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COMPENSATED COMPACTNESS
AND HARDY SPACES

By R. COIFMAN, P: L. LIONS, Y. MEYER and S. SEMMES

ABSTRACT. — We prove that various nonlinear quantities (like the jacobian, “div-curl™...) identified by the
compensated compactness theory belong, under natural conditions, to multidimensional Hardy spaces. We
also explain how this regularity is related to various known facts from Harmonic Analysis (commutators with
BMO multipliers, multi-linear analysis) and to weak convergence questions. Finally, we indicate a few
applications of this fact.

Key-words. — Compensated compactness. Hardy spaces, weak convergence, bilinear forms, quadratic nonlinear
terms, cancellations, rank condition, maximal functions.

RESUME. — Nous montrons que diverses quantités non linéaires (comme le jacobien, le terme “‘div-rot™...)
identifiées par la théorie de la compacité par compensation appartiennent, sous des conditions naturelles, aux
espaces de Hardy multidimensionnels. Nous expliquons aussi comment cette régularité est relice & divers faits
connus en Analyse Harmonique (commutateurs avec des multiplicateurs dans BMO, analyse multilinéaire) et
a des problémes de convergence faible. Enfin, nous indiguons quelques applications de ce fait.

I. Introduction

This paper is devoted to the illustration of intrinsic links between the theory of
compensated compactness initiated and developed by L. Tartar ([44], [45]) and F. Murat
([34], [35], [36]) —related results and (or) phenomena are to be found in J. Ball [4],
Reshetnyak ([38], [39]) —and classical tools of Harmonic and Real Analysis such as
Hardy spaces, commutators and operators estimates...

Before providing a more detailed background to these links, let us immediately present
one example: let ue W N(RMN (i. e. the usual Sobolev space of L™ functions having first
derivatives in the sense of distributions in L™) then its jacobian J (u)=det(V u) belongs
to the multidimensional Hardy space that we denote by #* (RY). This space (introduced
by E. Stein and G. Weiss [43]) can be characterized as follows (see C. Fefferman and
E. Stein [22], R. Coifman and G. Weiss [14]...):

(1) #'(RN)={ feL'(RY)/sup|h *f]e L' (RY) }

t20

where 2, =1/t h(.[t), he CT (RY), h=0, Supp heB(0, 1)) (for instance).
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248 R. COIFMAN et al.

Notice of course that J () belongs trivially to L! (R™). Thus, the “specific algebraic”
structure of J (u) allows to find a proper subspace of L! namely #"' which contains the
range of the mapping (u+—J () from W' N(R™ into L' (R™)—let us mention, by the
way, that the exact determination of the range is an outstanding open problem on which
we shall come back later on. We shall prove however that #! is the minimal linear
vector space containing this range.

In some sense, the above result (a typical example of one type of results shown in this
paper) indicates an improvement of the trivial L' regularity. This improvement may be
best appreciated when recalling Stein’s lemma (cf. E. Stein [41]) about the structure of
L, nonnegative functions f in #4,.: fe #L. if and only if f log fe L . Therefore, from
the local variant of the above result, we recover the remarkable result of S. Miiller [32]:
let ue (Wi;,")N, assume that J (u) =0 then J(u)logJ(u)eLL.. In fact, this result was the
main motivation for our work.

After presenting this typical example of our results and before explaining the general
organization of the paper, we would like to make a few general comments. One way
to look at the compensated compactness theory (see the aforementioned references) 1s
to consider it as one consequence of the study of oscillations in nonlinear partial differen-
tial equations (arising from Continuum Mechanics, Physics or Differential Geometry...).
It is far beyond the scope of this paper to discuss the reasons for such a study but we
would like to mention at least that it is natural for the issue of the existence of global
(generalized) solutions for many nonlinear systems of interest. In particular, one of the
striking applications of the compensated-compactness theory has been the new develop-
ments on hyperbolic systems of conservation laws due to L. Tartar [44] and R. J. DiPerna

(18], [19]).

It is quite obvious that, in such a study, a fundamental role should be played by
weakly continuous nonlinear quantities (or, to be more specific by nonlinear quantities
which are sequentially continuous for sequences of functions having “certain natural”
bounds). The compensated compactness theory has identified classes of such nonlinear
quantities (as well as some general tools to determine them in a systematic fashion).
The terminology stems from the fact that compensations arise in those nonlinear quantities
such as J(u)=det (Vu), compensations which in turn allow the weak continuity (or the
compactness).

This work has several ambitions and goals: one is to shed a new light on these
phenomena, the other being to present a few extensions and applications made possible
by our viewpoint,

Indeed, we shall show, without taking sequences, that these nonlinear quantities have
an improved regularity (typically, #' instead of L'), which can be seen as a direct
consequence of a cancellation property. This improved regularity has many applications
to regularity results (slightly improved regularity for Leray solutions of three-dimensional
Navier-Stokes equations for instance), to the embedding of these non-linear quantities
into #°” for p <1 [for instance, J (1) € #7 if ue (W N?)N and p>N/(N+1)] and of course
to a “stronger weak convergence” when we deal with sequences.
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We shall also try to show that the cancellation property is the fundamental one by
showing how the “bilinear” machinery developed in R. Coifman and Y. Meyer [11] yields
the equivalence for “natural” bi-linear operators between weak continuity, the embedding
of the range into ! and the cancellation property.

We are now ready to explain the organization of our paper. First, in Section II, our
main results are presented on three examples (the above one, the div-curl example and
the square of divergence free vector-fields). We show, in these three examples, why the
corresponding non-linear quantities lie in #* by rather elementary arguments (using
only Sobolev-Poincaré inequalities and the classical maximal theorem). And we will
deduce from the proofs some results below L' (#°7 for p<1). In section III, we present
another approach to these results and show the relationship with classical results on
commutators. We also indicate various variants and other examples.

Then, in section IV, we apply the #* regularity to the convergence issues. In particu-
lar, we recall a recent result by P. Jones and J. L. Journé [29] showing the consistency
between weak * #! and a.e. convergences and we modify its proof to yield a similar
result for the so-called “biting lemma” convergence due to J. K. Brooks and R. V.
Chacon [6] (see also J. M. Ball and F. Murat [5], E. J. Balder [3]...).

Next, in section V, we develop the equivalences mentioned above for bilinear operators
that commute with translations and dilations. Then, in section VI, we consider general
quadratic expressions and raise the question of their J# ! regularity when certain linear
partial differential bounds are available.

The section VII deals with examples of situations where more cancellations are available
(higher moments of the nonlinear quantities vanish), in which case we can lower the
value of p and still obtain some #7 regularity. A typical example is given by the
jacobian when u=V ® and ®e W* N (RY) with ¢>N/(N+2): then J ()€ # (RY).

Next, in section VIII, we consider again situations “‘below L'” where the “‘compensated

" compactness” nonlinear quantities can be defined in the sense of distributions (and are

shown to belong to some Hardy space #7 for some range of p). On the other hand,

these expressions can also be defined pointwise. And we explain in this section the

relationships between the distributional definition and the pointwise notion, recovering,
in particular, another recent result of S.'_Miiller [29].

Finally, section IX is devoted to a few applications of our results like, for instance,
slights improvements of the known regularity for Leray solutions of three dimensional
Navier-Stokes equations. We also mention an example of the recent and remarkable
regularity result of F.Hélein ([27], [28]) for two-dimensional weak harmonic maps
(i.e. weak solutions of the harmonic maps equation) which uses the # ! regularity of
certain nonlinear expressions: in the case when the target manifold is a sphere—see
F. Hélein [27] - the proof is a very simple and direct application of our #'* regularity.

Let us conclude this Introduction by mentioning that some of the results presented
here were announced in [10].
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250 R. COIFMAN el al.

II. Three basic examples

We first explain the setting of three examples even if we shall see that, after some
simple algebraic manipulations, they can all be deduced from one of them namely the
so-called “div-curl™ expression.

We begin with the example of the Jacobian already mentioned in the Introduction: let
u satisfy

() uell (RMY for all g< oo, Vue LN (RS,
loc

We consider the Jacobian J (u)=det (V u) which clearly belongs to L' (RY). The second
example deals with vector fields E, B on RY satisfying

3) EeLP(RMY, BeL” ®YY  with l<p<oo, ~+ =1
p P

and

(4) divE=0, curlB=0 in Z2'(RY).

Then, we form the scalar product E. B which again clearly belongs to L' (R¥). Finally,
we consider a scalar function u and a vector field » on RY for N =2 satisfying

©) {VueLz(RN)N, ueL2NMN-2 RNy if N=3,

ueld (RY) forall g<oo if N=2,

VoeL2(RYYN*N,  dive=0,

(6) pe PN IEHN 5 N3,
L reLL (RMY for all g< oo if N=2

and we form V u.(dv/dx;) for some fixed ie{1,...,N}.

