Existence Theorem
As in the beginning of Sect. 4.2.4, assume that the assumptions (E-NS-AX) (see
Lemma 8) are satisfied, but now suppose, additionally, that all functions a; f;uk; v
have no swirl. Our goal is to receive a contradiction. This implies the validity of
Theorem 7 for the case with no swirl.

It turns out that a contradiction for this case could be obtained extremely easy.
Consider the limit solution .v; p/ to the Euler equations (50) from Lemma 8
(E-AX). It is necessary to discuss only the case (73), since for other two cases
(74)–(75), the arguments are carried out for bounded plane domains (see
Sect. 4.2.6). From (73), (94), it follows that

R
R



p.t; z/ C v2r .t; z/

�
d z � 0 for all

t > 0. But in the case v� � 0, the equality (96) implies
R
R



p.t; z/Cv2r .t; z/

�
d z > 0

a contradiction.

Remark 6. The similar idea was used in [36] to obtain the existence theorem for
annulus-type plane domain under inflow conditions (the flux through the external
boundary component is nonpositive) and in [42] to prove the Liouville theorem in
R
3 for the D-solution without swirl of the stationary Navier–Stokes system. Note

that this result of [42] could be easily derived from the Liouville-type theorem for
ancient solutions of nonsteady Navier–Stokes system in [33].

5 2D Axially Symmetric Case: Exterior Domain

5.1 Formulation of the Problem and Historical Review

Let � be an exterior domain of R2:

� D R
2 n
� NS
jD1

N�j

�
; (97)

where �j � R
2, j D 1; : : : ; N; are bounded, simply connected domains with

Lipschitz boundaries and N�j \ N�i D ; for i ¤ j . Look for a solution of the
steady-state Navier–Stokes problem

8̂
<̂
ˆ̂:

���uC
�
u � r

�
uCrp D f in �;

div u D 0 in �;

u D h on @�;

(98)
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satisfying the additional condition at infinity

lim
jxj!C1

u.x/ D 	e1; (99)

where for simplicity it is assumed that f vanishes outside a disk.
The two-dimensional problem in an exterior domain is much harder than the

above three-dimensional case (see Sect. 4.2). The main difficulty is to find a solution
satisfying the condition at infinity (99). In 1933 J. Leray [49] proved that if the
boundary data are sufficiently regular, f D 0, and the fluxes through every @�i

vanish

Fi D
Z

@�i

h � n dS D 0; (100)

then problem (98) has a weak solution .u; p/ with finite Dirichlet integral

Z

�

jruj2dx < C1: (101)

To show this, Leray introduced an elegant argument, known as invading domains
method, which consists in proving first that the Navier–Stokes problem

8̂
ˆ̂̂<
ˆ̂̂̂
:

���uk C
�
uk � r

�
uk Crpk D 0 in �k;

div uk D 0 in �k;

uk D h on @�;

uk D 	e1 on @Bk

(102)

has a weak solution uk for every bounded domain �k D � \ Bk , Bk D fx 2 R
2 W

jxj < kg, Bk c {�, and shows that the following estimate holds

Z

�k

jrukj2dx � c; (103)

for some positive constant c independent of k. While (103) is sufficient to assure
existence of a subsequence ukl which converges weakly to a solution u of (98)
satisfying (101), it does not give any information about the behavior at infinity of the
velocity u (Indeed, the unbounded function log˛ jxj .˛ 2 .0; 1=2/) satisfies (101).),
i.e., we do not know whether this limiting solution u satisfies the condition at
infinity (99). That means that the limiting solution u does not “remember” about
the boundary value 	e1 despite the fact that this boundary value was used in
the construction of ukl * u (cf. with Sect. 4.2.2 for 3D case).
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In 1961 H. Fujita recovered, by means of a different method, Leray’s result.
Nevertheless, due to the lack of a uniqueness theorem, the solutions constructed
by Leray and Fujita are not comparable, even for very small �. The solution to (98)
constructed by the invading domains method is called Leray’s solution, while any
solution satisfying (101) is called D-solution.