The first two quantities above are standard and model examples in the compensated
compactness theory while the third one, when we choose u=v; for each j e{l,...,N}is
a rewriting of the quantities identified by L. Mascarenhas [30].

Our main result is the

Tueorem 11.1. — 1) Let u satisfy (2), then J (u)e #* (RY).

2) Let E, B satisfy (3)-(4), then E.B € #* (RY).

3) Let u, v satisfy (5)-(6), then Vu.dv/dx;e #* (RY).

Remark II.1. — As we shall see below, many variants and extensions are possible.
The one that we wish to mention at this stage is the possibility of localizing the above

result. Indeed, it remains true if we replace all the global (R™) functions spaces in the
above assumptions and results by their local versions.

Remark 11.2. — Of course—it can be in fact deduced from functional analysis
arguments — the above result not only provides an embedding but also a priori estimates
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in #' (RM) in terms of ||Vu|[~ [in the case of 1)], | E||Lr||B||e» [in the case of 2)] and
||V ullp2]|V o2 [in the case of 3)].

As we will see in this paper, several proofs of Theorem I1.1 are possible. The one
we are going to present now is both simple and elementary. But, before we go into
more details, we explain how the cases 1) and 3) are in fact included in case 2). Indeed,
in the case 3) of Theorem II.1, we observe that Vue L2 (RMY, dv/dx;e L2 (RMN while

dv d

curl(Vu)=0  and div(—)- 2 (dive)=0 in 2'(RY).
o0x; X;

We thus only have to set E¥8vfﬁki, B=Vu to prove our claim (notice that p=2 when
reducing 2) to 3)). The reason-why 1) is also a reduction of 2) is quite classical in the
theory of compensated compactness: indeed, we may write

J(wy=det(Vu)=Vu'.c

with
N
@) dive=0 in @' (RM), lo|=T[|V¥|ae.

j=2
Again, we are back in the situation of 2) with

B=Vu'eLlN®Y)Y and E=ocelM™ VR

in view of (7).

Therefore, we only have to prove the second assertion of Theorem II.1. The proof
immediately follows from the following.

Lemma 11.1. — Let E, B satisfy (3)-(4). For all o, B satisfying

1 1 1 .
(8 r+é=1+7: lgags 1< —gjs
) R - P p=p

there exists a constant C (depending only on h, o, B) such that

|{h*(E.B)} (xl%C (jEB E |u)”“ ({Bf " |B)UB

for all xeR®, 1>0.
Here and everywhere bclov'v, B*=B(x, t)=B,(x) are various notations for the open

ball centered at x, of radius 7 and f
E

denotes |/meas(E) J .

E
Admitting temporarily Lemma II. 1. we conclude the proof of Theorem II.1: since
l<p<oo and (1/p)+(1/p")=1, one can find o, B satisfying (8) and also a<p, B<p’

1/a 1/p 1/a 1/p
sl (f, =) (o) Yeleef, ) g, )
t>0 B BF >0 JBF >0 JBF
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252 R. COIFMAN et al.
we deduce from the maximal theorem that sup | A, * (E.B)|eL’ (R™) and more precisely
that e

(10) sup | h, % (E.B)|SCM (|E[)'*M (| B|*)\/®

t>0

where

M()=sup} |f]  and flfidﬁiflf(u)ldu-
1>0 JBF B |B| B

We now turn to the

Proof of Lemma I1.1. — We first introduce a scalar function m such that V=B,
where me L”" (R") if p'<N, neLi (RY) for all g<oo if p’=N. Here and everywhere

loc

below, we denote by p* the Sobolev exponent p*=Np’/(N—p'). We next observe that
(11) E.B=div(Exn) in 2 (RM.

This identity, which is trivial formally since div E=0, is easily justified when EeL?,
BeL? by a straightforward mollification argument. Therefore, we may write for each
fixed xeR™, 1>0

h,*(E.B)(x)=th(ﬂ)% E)n(y)dy
! t

=J\7},(Q) Nlﬂ ,E(y){n—:{: n}dy.
t t B

Next, we use Holder’s inequality to deduce

|hc*(E.B)|§C(:f [E|B)w(j£ {|R_'j[ ﬂ[t—l}s')wl_
B Bf BF

Then, we use the Sobolev-Poincaré inequality to bound
BB 1a
AL NSt
BY BY Bf

1 1
a* o

since
1

£
3B

=]1—-

£ >

1
N
inequality which completes the proof of Lemma II. 1.

Remark 11.3. — Observe that part 1) of Theorem II.1 still holds if we assume
N

Vu'eL? (RY) where 1<p,<co and Y 1/p,=1/N(N=2).
i=1

i
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Remark 11.4. — If we use (10) in the “reductions from 1) or 3) to 2)” we deduce in
the case of 1) by choosing aa=(N—1)
(12) sup|hr*det(Vu)lgM(|Vu|")N’“

t>0

where o=N?/(N+1).
And in the case of 3) we choose a=p (by symmetry) and thus a=2N/(N+1).

And we find
h, * (Vu. ﬁti)
- ox

At this stage, we want to recall one definition of AP (RM) for 0<p<1 namely

v

o\ 1/a
) - D
0x;

(13) sup

t>0

§M(|Vu|°‘)”“M(

#? (RN ={fe & (RN)/sup |k, * f|e L7 (R™) }.
4 >0

And we deduce immediately from (10), (12) or (13) a sharper result than Theorem II.1.
We first detail the conditions we need in order to state it concisely:

2

Vuel?(BRMY for some N=p> ,
N+1

%‘IJELP‘(RN) if p<N, ueLf (RY) forall g<ooifg=N,
EcL?(RYY,  BeL!RYY,

(14)

with
(15) l<p<oo, l<g<o, 1+l<l+l,
P 9

curlE=0, divB=0 in 2'(RY),
Vuel?(RMY, uel”(RY) if p<N,

ue L' (RY) forall rif p=N,
VoeLIRMYN, el ®RMY if g<N,

vel"(RMN forall r if g=N,  dive=0,

1 1

1
l<p<oo, l<g<oo, —+-<l+—.
; p q

(16)

Tueorem 11.2. — 1) Let u satisfy (14), then J (u) e #7™ (RM).

2) Let E, B satisfy (15), then E.Be#" (RY) with 1/r=(1/p)+(1/q).

3) Let u, v satisfy (16), then V u.(dv/ox;) e #" (RY) with 1/r=(1/p)+(1/g).

As it stands, the above result is a bit vague since the definition of J(u), E.B or
V u.(dv/dx,) is not clear. To be specific, we may consider these expressions to be defined
as limits in the sense of distributions (or in the corresponding Hardy spaces in view of
the bounds implied by the proof of Theorem II.2, bounds that also show the existence
of limits). An even more precise way consists in writing these expressions in conservative
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254 R. COIFMAN et al.

form: for instance, in the case of 2), we introduce as in the proof of Theorem II.1
ne L” (R) and we define E. B=div(n B), a meaningful expression since © BeL! (R™). It
is also easy to check that these two definitions coincide.

Remark 11.5. — We define #N/™*+1 by
AT V={fe S |(sup| fx b YN DN LL (RV)}

>0

where ge L} if meas (}g[;k)éCﬁL for all x>0, for some C=0. Then, the conclusion
of Theorem II.2 remains valid replacing #N™*1 by #NN+1 (and by even the closure
of CZ(RM) in that space), when (1/p)+(1/g)=1+(1/N) in parts 2) and 3), when
p=NZ/(N+1) in part 1). '

We now conclude this section with an even further extension of Theorem II.2 that we
state only in the case of the “div-curl” situation (case 2) above) in order to simplify the
presentation. We wish to allow now E, B to belong to Hardy spaces

Ee#7 (RY), Be #7(RY) with

L 1 1
(17) N<p<oo, 0<g<oo, -+ <1+ —,

P q
curl E=0, divB=0 in &' (RY),

— notice that necessarily p, ¢>N/(N+1) and either p or g is strictly greater than 1.
Of course, #7(R™)=L?(R™) if p>1.

Then, we can form E.B either by a density argument (as a distribution) using the
bound implied by the result below, or by writing it directly in conservative form essentially
as we did above. For instance, if g>1 (the other case requires a slightly different
algebra...), we write E=Vn where ne L”" (R") (recall that Sobolev embeddings are valid
for A7 spaces if p>(N+1)/N—a direct consequence of the atomic decomposition, see
R. Coifman [8], R. Coifman and G. Weiss [14] for instance). Then, E.B may be defined
as above by div (n B) and this quantity makes sense since

(I/p*)+1/g)=(1/p)— (1/N) +(1/g) <1
by (17). And we have the
THEOREM I1.3. — Let E, B satisfy (17) then E.Be #" (R™) with 1/r=(1/p)+ (1/q).