Only 40 years after Leray’s paper, D. Gilbarg and H.F. Weinberger [25] were able
to show that the velocity u in Leray’s solution is bounded, p converges uniformly
to a constant at infinity, and there is a constant vector Nu such that

lim
r!C1

2
Z

0

ju.r; �/ � Nuj2d� D 0 (104)

(here .r; �/ denote polar coordinates with center at O). Moreover, they proved that
if Nu D 0, then the convergence is uniform and ru decays at infinity as r�3=4 log r .
In the subsequent paper [26], the same authors proved that a bounded D-solution
meets the same asymptotic properties as the Leray solution (see also [2]). One of
the most difficult and unanswered questions is the relation between 	e1 and Nu. To
point out the difficulties of the problem, recall that even the linear Stokes problem

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

���uCrp D 0 in �;

div u D 0 in �;

u D h on @�;

lim
jxj!C1

u.x/ D 	e1;

(105)

does not have, in general, a solution. Indeed, the solutions of the homogeneous
problem

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

���vCrQ D 0 in �;

div v D 0 in �;

v D 0 on @�;

lim
jxj!C1

v.x/
jxj

D 0;

spans a two-dimensional linear space C, and (105) is solvable if and only if the data
satisfy the following compatibility condition (Stokes’ paradox)

Z

@�

.h � 	e1/ � Œ�.rvCrv>/ � n �Qn�dS D 0; 8 v 2 C (106)
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(see [8, 23]). Let us observe, by the way, that this is not surprising. Indeed, the
natural solution to (105)1;2;3 should behave at infinity as the fundamental solution
to (105) .u D O.log r//, and the addition of (105)4 makes (105) overdetermined.
Therefore, (106) appears to be quite natural.

Unexpectedly, in 1967 R. Finn and D.R. Smith [17] discovered the existence of
a solution to (98), (99) without any compatibility relation between h and 	 ¤ 0,
for � sufficiently large. They also showed that .u� 	e1; p/ behaves at infinity as the
fundamental solution of the linear Oseen system (see also [22]). In particular, taking
also into account the results in [11, 72], one obtains the following behavior:

u1 � 	 D O.r�1=2/; u2 D O.r�1 log r/;

ru D O.r�1 log2 r/; p D O.r�1 log r/;
(107)

and outside a parabolic “wake region” around axis e1, the decay is more rapid; in
particular, ! D @1u2 � @2u1 behaves according to

!.x/ D O.ec.x1�jxj// (108)

for some absolute constant c. R. Finn and D.R. Smith called a solution .u; p/
to (98), (99) physically reasonable provided u � 	e1 D O.r�1=4�"/ for some pos-
itive ". D.R. Smith [72] proved that a physically reasonable solution satisfies (107)
and D.C. Clark [11] that (107) implies (108). More recently, V. I. Sazonov [71]
showed that a D-solution such that u � 	e1 D o.1/, with 	 ¤ 0, is physically
reasonable (see also [21, 24]). Notice that nothing is currently known about the
asymptotic behavior, in general, for 	 D 0 or for arbitrary �.

Later, in 1988, problem (98), (99) was taken up by C.J. Amick [3] under the
assumption f D 0. He proved that if h D 0, then any D-solution is bounded
and converges to Nu in the sense of (104). Moreover, he considered a particular but
physically interesting class of solutions u D .u1; u2/ such that u1 is an even function
of x2 and u2 is an odd function of x2:

u1.x1; x2/ D u1.x1;�x2/; u2.x1; x2/ D �u2.x1;�x2/ (109)

in the symmetric domain

.x1; x2/ 2 �, .x1;�x2/ 2 �: (110)

Using Leray’s argument C.J. Amick showed that for symmetric solutions the
convergence of u at infinity is uniform; moreover, if @� is regular enough and
h D 0, then u is nontrivial, i.e., u ¤ 0 whenever 	 ¤ 0. (Amick assumes � to
be of class C3. Recently, this result has been extended to Lipschitz domains [68].)
These last results rule out the Stokes paradox for the nonlinear case for symmetric
domains and homogeneous boundary data. A clear exposition of Amick’s results,
as well as the results outlined above, can be found in [22]. For an exterior domain
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condition (100) has been replaced in [66] by the weaker assumption that the sumP
i

jFi j is sufficiently small. An interesting approach to the existence of solutions

to (98)–(99) with 	 D 0 and small data has been recently proposed by M. Hillairet
and P. Wittwer [28].

Finally, in the recent paper [61] mentioned by the authors, the problem (98), (99)
with 	 D 0 was considered in exterior plane domains symmetric with respect to
both coordinate axes and a solution was found in the class of vector fields v 2 C0

satisfying the following symmetry conditions:

v1.x1; x2/ D v1.x1;�x2/ D �v1.�x1; x2/;

v2.x1; x2/ D �v2.x1;�x2/ D v2.�x1; x2/:
(111)

It is proved in [61] that if data h, f 2 C0 satisfy only natural regularity assumptions,
then (98) has a D-solution in C0 which converges uniformly to zero at infinity. The
flux of the boundary value h over @� in this case is arbitrary.

All abovementioned results (except [61]) were proved either under the condition
that all fluxes Fi are equal to zero (see (100)) or assuming that fluxes Fi are
“small.” Besides the relation between 	e1 and Nu, another relevant problem in the
theory of the stationary Navier–Stokes equations is to ascertain whether a solution
to problem (98) exists without any restriction on the fluxes Fi . For exterior plane
domains, this problem, in general, is unsolved until now (solutions of the problem
for bounded plane and 3D axially symmetric domains as well as for 3D axially
symmetric exterior domains were discussed above in Sects. 3 and 4).

In the last paper [40] it is proved for arbitrary fluxes Fi the existence of a D-
solution to problem (98) for exterior plane domains in the case when only Amick’s
symmetric conditions (109)–(110) are satisfied and every �i intersects the x1–axis,
i.e.,

�i

\
Ox1 ¤ ; for all i D 1; : : : ; N: (112)

5.2 Formulation of the Main Result

Theorem 11 ([40]). Let � � R
2 be a symmetric exterior domain (97), (110),

(110), (112) with multiply connected Lipschitz boundary @� consisting ofN disjoint
components �j , j D 1; : : : ; N . Assume that f is a symmetric .in the sense of (109)/
distribution such that the corresponding linear functional H.�/ 3 � 7!

R
�

f � �

is continuous .with respect to the norm k � kH.�// and h is a symmetric field in
W 1=2;2.@�/. Then problem (98) admits at least one symmetric weak solution u. The
following estimate

kruk2
L2.�/

� c
�
khk2

W 1=2;2.@�/
C khk4

W 1=2;2.@�/
C kfk2�

�
(113)

is valid.
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Here the total flux

F D
Z

@�

h.x/ � n.x/ dS D
NX
iD1

Fi (114)

is not required to be zero or small. By what was said before, if f has a compact
support, then the solution converges uniformly at infinity to a constant vector
˛e1; moreover, for ˛ ¤ 0, it behaves at large distance according to (107), (108).
However, it is not known whether this solution satisfies the condition at infinity (99).

The proof of Theorem 11 is based on Leray’s method of invading domains. The
needed a priori estimate is obtained using the special extension of the boundary
value satisfying the Leray–Hopf inequality (cf. with (9)) which is obtained by
applying a new inequality of Poincaré type (see Lemma 16) that could be useful
also in other contexts.

5.3 Some Estimates for Plane Functions with Finite Dirichlet
Integral

Lemma 14. Let � be the exterior domain (97), v 2 D.�/. Then the following
inequality

Z

�

jv.x/j2

jxj2 log2 jxj
dx � c

Z

�

jrv.x/j2dx (115)

holds.

Inequality (115) is well known (e.g., [47]).
As it follows from (115), functions v 2 D.�/ do not have to vanish at infinity.

The next assertion gives some information about the behavior of a function ofD.�/
as jxj ! 1.

Lemma 15. Let � be the exterior domain (97), v 2 D.�/. Then

lim sup
r!1

1

log r

2
Z

0

jv.r; �/j2d� � 2

Z

�

jrv.x/j2dx: (116)

Inequality (116) is proved in [26] (see Lemma 2.1).

Lemma 16 ([40]). Let � be the exterior domain (97), v 2 D.�/, � > 0, ˛ 2
.0; 1/, R� 	 R0 > 1. Then the following inequality
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Z

Rn.�R�; R�/

�jx1j
˛Z

0

jv.x1; x2/j
2

jxj2
dx1dx2 � c

Z

�

jrv.x/j2dx (117)

holds. The constant c in (117) depends only on R0; �, and ˛.

5.4 Construction of the Extension of the Boundary Value

Below only the construction of the extension of the boundary value is given. Other
details of the proof can be found in [40].