Proof. — To keep the ideas clear, we only consider as we just did above the case
when g>1. Then, we may follow mutatis mutandis the above arguments and we
conclude provided we show the following

LEmMMA I1.2. — Let pe(N/(N+1), cv) let ae[l, p*) (recall that p*=N p/(N—p)).
Then, there exists a constant C=0 such that for all f satisfying V f € #* (RY) (fe L”" (RY))
we have

o {Llwf AL
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COMPENSATED COMPACTNESS AND HARDY SPACES 255

Remark 11.6. — A similar argument to the proof of Lemma II.2 below shows that
the Sobolev-Poincaré inequality holds if V fe #7 (p>N/(N+1)). In that case we may
even allow the exponent o= p*. Of course, the above result is obvious for p=1.

Proof of Lemma 11.2. — First of all, we consider A=(—A)"? and we observe that
Vfe#? and Afe#? are equivalent (since the Riesz transforms are bounded on #7).
where g=A"! f. -

Then, we introduce the operator
o 1/
Since o= 1, this operator is ob_n/iously sublinear

(19 rrw=su(f {3]e-f 2
e |TOf+p)|S|A] | T+ T@I

and Lemma II.2 amounts to the boundedness of the operator T from #7 into L7. If
p<1, it is enough to show that T (a) is uniformly bounded in L? for all normalized p-
atoms a i.e. compactly supported bounded functions a satisfying

20 Suppa < Q, adx=0, aljo ——
0) — j lalhes — i

for some cube Q in R [recall that p>N/(N+1)].

By a simple translation and scaling argument, we readily see that we only have to
prove this claim when Q is the unit cube centered at 0.

Having thus reduced the proof of the Lemma to this estimation, we proceed as follows
and consider first points |x|<10. We then recall the elementary Poincarée inequality

1/a 1/x
({/ Ig*'f( gl“‘dy) éCt< Vgl“‘dy)
BY Bf Bf

SCitM(|Vg[»'™ forall t=0,
where g=A~'a. Therefore, we have
0=T(@EM(VgH™ ae.
On the other hand, if Be(a, ) 3

IM(VgP)"™ o= M (Vg |5
<C|| |Vglllsa=Cl| Vel

And 8g/dx,= R, a (Riesz transform), thus ||V g||,s<C||a|s=<C. We thus deduce finally

1/p ) 1/p
(21) (J‘ | T (a) |"dx) gC(J‘ ]T(a)!ﬂdx)
|x|=10 |x|=10

<C||M(Vg[9'|r=C.
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256 R. COIFMAN et al.

We next treat the part (“away from the singularity™) |x|=10. We first recall that
g=A""'a=cyax1/|x|¥"'. Since j adx=0 and a is bounded with compact support,
RN

we deduce trivially:

(22) |g(x)|§C(1+|x|)‘N, lVg(x)|§C(1+|xD‘(N+”_

We then claim that by a brute force estimate we have

(23) 0<T(@)<C(log|xx N"1+C|x|*"™ if |x|z10.

If this claim is shown, we conclude easily the proof of Lemma II.2. Indeed

J |T(a)[Pdx<C, since p+y>N and p>£
Ix|z10 o NH
and we combine this inequality with (21).

There only remains to show (23). We first consider 0<¢<|x|/2. In that case, if
yeB;, we have in view of (22)

t
= =
|g(y) jE?g =CTpe
and thus
1 a\ 1l/a C 3
(24) sup (jr/ {— g,f g }) e for |x|z10.
o<rsixlz \Jexr (! B |x|
Next, if > x|/2, we write
’g{y)jL g|Z|le|+ JC g
BY Bf

<|lg()|+Ct Nlogt.

Therefore, if |x|210,

1
SAVAF
e>|xli2\Jpr (1

gJE g
B

ey /e log ¢ 1
26 B

} ) - t>s|111:|),f2 ([N+l t1+N;‘ﬂ)
gl 08lAl . LY
= |x|N+1 lx|1+Nfu

Combining this inequality with (24), the claim (23) is proven, concluding thus the proof
of Lemma II.2.

TOME 72 — 1993 — N° 3



COMPENSATED COMPACTNESS AND HARDY SPACES 257

III. Other approaches, more examples and variants

III.1. CommuTAaTORS. — We want to show in this section how Theorem II.1 can be
deduced from the well-known result of Coifman-Rochberg-Weiss [13] denoted here after
as the CRW theorem: if R is any Riesz transform (i.e. R=§/dx;(—A)~"* for some /)
and if b BMO, then the commutator [b, R] is bounded from L? into LF for all pe (1, o0).

Therefore, there exists a constant C>0 such that for all be C (RY), feL?, geL” [for
some pe (1, c0)], we have

(25) ‘ j BR()-R (BN édx

=Ub{(Rf)g+f(Rg)}dx
éc”b”BMOHfHL-”Hg”Lp"

Therefore, by the classical duality (VMO)*=3#", (#')*=BMO —where VMO is the
closure of C¥ (R™) for the BMO norm ““up to constants”...—, we see that an equivalent
form of the CRW theorem is the

Tueorem II1.1. — Let R be any Riesz transform, let pe(l, oo) and let fe L?(RY),
geL? (RN), then (Rf)g+f(Rg)e #* (RY).

Remark TII°1. — If R, R’ are two Riesz transforms, then this result immediately
implies that (R f)(R'g)— (R’ ) (Rg)e #' (R") since we have

RAHAR =R /R g=[RNHRQ+/(RR' 2] -[/(R'Rg)+ (R /)R g)].

Remark 111.2. — It is quite clear that, in the above Theorem, R may be replaced by
a general Calderon-Zygmund operator K but we will not pursue now in this direction
since such extensions will be anyway consequences of section V. Of course, in that case,
one forms (K /) g—f (K'g) where K' is the transposed on K.

Let us now explain how Theorem II.1 can be deduced from Theorem III.1. In order
to avoid the rather messy algebra involved for the determinant, we only consider the
case of 2, 3) (recalling anyway that 1) can be deduced from 2). In the case of 2), we
introduce m such that Vi=E or even better feL?(R") such that R, f=E; for all j.
(The role of E and B are exchanged in the proof.) Then,

N

N
E.B=Y (R;NB;= Y (R;/)B;+f(R;B)
i=1

Ji=

since
N

Y R,B,=div((—A) "2 B)=(—A)" " (divB)=0.

=1
And we conclude since, in view of Theorem III. 1, each of the functions

(R;/)B;+f(R;B;) belongs to #".
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In the case of 3), it is extremely similar since we only need to introduce
(=P uel?®Y),  g=(-H8)"vel?(RY),
for 1<j=<N.
Then,
av N N
Vu. o, =;§1 (R;/) (R,-g,-):jg1 (R;/)(R;g)— (RN (R;g))

since

N I
Y R;g;=divo=0.
ji=1

And we conclude in view of Theorem III.1 (and Remark III.1).

Of course, Theorem III.1 is very much reminiscent of the famous fact on Hilbert
transforms: let £, ge L?(R), then (H f)g+f(Hg)e #' (R). In that case, however, some
form of converse is known (with precise estimates on (f, g)) showing in particular
that the range of (Hf) g+f(H g) when f, g describe L*(R) is exactly A1 (R). This
of course cannot be true if we naively replace H by arbitrary Calderén-Zygmund
operators. However, it is very tempting to ask whether the map

ue W' 2(R%)? - J (1) = det (V u) e #* (R?)

is onto? We have been unable to answer this question which can be raised for almost all
the nonlinear quantities arising in the theory of compensated compactness. However,
we shall see in section I1I.3 that any element of #' can be decomposed into a countable
sum of “normalized jacobians™: this will show in particular that #' is the minimal
vector space containing J () for all ue W' ?(R?)?. The argument is in fact quite general.

I11.2. VARIANTS AND MORE EXAMPLES. — We begin by mentioning briefly some nonho-
mogeneous situations. We only consider the ““div-curl” example and E, B satisfying

EelE, Bell., divBeW b7, curlEe W %,

c

where r>p’, s>p. Then, E.Be #],_.

This result is easily shown by a (Hodge) decomposition

E=E,+E,, E,ell., E,eli. curlE,=0, divE,=0,

loc>

B=B,+B,, B,eLr, B,eli. divBy=0, curlB,;=0.

Then,
E.B=E,;.B;+R, Reli, forsome r>1.

And we apply Theorem I1.1 (and Remark II.1 following it) to conclude.
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We also wish to mention a special case of the div-curl expression namely linear or
quasilinear elliptic equations

(26) div(a(x).Vu)=0 in Q, Vuell,
or
27) div(Vul"2Vw=0 in Q  Vuell,,

where p>1, Q is bounded open set in RN, g is a bounded function taking values in the
set of nonnegative matrices. Then, we set E=Vu so that EeLl. (or L) and
curl (E)=0. And, we consider B=a(x).Vu or B=|Vu|'"?Vu so that divB=0 and

BelL?2_ (or BeLi,). Applying Theorem I1I.1, we find that E. Be #) . And we observe

loc

that C=E.B is nothing but

du Ou
C= Z a;(x ) or =|Vul?
Li=1 axj
which are nonnegative quantities. In particular, we immediately recover an improved

integrability: J C|logC|dx<oo for all compact set K = Q. There is more to this
K
improvement since if we now adapt (locally) the proof of Theorem IL. 1, we obtain an

estimate of the (usual since C=0) maximal function of C in terms of respectively

2N
M((VulHM(la.VulH* where o= ——.
AVuly*M a.Vup) ]

or
M(] Vu |c=)llaM (’ Vu ‘B(p“ 1])UD= M (| Vu |u)tN+ 1)/N

where a=B(p—1)=Np/(N+1). In particular, if a is (uniformly in x) positive definite,
we estimate essentially the maximal function of |Vu|? (resp. |Vu|?) by

M (| Vu 12 NJ/(N + 1))[N+ 1)/N (TCSP. M (I Vu IN pl(N+ 1))(N+ lj,iN)'

And we recover basically the standard and celebrated reverse Holder inequalities that
are basic in the study of elliptic regularity: in fact, the scheme of proof of Theorem II. 1
when explicitely translated in those cases is very much reminiscent to the standard proofs
of those reverse Holder inequalities...

Another remark relating our results to second-order elliptic equations is the following
(that we detail only in R™ with the Laplace operator to keep the ideas clear): let
ueL2N®-2) quch that —Au=feL?N®*2 (N=3) so that VuelL?. We claim that
|Vu|>~fue#". In order to show this claim, we follow the proof of Theorem IT.1 and
we find

{hx((Vul*~fi) } (x)

oo f () o L)
t Bf A t BF BY ! !
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Hence, we conclude as in the proof of Theorem II.1 provided we show that

f u J[ f(y)h(ﬂ)ib,dy
BY BF t t

And this is obvious since we can bound that quantity by M (|u|) M (|/])and

sup eL!.

t>0

M(iHI)ELZ Nf(NvZ](RN): M(|f|)€L2 N;‘(N+2)(RN)_

In fact, the same result holds if N=2, Vue L?(R?), Aue #"* (R?) in which case one can
show (see also section IX) that, up to a constant, ue C, (R?). More generally, if N> 3,
one can still assert that Auu+|Vu|*e #' (RY)if ue L?(RN) with 2N/(N—2)<p< oo and
AueL” (R™) with the substitution of L' (RY) by #' (RY) when p=+o0. The proof is
exactly the same. Notice finally that this quantity is nothing but (1/2) A(Ju?).

Also the arguments given at the end of section II allow to go below 1 but since “two
moments vanish” it turns out that one can do even better and we shall come back on
this example in section VII.

It is also worth remarking that analogous results are possible for the wave operator
O=(2*/or*)—A. Indeed, if

(28) Ou=f in R,xRY

and du/ot, VueL*(R'*N), ueL?(R**™) with 2(N+1)/(N—1)<p< o0 and feL?(R!*Y)
if p<oo, fe#* (R**N)if p= + 0 (and N=2), then

%D(u2)=fu+

2
gﬁ‘ —|VulPe#* (R'*M).
t

From these two examples, it is clear that only the fact that we are dealing with second-
order (with constant coefficients) operators matters. In fact, similar results hold for
higher-order (with an even order if we insist on local quantities) operators.

Much more examples are possible. These examples include all explicit examples of
the theory of compensated compactness like: (i) minors of the Jacobian matrix of
ue Wh?(RMN where p is the order of the minor (ii) products of differential forms
(like'in R. C. Rogers and B. Temple [40]), (iii) specific quantities arising in Maxwell’s
equations... In fact, these examples can be ordered in the degree of generality but we
detail only the last one.

Let E, B, D, He L* (R, x R2)? satisfy “Maxwell’s equations™:

Z—B+curlE=0, divB=0,
(29) ¥

D, ol T4, divD=0, in R,xR3.

)

'l

Then, E.B, D.H and E.D-B.He #"'(R'*?).
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This can be shown exactly as in section II, introducing potential vectors (curl B=B,
div B=0, curl D=D, div D=0...). We can also show this claim using the CRW theo-
rem or equivalently Theorem III. 1. Indeed, in the case of E.B (the proof is the same
for D.H), since div B=0, we introduce A such that RxA=B, R.A=0 where R
is the “vector Riesz operator” given by R;=(0/0x)) (— A, )Y, (vj=1,2,3). Then,
AeL?(R'*%)? And we have by Theorem IIT.1

(RxA).E=(RxE).A+f;,  where fieatt,
= _(-RDB)-A+f1

in view of (29), where Ro=(6/31)1 _A, )2 Next
(RyB). A=[R, (R X A)].A=[R x (RoA)]. A
and
[Rx(RoA).A=[R X A].(RoA)+f;,  where fe#7,
= —[Ry(RxA).A+f,+f;,  where fie#.

In other words (R, B).A=(1/2) (/2 +f,)e# " and we conclude.
Next, we consider E.D—B.H, introducing CeL?(R'*3)* which satisfies R.C=0,
R x C=D. We then write
E.D-B.H=E.(RxC)-H.(RxA)
=(RxE).C—(RxH).A+/f, where f,e#’,
= —(RyB).C—(Ry,D).A+f, in view of (29).
And
(RyB).C=[R, (RxA)].C=[R*(RoA)].C
=(RyA).(RxC)+f;, where f,e ',
=(RyA).D+f.

We can now conclude since (RyA). D + (RyD). Aes#.

We finally close this section with a few more examples. Let u, ve H? (R?)
(=W?2(R?)), then the quadratic expression arising in von Karman’s equations namely
02y 8%v  0%u v d*u v

+ -2

67% Eé Ex_';'_ "‘E dx, 0x, 0x,0x;

[u, ©]=

belongs to #°' (R?).
Let «, ve H? (RY) (N=2), then

N

| Aul*= %

i 1=1

2

2
0 u e ().

0x;0x;
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It must be clear (by now) that the list is endless and we shall see in sections V, VI
some abstract formulations covering most of these examples (and more) for guadratic
expressions.

II1.3. A DECOMPOSITION OF # ! (RN) N0 “div-curl” QUANTITIES. — We have mentioned
several times above the problem of determining the exact range of the “compensated-
compactness” quantities. We are going to answer partially this question here on the
div-curl example — this type of answer applies also to other examples like the jacobian...
We then denote by W the subset of # (RN) formed by the functions w=E.B where
E, BeL2®™Y, ||E; |2 @ || Bj|l.2 @™ =1 and div E=0, curl B=0 in RN,

We then state the

Lo

Tueorem II1.2. — Any function fe #*(R™) can be written as f= ), w, where
k=0

w,eW(Vk=0), ¥ |A]<oo.
k=0
This decomposition — somewhat reminiscent of the classical atomic decomposition — will
be shown by an argument which relies on two simple functional analysis facts given by
the following

LemMma I11.1. — Let V be a bounded subset of a normed vector space ¥. We assume
that V (closure of V for the norm of F) contains the unit ball (centered at 0) of F.

Then, any x in that ball can be written as x=Y, (1/2) y; where y;eV for all j=0.
i=0 ~

LimMa 1I1.2. — Let V be a bounded symmetric (xeV = —x€eV) subset of a normed
vector space F. Then, the closed convex hull V of V (in F) contains a ball centered at 0
if and only if, for any 1€ F*, ||1||g. and sup {1, x ) are two equivalent norms.

xeV

We shall give a proof of these facts later on and we first prove Theorem III. 1 admitting

temporarily those two lemmata. Clearly, in view of these results, it suffices to show

that, for any be BMO(R™), ||b|smo and sup {J‘ bwdx} are two equivalent norms.
RN

weW

In turn, this will be proven if we show the following claim: let beL?2 (RM) satisfy

loc

[ pE-Baes Bl ol
RN

for all E, Be C® (RY), with div E=0, curl B=0 in RN, Then, we claim that e BMO (R")
and || b||gyo<Cx (for some constant Cy depending only on N). In fact this claim will
be a consequence of a more precise estimate: let Q be an arbitrary cube in RY centered
at x°=(x?,...,x%) and of sidelength 2d4. Let Q be the doubled cube (same center,
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sidelength 4 d). Then, we have

1/2
(ff |b”J; b|zdx> gCNsup{JbE.defE, BeC? (@), ||E|221, ||B||ngl}.
Q Q

Indeed, let 0 e CZ (R™) be such that go=1 on [~ 1, +1%, @,=0 on ([~2, + 2. We
then set B=ymeas (Q) ™2V ((x;— x9) 9q (x)) (for 1 <j<N fixed) where ;=0 (x— x%)/d)
so that Be C¥ (Q), and where y>01isa normalization constant (independent of x° and d)
such that ||B||;2=1. Notice that B=y meas(Q)" 12¢.0n Q.