Let  2 C1.R/ be a nonnegative function such that 0 �  .t/ � 1,

 .t/ D

�
1; t 	 1;

0; t � 0;

and � 2 C1.R/ be a monotone function on RC with �.t/ 	 �0 > 0,

�.t/ D

�
jt j˛; jt j 	 3R0;

1; jt j � 2R0;

where ˛ 2 .0; 1/.
Let �C D fx 2 � W x2 > 0g and �� D fx 2 � W x2 < 0g. Set

�C.x/ D x2
�
�.x1/C .1 � �.x1//ı.x/

�
; x 2 �C;

where � 2 C1.R/ is a monotone function with

�.t/ D

8<
:
1; jt j 	 2R0;

0; jt j �
3

2
R0;

and ı.x/ is the regularized distance from the point x 2 � to @� D
NS
jD1

@�j . Notice

that ı.x/ is infinitely differentiable function in R
2n@� and the following inequalities

a1d.x/ � ı.x/ � a2d.x/; jD
˛ı.x/j � a3d

1�j˛j.x/

hold. Here d.x/ D dist.x; @�/ is the Euclidean distance from x to @� (see [74]).
Let " 2 .0; 1/ be an arbitrary number. In the domain �C, define the cutoff

function

�C.x; "/ D  

�
" ln

�
"�.x1/

�C.x/

��
:
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Obviously,

�C.x; "/ D

(
0; "�.x1/ < �C.x/;

1; �C.x/ < "e
� 1" �.x1/:

Define

b.x/ D
1

2

r ln jxj D

1

2


�
x1

jxj2
;
x2

jxj2

�
:

The vector field b.x/ satisfies the symmetry conditions (109). Moreover, it is well
known that the flux of b.x/ over a closed curve � is equal to 1,

Z

�

b.x/ � n.x/ d� D 1;

if and only if the domain bounded by � contains the point x D 0. Here n is unit
vector of outward (with respect to the domain bounded by � ) normal to � . Otherwise
the flux is equal to zero.

Let x.j / D
�
x
.j /
1 ; 0

�
2 �j ; j D 1; : : : ; N . Put

b.j /.x/ D �Fjb
�
x � x.j /

�
:

Then
Z

�j

b.j /.x/ � n.x/ dS D Fj ;
Z

�i

b.j /.x/ � n.x/ dS D 0; i ¤ j:

In the domain �C, the functions b.j /.x/ could be represented in the form

b.j /.x/ D
Fj
2

r?'

.j /
C .x/; '

.j /
C .x/ D arctg

x1 � x
.j /
1

x2
; x 2 �C; j D 1; : : : ; N;

where r? D

�
@

@x2
;�

@

@x1

�
. Notice that j'.j /C .x/j � 
=2 for x 2 �C and j D

1; : : : ; N . Define

B.j /C .x; "/ D
Fj
2

r?

�
�C.x; "/'

.j /
C .x/

�

D
Fj
2


�
'
.j /
C .x/r

?�C.x; "/C �C.x; "/r
?'

.j /
C .x/

�
:
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Then div B.j /C .x; "/ D 0, and, since �C.x; "/ D 1 in the neighborhood of @�C, it
follows that

B.j /C .x; "/
ˇ̌
ˇ
@�C
D

Fj
2

r?'

.j /
C .x/

ˇ̌
ˇ
@�C

:

Lemma 17. Let j D 1; : : : ; N . Then for every ı > 0, there exists " D ".ı/ such
that the following inequality

ˇ̌
ˇ
Z

�C

�
u.x/ � r

�
u.x/ � B.j /C .x; "/ dx

ˇ̌
ˇ � ı

Z

�C

jru.x/j2 dx 8u 2 HS.�/ (118)

holds. HS.�/ is the subspace of functions from H.�/ satisfying the symmetry
conditions (109).

The proof of the Leray–Hopf inequality (118) is based on Lemmas 14–16 and is
true only for functions u in HS.�/, i.e., satisfying the symmetry conditions (109).
For an arbitrary function u 2 H.�/, this inequality can be wrong.

Define

B.j /.x; "/D

8̂
<
:̂

�
B
.j /
C;1.x1; x2; "/; B

.j /
C;2.x1; x2; "/

�
; x 2 �C;";

�
B
.j /
C;1.x1;�x2; "/;�B

.j /
C;2.x1;�x2; "/

�
; x 2 ��;";

and

B.x; "/ D
NP
jD1

B.j /.x; "/:

The vector field B is symmetric,

divB D 0;
Z

�j

B � ndS D Fj ; j D 1; : : : ; N:

Let h1.x/ D h.x/ � B.x; "/
ˇ̌
@�

. Then

Z

�j

h1.x/ � n.x/dS D 0; j D 1; : : : ; N: (119)
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If h 2 W 1=2;2.@�/, then obviously h1 2 W 1=2;2.@�/ and

kh1kW 1=2;2.@�/ � c
�
khkW 1=2;2.@�/ C kB

ˇ̌
@�
kW 1=2;2.@�/

�

� c
h
khkW 1=2;2.@�/ C

� NX
jD1

F2
j

�1=2i
� ckhkW 1=2;2.@�/:

Because of condition (119), there exists a function H 2 H.�/ such that
supp H.x; "/ is contained in a small neighborhood of the boundary @�,

divH D 0; H.x; "/j@� D h1.x/; H 2 L4.�/; rH 2 L2.�/;

kHkL4.�/ C krHkL2.�/ � ckh1kW 1=2;2.@�/ � ckhkW 1=2;2.@�/:

Moreover, H.x; "/ satisfies Leray–Hopf’s inequality, i.e., for every ı > 0, there
exists " D ".ı/ such that

ˇ̌
ˇ
Z

�

�
u.x/ � r

�
u.x/ �H.x; "/ dx

ˇ̌
ˇ � ı

Z

�

ju.x/j2 dx 8u 2 H.�/

holds (see [47]).
The function H.x; "/ is not necessarily symmetric. However, its boundary value

is symmetric and, therefore, H.x; "/ can be symmetrized defining the function
eH.x; "/ as follows:

QH1.x; "/ D
1

2



H1.x1; x2; "/CH1.x1;�x2; "/

�
;

QH2.x; "/ D
1

2



H2.x1; x2; "/ �H2.x1;�x2; "/

�
:

Put

A.x; "/ D B.x; "/C eH.x; "/:

Lemma 18. (i) The vector field A.x; "/ is symmetric,

div A.x; "/ D 0; A.x; "/
ˇ̌
@�
D h.x/;

(ii) A 2 L4.�/, rA 2 L2.�/,

kAkL4.�/ C krAkL2.�/ � ckhkW 1=2;2.@�/: (120)
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(iii) For every ı > 0, there exists " D ".ı/ such that the inequality

ˇ̌
ˇ
Z

�

�
u � r

�
u � A dx

ˇ̌
ˇ � ı

Z

�

jruj2 dx 8u 2 HS.�/

holds.

The constant c in (120) depends on " and tends to infinity as " ! 0. This
inequality is used with sufficiently small but fixed ".

Remark 7. If the domain � and the data are symmetric with respect to both
coordinate axes, the existence of a weak solution which also satisfies symmetry
conditions (111) can be proved. In this case the solution satisfies the condition at
infinity (99) with 	 D 0:

lim
jxj!1

v.jxj; �/ D 0

uniformly in � , i.e.,

lim
.x1;x2/!1

v.x1; x2/ D 0

(see [61]).

6 Conclusion

The first paper devoted to the existence of solutions to the stationary Navier–
Stokes problem without smallness assumptions on data was that of J. Leray [49],
under the sole hypothesis that the fluxes through any connected component of the
boundary vanish. The question whether this condition could be removed was by
then a fundamental open problem in the mathematical theory of incompressible fluid
dynamics and was the object of researches of several outstanding mathematicians.
A comprehensive account of attempts devoted to give an answer to this question
is contained in the book of G.P. Galdi [21]. Recently, the problem has been solved
for (i) two-dimensional bounded domains [36, 41]; (ii) two-dimensional exterior
axially symmetric domains and symmetric data [40,61]; and (iii) three-dimensional
bounded and exterior axially symmetric domains and symmetric data [37, 39, 41].
However, it remains much to do in order to get a complete picture of the flow
of an incompressible fluid under adherence boundary conditions. Among the still
open problems of particular interest are the following: (i0) to remove the symmetry
assumptions required in [37,39,41]; (ii0) to determine the behavior at infinity of the
solutions found in [39,40], also under symmetry assumptions; and (iii0) to prove or
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disprove the Liouville theorem in the class of D-solutions vanishing at infinity in
the three-dimensional case [21, 42] (see also [33]).
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