Next, we take ue C§ (Q) such that || Vul2£1 and we set

E—(—'a—”,o,...,o,ﬁ,o,o...,o ,
2 2

x; >

so that du/éx, is the j-th component of E and | E[[;2<1, div E=0.

Then, we have

JbE.de=f by meas (Q)’”Zéaidx.
Q

Xy
Since u is arbitrary in CF (Q) with || Vu|| 2= 1, we deduce

@

. < Cymeas (Q)'? supUb (E.B)dx/E, BeCZ (Q), ||[E|12=1, || Bllp2=1 }
Xy

H™ Q)

We obtain in a similar way the same bound for ||&5/dx; -1 for allj. We then
conclude easily in view of the classical inequality

1/2 I
inf (J |b—x|2dx) <Cy
reC \JQ =1

Proof of Lemma TII.1. — Clearly, xeV. Hence, there exists yo€V such that
| x=yoll<1/2. Therefore, 2(x—ypo)eV and there exists y,€V such that
12(x=ye)—y:||<1/2... Arguing by induction, we build a sequence (¥ )yzo in V such

@
Ox;

. O
H™ @

N
that ||x— Y (l/2f)yj” <1/2N*1, concluding thus the proof.

ji=0

Proof of Lemma 111.2. — We first note that ¥ is also symmetric and that we have

sup {1, xY=sup|{L x)|=sup{l x),

xeV xeV xeV
=sup|{L x)>|, VIeF*
IGV

Therefore, if V contains a ball centered at 0, these quantities define a norm which is
clearly equivalent to ||{||g- (since ¥ is also bounded).
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Conversely, if there exists o> 0 such that we have for all /e F*

sup (I, x y=sup (L, x = al||/

xeV xeV

F*»

we have to show that V contains the (closed) ball centered at 0 of radius o. Indeed,
arguing by contradiction, we assume there exists || x,|| <o such that x,¢V. Then, by
Hahn-Banach theorem, there exists /e F* with ||/||z.= 1 such that

(loxgyzsup (/l, x).

xeV

And we easily reach a contradiction since {1, xo > <||||pe x0 || || x0 |-

IV. On weak convergence in #!

As we recalled in the Introduction, compensated compactness is primarily concerned
with passages to the limit. Typically, in all examples stated above, compensated com-
pactness deals with a bounded (the natural bounds corresponding to all the results stated)
sequence of functions that we may assume without loss of generality to be weakly
convergent to some limits (again for the natural corresponding weak topology). Then,
the main statement is that the nonlinear expressions converge in the sense of distributions
(or weakly in the sense of measures) to the same expression formed with the weak
limits. To be specific, let us consider a model example namely the div-curl case. Let E",
B" be bounded respectively in L7 (RY), L7 (RY) (1 <p<oo, N=2) and let us assume they
satisfy for all n= 1 )

(30) curl E"=0, divB"=0.

Assume in addition (and this is clearly the case up to the extraction of a subsequence)
that E". B" converge weakly respectively in L?, L to some E, B. Then, E". B" converges
in the sense of distributions to E.B. If we want to relate this weak convergence to the
CRW theorem (see section III.1 above) we simply notice that #!=(VMO)* and that if
be VMO, the CRW theorem immediately implies that [b, R] is compact on L? [in view
of the definition of VMO and the fact that this statement is obvious if be CF (R)].

In fact, the slightly improved regularity we proved above show that, in such situations,
the nonlinear expressions are thus bounded in #'. For instance, in the model case
above, E". B" is bounded in #* (RY). Since #"' is the dual of a separable Banach space
namely VMO, 3! inherits of the usual weak-» convergence. And we immediately
deduce that the nonlinear quantities converge in fact in the weak-s topology of
#*'. Again, in the model example, we deduce that E".B" converges to E.B in the

weak-x topology of #' that we simply denote by (j',l in #*'). It turns out that these
elementary functional analysis considerations are useful! Or, in other words, the impro-
vement from weak convergence in the sense of measures to weak convergence in # is
useful. We shall present below an example illustrating this claim.
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This will be a consequence of some properties of the weak convergence in e,
properties that are analogous of classical properties of the weak convergence in L? for
p>1. The first result in that direction is taken from P. Jones and J. L. Journé [29]—
a striking result which in fact grew out of our work.

THEOREM [29]. — Let f, be bounded in #* (RY). We assume that f, converges a.e. to
some g(€L' (R™). Then, ge #" and f,~>g in #*.

Since we will need to extend a bit this statement, we reproduce for the sake of
completeness the proof of [29]. First of all, we may assume without loss of generality
that f, X fin #" and we need to show that f=g.

Let ¢ eCZ (RY), we wish to pro;ve that '[ fo dx=J‘ g@dx. Let R>0 be such that
" RN RN

Supp @ < B(0, R). By Egorov theorem, for each £>0, we can find a measurable
set E such that meas (E)<g, and f, converges uniformly to g on E° The main
(and only) difficulty is due to the fact that 1 does not belong to BMO. This will be
circumvented to the expense of “fattening a bit” 1. In order to do so, we consider
w,=(1+rlogM(lg)),. Notice that 1;=M(lg)=1 and 1;=w, <1 ae. On the other
hand, by a result of R. Coifman and R. Rochberg [12], logM(lg)e BMO and
[logM (1g) ||lsmoSCx (a constant that depends only on N).  Since we have
5+ |lsmo =2 |lpmos We deduce that w, e BMO and that || W, |lsmo < C A where C denotes
here and below various constants independent of A and e.

Next, we need to make sure that we did not fatten 1; too much. This can be seen by
observing that

{w,>0}={M(lp>e "},

Therefore, from the weak L' estimate on maximal functions, we deduce

(31) meas ({ w, >0})=Cee'™

Collecting these estimates on w,, it is now ‘easy to conclude. Indeed, on one hand

J o f,dx goes to j @ fdx as n goes to'+o0. On the other hand
RN rN .

J cpf,,dx—f @ng=J tpwlf,,dﬁj tp(l—wl)(ﬁrg)dx—v[
rN rN gN rN

O W, gdx.
RN

For ¢ and A fixed, the second term in the right-hand side goes to 0 as n goes to + o0
since 1 —w, vanishes on E. Hence, we deduce

J tpfndx—j Qgdx
rN RN
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But we have for all cubes Q

}ftpwl—'f(wwldydx
Q Q

Z|lel= !Iwallmo% dx} [ @ X) =0 ()| Ly >0 4y
Q Q

SCA+Ch if the size of Q is less than A

Selfl

]’lN

<CA+ %meas(wl>0)§c7\.+ C
: if the size of Q is more than A.

Similarly, we have in view of (31)

J |o||g|dx—0 as e—-0, for A>0.
(w>0)

Therefore, we are able to conclude using (32) and letting first € go to 0 and then A to 0.

Our extension of the preceding result relies upon the notion of convergence in the
sense of Chacon also called biting convergence. Let Q be a measurable set of RN (say)
with finite measure, let f, be bounded in L' (Q), we say that £, converges in the sense of
the biting lemma to some fe L' (Q), for all £>0, there exists a measurable subset E of Q
such that meas (E)<e and f,,:A S weakly in L' (Q\\E). We denote this convergence by

fn—is J. The interest of this notion is essentially due to the following result (the biting

lemma) due to J. K. Brooks and R. V. Chacon [6] (see also E. J. Balder [3], J. Ball and
F. Murat [3]...): for any bounded sequence £, in L' (Q), there exist a subsequence n’ and

a function fe L' (Q) such that fn,%f

In view of these facts, we may now just copy the proof of the above Theorem and we
find the '

CoroLLARY IV.1. — Letf,,—}f in #'(RY). For each R>0, let geL'(B(0, R)) be
such that there exists a subsequence n' for whi¢ﬁ f,,-%-g in B(0, R), then g=f a.e. on

B(0, R).

Remark 1V.1. — Of course, all the results stated or mentioned above have local
analogues.

Remark IV . 2. — It was shown by K. Zhang [48] (see also S. Miiller [33]) that compen-
sated compactness quantities (like jacobians for example) converge to their weak limits
in the sense of the biting lemma.
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We now conclude this section with an application of these facts. It was shown by

E. Acerbi and N. Fusco [1] that the functional E(u)=J
3
WUN(RNN s weakly sequentially lower semicontinuous in that space as soon as

aeL”®(R") and a20 a.e. Indeed, let u,—u weakly in WLNRYN,  Without loss of

a(x)|det(Vu)|dx defined on
N

generality we may assume that E(u,) converges to some E. From the remarks made

above, we know that det(V un)%de.t.(V u) in #'(RY). Then, let R>0. By the above
Corollary and the biting~ lemn{a, there exists a subsequence #n’ such that

b . T
det (Vu,)—det(V u). We then use the definition of that convergence to deduce

J a(x)|det (Vu,)|dx= j a(x)|det (V u,)| dx
D@N

B(0,R)
= f a(x)|det(Vu,)|dx.
'Ef

For each £>0, det (Vu,)— det (Vu) weakly in L! (E%), therefore

¥

Egli_mf a|det(Vun,)|dng
EC

a|det (Vu)|dx.
EC

o

We then let £ go to 0 and we find E;j a|det(Vu)|dx. And we deduce the desired

B (0, R)

inequality E= j

a(x)|det (Vu)|dx letting R go to +co.
RN

V. Relations with Coifman-Meyer analysis of bilinear operators

In the previous sections, wé have seen that the nonlinear expressions arising in the
theory of compensated compactness belong in fact to #1 (under natural conditions).
And we recall that these expressions were considered for the weak continuity properties
recalled in section IV. Roughly speaking, we have on one hand “weakly continuous
nonlinear quantities” and on the other hand “nonlinear quantities™ that belong to #'.
A natural — but vague — question is then to determine whether these two classes coincide.
However, it is not clear how one should formulate precisely this (too) general question.

We now present one possible formulation where we shall show that the two classes
coincide. This formulation will involve only bilinear operators even if extensions to
general multilinear operators are clearly possible—one such partial extension can be
found in L. Grafakos [23]. The result we are going to present illustrates two more facts:
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(i) the close connections that exist between this work and Coifman-Meyer “multilinear
analysis” [11], (ii) the importance of cancellations for the theory of compensated
compactness. We strongly believe that the phenomenon of cancellation is the real origin
of compensated compactness.

We may now introduce our formulation. Let B be a bilinear continuous operator
from CZ (RY)x C¥ (RY) into &' (RY). We assume B commutes with translations and
dilations i.e.

(33) {B((P(~+h)1\|’(-+h))=]3(¢h V(. th),

VheRY, Vo, ¥eCqRY),

34) {B(cp(h.),wl))=3(co, TGS
VA>0, Vo, yeCP(RY).

Then, by standard results, there exists m e@'(RN x RY) such that

(35) B(e'¥*, ) =m(E, n)e ¢V
(36) m\E, Aan)=m (&, ) on RYx RY, for all A>0.
We shall assume that m is bounded and smooth for (&, n)#(0, 0)—and we will not

bother to estimate the precise degree of smoothness required. Then, by the results of
[11], we deduce that B maps L2x L2 into L' (RY). Let us give a few example

Example V.1 (The ordinary product). — B(f, &)= fg. Then, m=1.
Example V.2 (The pseudo-product of S. Dobyinsky [20]):

® dt 8.
B(/. g)=fg2j Qer.g-tm where Qt=“ta(€ %
0
Then, m=(|& | n /(& +[n [
We may now state our main result.
TueorEM V.1. — With the above notations and assumptions, the following assertions

are equivalent.
() ¥, geC3 @), j B, )=
®

(i) v/, geL*®), B(fs e " (RY), .
(i) Vfe LA (RM (1 <p< o), vgeLl? (RY),B(/, g e (R™,

(V) If f,—>f, g, g weakly in L* (R), B(f, g,)—B(f, g) in 2’ (RY).
(v) m(&, —E)=0 for all £#0.

Remark V.1. — If these conditions hold, one may then prove that if

N
c#P(RY), geH'(RY), ,g> ——
f (RY), g (R™) (pq N+1)
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and
1 1 1 1
-+ -=-<1l+—,
p q r N
then B(f, g)e #" (RY).
Remark V.2. — Clearly, the above conditions are satisfied in the Example V.2.

The Example V.2 is systematically studied in S. Dobyinsky [20] where many interesting
properties of this pseudo-product are investigated, together with its use to understand
the structure of the nonlinear expressions we are considering in this work.

Remark V.3. — It is worth obéefving that if we choose B(f, g)=/f(R g)+ (R f)g where
R is a Riesz transform, then, m=i(E;/|&|+mn,/|n|) and m satisfies all the conditions of
Theorem V. 1 except for the smoothness requirement. Thus, Theorem III. 1 is not really
a consequence of Theorem V.1 (even if it should be...).

Proof of Theorem V.1. — Clearly, (iii) = (ii). And (ii) = (i) since J o dx=0 for all
HN
pe#*(RY). The implication (i) =>(ii) is shown in R. Coifman and Y. Meyer [11] (or
follows easily by duality from the results of [11]). Next, (i) and (v) are easily shown to
be equivalent since for all £, ge CZ (RY)

(37) B(f, g)=0@n)"* NH f®gmm(E, n)e TV dtdn,
RN x gN
where f, g are the Fourier transforms of f, g respectively. Therefore, we have also
f B(/, g)dx=(2ﬂ)_NJ fE&)g(—E)mE, —&)dE.
&N :

And the equivalence between (i) and (v) is then clear.
We next show that (iv) implies (v). To this hand, we fix £;,#0 and let

S =500 (x), g, (1) =e" ™0 o (x)

where @=e~!*1*2 (for instance). Clearly, f,, 2,50 weakly in L2(R™). Therefore, if
(iv) holds, we have 5

(38) imB(f, g)=0 in Z'(RY).
On the other hand, in view of (37), we find
B (/s ng:Jl[ N N‘-}’ (E—nEp)g(M+nEy)m(E, n)e " E W dEdn
R xR

=[j @ ®gMme " ETMEm(E+nEy, n—nkp)dsdn.
RNXRN
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Then, (36) implies that m(E+n&y, n—n E)=m(E,+E/n, — £yt (E/n)). And we deduce
from the dominated convergence theorem that

B/, ) = m (o, *ao)” &) () e &+ g an,
®N xgN

say uniformly on bounded sets. And we conclude easily from (38) that m(Ey —Eq)=0
since

H PEIO (M e EIEE dn =g (x)?=e"1x >0,
RN x gN

There only remains to show that (v) implies-(iv). We thus assume (v). In view of (37),
it is enough to show that if 4, converges weakly to 4 in L? (R™) and if ¢ € CZ (R™) then

| mome o |

R

JSm@E meE+n)dn in L2(RY).

Clearly, this quantity converges pointwise (for £+0) and is uniformly bounded. There-
fore, in order to prove (39) we only have to show that

(40) lim  sup j H, &) d£=0
|&12R

R—+w n

where

Hn(é)ZjNhn(n)m(ﬁ, ne(E+n)dn.
R
Let Ry>0 be such that Supp @ = B(0, R,). Then, we have
Hn(é)=J h,(M)m (&, m) @ (E+n)dn
|&+n[=Ro
and thus because of (36)

H,,(a)=j hn(n)m(i,l)w(éJrn)dn.
|g+n|<Ro 1] J&]

But, for R22R, and |£|=R, we have |n|=R/2 and

A

Therefore, from the regularity of m and the assumption (v), we deduce that for R=2R,,
|&|=R, |E+1|<R, we have

& 1)
Mlal e
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Hence, we can estimate H, (£) as follows

IHH(E)Iégj lh,(M)| |@(E+n)|dn, for [g]|zR and RZ2R,.

BN

And (40) is proven since we obtain for R=2R,
CZ
[ mepasS[ | noF e ad ol
lel1zR R Nx RN
-2
< Zlloll 1l

Remark V.3. — The implication (v) = (iv) uses only the boundedness of m and the
continuity of m for |£|%0 and | n |#0.

VI. General quadratic expressions

In this section, we want to work in the context of the general algebraic frame-
works of compensated compactness studied in F. Murat ([34], [35], [36]), L. Tartar
([44], [45])—related works include R. C. Rogers and B. Temple [40], B. Dacorogna
([16], [17]), B. Hanouzet [25], B. Hanouzet and J. L. Joly [26], A. Bachelot [2],
P. Pedregal [37]... We will restrict our attention to quadratic nonlinearities even if our
arguments can be adapted to general multilinear ones. As we shall see even for quadratic
expressions, we seem to need a certain rank condition which is quite classical in the
theory of compensated compactness and is needed there too at least for general multilinear
quantities —even if for quadratic quantities it can be ehminated by a tricky argument
due to L. Tartar. Since it is not clear how we can avoid this constant rank assumption®,
we stick for clarity and brevity to the quadratic case and we shall only make later on a
few remarks on non constant rank situations where we can work out some specific
examples. These technical remarks being made, we now explain the setting.

Let ¢ be a quadratic form on R? (p=1). Let B:R? xRN = R™ (N, m=>1) be bilinear
and let us assume that g vanishes on A={xeR?/B(x, £)=0 for some £eRN, £#0}—
the critical condition in the theory of compensated compactness. We write

P N
B(x,&,=Y Y Byx;&g for 1=iZm.

j=1 k=1

* Added in proofs: this constant rank assumption has been removed by A. Mclntosh, Macquarie University,
NSW 2109 (Australia).
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Finally, let ue L2_(R") satisfy

loc

r N

Ju .
(41) Yy X Biikfiewﬁl" for some r>2, for 1<i<m.
X

loc
i=1 k=1 k

Theorem V1.1. — With the above notations and conditions and if, in addition, we assume
the rank of B(., &) (as a linear map from RF into R™) to be constant for £#0, then
q(u) € H .

Of course, examples (and illustrations...) of such a setting can be found in the refer-
ences we recalled above. Let us only briefly explain how the div-curl example of sec-
tion II fits in this setting: we set p:2N, u=(E, B), m=(N(N—-1)/2) (curl)+1(div),
B(x, £)=(x; A E, x,.E) where x=(x,, x,)e RN x R, Then, we find

A= U (RE) x(RE).

E#£0

Therefore, g (x)=x,.x, vanishes on A. Finally, rank B(., £)=N for all £+#0.

Proof of Theorem V1.1. — By a simple multiplication of y by a smooth cut-off
function, we immediately deduce that, without loss of generality, we can assume that u
is compactly supported (hence ueL.?) and thus W;!*" can be replaced by W™ " in (41)
(in fact all these distributions are also compactly supported).

In order to prove that g(u)e #},., we introduce €% such that ¢ (§)=1 if |E|<1,

©(E)=0 if |&£|=2 (¢ denotes the Fourier transform of ). Let @,=(1/r ¢ (./f) and
define the operator P, by P, f=¢,*f. Set Q,=t(d/di)P, so that Q,f=1, *f where
V(E)=0 unless 1<|E|<2.

We then write g (1) = A (u, u) where A is a real symmetric bilinear form on R?. Thus,
we can write

1 @8 d
qw)=P,q(P, u)—f ta{P,A(Pru, Pr”)}Tt

0

and thus

(42) qw)=P, q(P, u)—Jﬂ {QA(P,u, PIL)+2P,A(Q,u, P,u)}?,
0

The first term is clearly smooth and we are then left to prove that the term defined by
the integral belongs to #,..

We next rewrite that integral in the following way. We pick ¢e & so that ¢ (£)=1 if
|£|<1/100, @ (£)=0 if |£|=1/50. We then define ¢, and P, as we did before and we
finally set Q,=P,—P,. We next replace P, by P,+Q, in the above integral and expand
the quadratic terms. Al the terms involving twice P, in these expansions vanish in view
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of the restrictions on the supports of |, and @ (§). And we are left with

3) j{Q.A@u, 3 +2QuA (Quu, B1)+20,A (Qu, Oy
[¢]

+28,AQu Buw)+2P,AQu 3w} %
I3

The next step consists in showing that all these terms but the last one belong to #*.
In fact, this claim will be proven using only the fact that uel?. In order to do so, we
multiply all these terms by b VMO (or BMO) and we integrate on R™. Since Q, is
self-adjoint, we only have to show that

f LN'QI”HlQuI”ldu IB,ul}

s d
#4 +1Qub] {1Quu] [Quul +| Quu] [Pu]} = SC1b oo ]2

\ lor some C=0 independent of 4 and u.

Then, we remark that we have by Plancherel equality
. dr =~
[ ] Jouk e <eu
o JrN t
1 dt
J J | Quul*dx— =Clulltz,
0 JRN t
for some constants C, C which are given by respectively (up to some irrelevant constants

depending only on N)
® e dt B = dt
[(1erd [T1eord
0 l 0 !

C= , C=
Therefore, in order to prove the claim (44), using Cauchy-Schwarz inequality, we only

LGO

L®

1
have to show that terms of the formJJ‘ J |Q,b|?| B, ul*dx(di/t) can be bounded by
JrNJo

C||&||3wo || ||f2. And this follows easily from Carleson’s inequality and the fact that
|Q, b|*dx(dt/1) is a Carleson measure if be BMO.
1

Therefore, it only remains to prove that the last term of (43) belongs to ), namely
that

1 dt
(45) J‘ prA(Qzu’ Qr ”)TEMIIW'
0

This is at this point that we shall really use the compensated compactness setting although
we deduce in fact from the proof presented below that this quantity lies in a smaller
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space (Lf .+a smaller Besov space). In other words, q(u)=g¢, (4)+ g, (u) where
q, (w)e H#},, only because ue L2 and ¢, () belongs to a smaller space than #L
This phenomenon is explained for certain nonlinear quantities (like the div-curl example)
in S. Dobyinski [20].

For each £e RN, let m, denote the orthogonal projection onto {yeR?/B(y, £)=0}.
Thus, n, is homogeneous of degree 0 in £ and it depends smoothly on E for £#0 because
of the constant rank condition. Let ny =I—m, and define the following decomposition

of u
(46) B E)=n@E®), . PE=r1wueE),

so that u=u'+u2. Of course, u' e L%

We then want to use (41) to deduce that w*el’. One way to prove this claim is to
observe that by the definition of m;, one can build a linear map (for each £+#0)
T,: R™ — R? homogeneous of degree 0 in & and smooth in & for |E]#0 such that
ne (y)=]&]7 T (B, &) for all yeR?. By the classical multipliers theory we deduce
that u?eL’. We then expand the term given by (45) using u=u'+u? and we find four
terms, three of which can be analysed in a straightforward manner. More precisely,
from standard maximal estimates, we see that

'y 2 2 dt r/2
P,A(Q:M,Q,M)—EL E)
0 t

j‘rﬁ,m,uz, un?, f BAQu, Q) el
0

0
where s> 1 is defined by 1/s=(1/2)+(1/r).
Hence, there only remains to show that
e dt
(47) J P:A(Qr!":l‘ Qr ul),_e‘%p]loc_
o t

Notice of course that u! satisfies: u* e L* and

2N du' ]
(48) Y Y Byp—L=0 "~ for 1=i=m.
0x,

i=1 k=41
We then compute the Fourier transform of A(Q,u', Q,u'). We can of course assume
that W and  are radial and real so that the same is true of their Fourier transforms.

We find

F (A Qu', Qu')(®)= .[ AW E-m)ut €=, V(1) 2y (m)) dn.
RN
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Since we have on one hand n,=n_,, m,_, (' E—n))=u' (E—m), m, (' (n))=u'(n) and
on the other hand A (n, (x), =, (»))=0 (¥ x, ye RP) for ¢ vanishes on A, we can write

F(A(Qu', Qu"))(®)
=I AP E=) ey @ E=)), () iy () dn
IRN

= LNA(J: (16 =) 7y (@ € =) Bty ()i
hence, finally
(49) #(AQu', Qu) (E_.)=LNA(nH—mq) (T E=m)a' E=m), Yam)u (ydn.
In view of the properties satisﬁed- by 7, we can write
(50) ng_nn_n‘.ii &:m; (&, m),

where each m; is a smooth matrix-valued function defined for |£|<1/20, 1/2<|n|<1.
We can of course extend m; to a C* function on RN x RN with compact support, even if
(50) will then only hold on the afore-mentioned range. In addition, since m; is smooth
for each i, we can represent m; as

(51) m (&, M= Wiofia(E— 1) g (M),

where || fi,[|L= =1 (f;, is matrix-valued), ||g;,[ =<1 (g, is scalar) and ¥ |p;,|=C for
allie{1,...,N}. Thus, when |&|=1/(200), 1/20)<|n|=(1/1) [te(0, 1)], we have

né—n_n—n=nr£—lnin—rnzzt&i“iaﬁm(t(é_n))giu(tn)a

where we used (50), (51), and the homogeneity of m; with respect to &.
We may now go back to (49) and wejobtain

F (A Qu', Qu))(E®)= NZ e A (i (E=—TNV(E-)u" (E—n),
RYI,a

o (M) U (M)t () .

Therefore, we have

AQu, Qu) =X - [ AR Qi Gi Q)
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where F;®, Qi* are defined by

FF () @)=/, (18 9 (®),
F (G (@) (©)=g. () 0 ©).

Then, if we introduce Q!=1(d/dx,) P,, (41) might be rewritten as
: Ayi ia 1 ia 1 dr
Z"‘l‘iu QI{A(FI Qz(“ ), Gz Q[(u ))}7
a 0

And one easily deduces from standard square function estimates the fact that this
quantity belongs to #*,

Remark VI.1. — By a careful insp,ection' of the above argument, we obtain the
following
CoroLLARY VI.1. — Under the same conditions as in Theorem V1.1 with uell,

replaced by uelf,. where 2N/(N+1)<g<2 and r>gq in (41) replaced by rzq', then
q(u)eHL2.

Remark VI.2. — It is plausible that one only needs r> qg.

Remark VI.3. — If g=2N/(N+1), working a bit more, one can show the same result
as above replacing A2 by the closure of C§ (RY) in the “weak #%2" space.

We now conclude this section with a typical example where the constant rank assump-
tion is not satisfied but weak continuity results are known (see F. Murat [36]). We are
going to show that the s#' regularity is still true strongly indicating that the constant
rank assumption is not optimal. An extension of this setting can be found in
P. Pedregal [37] and our analysis also extends to the same setting. ‘

Let N=2, let ue LY, (R™MN satisfy

(52) S&EW_IJ for some r>N, forall 1<i#j<N.

loc
J

N ‘
And we consider P= [] u(x). We claim that Pe #._.

i=1
Let us first check, in the case N=2 for instance, that the constant rank assumption is
not satisfied: we take p=N=2, m=2, B(x, £)=(x, &;, x, &,) so that
Az(RX{O})U({O}XR) and q(x)=x,x,

clearly vanishes on A. Now, rank (B(., £))=2 if £,#0 and &, #0, rank (B(., £))=1 if
€, or §,=0 (and £#0).
We now want to show that Pe#. . To this end, we first localize with a smooth
cut-off function: thus, we may assume without loss of generality that ue LN(RMN is
N

compactly supported. Next, we write u;=— Y RZ2u; and we observe that (52) yields:

e=1
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R2u,eL;, for some r>N, for all 1 £i#a<N. Therefore,

loc
N N N

P=(-1)" Y ... ¥ JIRiy

j1=1 iN=1 k=1

and in view of the preceding remark, all these terms but one belong to L{_ for some
N

g>1(1/g=(1/r)+((N—=1)/N)). Hence, we only have to show that [[R}u,e#}..
i=1

for some r>N,

r
loc

We then denote by v,= R, u; and we observe that we still have R, v;eL
3 N

for all 1<i#o<N. Then, we néed to show that [T Riv;e #5,, or, equivalently, by the

loc
i=1

same argument as above, that det(R; v j)eﬁfm. But, this is precisely the #,. regularity

for the Jacobian: set f;=(—A)"?v,, fe W N(RMY, then det (R, v))=det (V f)!

Remark V1.4. — It is possible to make another (and more general) proof of the above
claim, using a methodology quite similar to the proof of Theorem VI. 1.

VII. Examples with two cancellations

We have séen in section V how much the results presented in this work (and compen-
sated compactness phenomena) depend upon some cancellation. This cancellation also
allowed (see sections II, III, V, VI) to define these ‘“‘cancelling” nonlinear expressions
“below L' and to verify that they belong to some Hardy spaces. We want to show in
this section on a few examples taken from PDE’s theory that this can be pushed further
if more cancellations are present—i.e. if higher moments vanish. In order to keep the
ideas clear —and in an unsuccessful attempt to limit the length of this paper—, we shall
restrict our attention to four examples where two moments vanish (two
cancellations). This rather vague terminology will become clear in the course of discuss-
ing these examples. Abstract formulations covering these four examples are certainly
possible if not necessarily interesting-one possible direction is to extend the analysis made
in section V and it is investigated in R. Coifman and L. Grafakos [9].

We next present our model examples.
Example VII. 1. — Let u, v satisfy

(53) {V%””(RN), Voe#1(RY),
divu=divyz=0 in .@‘(R”),

where N/(N+1)<p, g<oo—so that u.vel! ... It is in fact possible to take only
p, g=>N/(N+2) in the analysis below but this extension would create some unpleasant

technicalities and we prefer to skip it.
N

We wish to consider ) (6/0x;) (1) (6/0x;) (v;) which of course, as such, is not really
i j=1
meaningful. In order to define this quantity in a proper way, we observe that when
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p=g=2 then it can be rewritten as

N 3
u; v;).
,-.jz:l 6xiaxj( )

And we have the following result whose proof we postpone until we present all the
examples.

TrHeoreM VIL. 1. — Assume (53) and 1/r=(1/p)+(1/q) <1+ (2/N), then

o+ . %
u;v;)e A (RY).
3 TR

N
3
i,j=1

Remark VII.1. — Observe that u;v;eL,; ueL?, veL? and

o1 o1
p* p * g N

Z| =

so that

1 1
e
*

1
—
gt p

2
- —<1,
N

o | =

(at least if p, ¢ <N, otherwise the claim is even simpler to prove...).

Remark VII.2. — As usual, the case 1/r=1+(2/N) can be treated as well and we
obtain in that case that the above quantity lies in the closure of C§ (R™) in the space
uweak %N,’(N+2)”‘ i

Example VII.2. — Let N22, ue W P(RY) where p>N?/(N+2). We want to consider
det (D*u) and we first need to explain how to define it. To simplify the algebra and
keep the ideas clear, we do so only for N=2. Then, if ue HZ_(RN), we observe that we
have

2 2 2 2 az ;
det(Dzu)=a—uQ—( % u )zé““ (Bu 6u)
x

8%t dx5 \8x,0%, ¢ 0% 6_x1 é‘_xz

aan((ae) ) aa((G))
, 2 0x} \\ Bx, 2 ax2\\ox, /) }
2

And this last expression makes sense as soon as VueLZ_(R?)? which is the case as soon
as D*uelL}, (or even is a measure). Notice that in this case N2/(N+2)=1.

loc

THEOREM VII.2. — Let N2 2, ue W* ?(R") with p>N?/(N+2). Then, the expression

a* (au Gu)_lal((éu)z)_léz ((6142
By 8y \Oxg, B, ) 2 320\ 0x, 2 9x3 \\ 0x,

belongs to #" (R™) with r=p/N.
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Remark VII.3. — If N23 and p/N=N/(N+2) or if N=2 and D?u is a bounded
measure, then the above result still holds with " replaced, as usual, by the closure of
CZ (R™) in the “weak #NMN+2)

Example VII.3. — Let N1, let ue L7 (R™) with 2<p< oo satisfy Vue#"(RY) with
r>2N/(N+2) and Aue #%(RY) with g>N/(N+2). We assume that (1/p)+(1/q)=2/r.
We consider the quantity (Auw)u+|Vu|* that we define to be (1/2) A (|u|?).

TueoreM VII.3. — Under the above conditions, (1/2) A(|u|*) € #* (RY) with s=r/2.
Example VII.4. — Let N=2, 1etj.uEW2'F([RN) with p>2N/(N+2) (N=2). We con-
N %

sider the quantity |Au|*— 3 |6i u/0x;0x;|* that we define to be

=1

% on ) 23 () )3 2 ((G2))
iz 0x;0x; \ 0x; 0x;/ 2 ox} \\dx; 2 ox? \\ ax, .

Notice that this last expression makes sense in view of Sobolev’s embeddings.

TueoreM VII. 4. — Under the above conditions, the above quantity belongs to #7'* (RY).

Remark VII.4. — Again, the limit case p=2N/(N+2) can be treated as well (see the
above remarks)...

Remark VI1.5. — If N=2, the examples 1, 2 and 4 coincide.

Remark VII.6. — It is possible to combine the examples 1 and 4 by considering all
minors of the Hessian matrix D?u.  We can then prove that they belong to #7* if the
minor is of order k and ue W' (RN) for p>k N/(N+2).

Before briefly explaining the proofs, we want to make a “fundamental” observation
on all the quantities, denoted generically by C, we introduced in the above examples.
This observation will explain what we mean by cancellation and is really the heart of
the matter. Indeed, since all these quantities may be written as second derivatives of
some functions in L? (R™) for some p> 1, therefore, at least formally, we expect

(54) f Cdx=0, j Cx;dx=0, (VIZj<N).
IWN

&N

We now prove Theorem VII.1. Since the proofs of Theorem VII.2 and VII.4 are
very much similar, we shall skip them. We have to estimate

N 52
h * ( Z (u; Uj)) (x)

i j=10x;0x;

N 52
= Z h(x—y) l:(“.'_{’ ui)(vi':F Ui)]dy
i, j=1JgrN ay; a_Vj BY B
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L[ () ()
i, j=1JBf IN 6xl- axj !

Therefore,

N az
h, x U; v,
(2 5 oy ))
And we deduce from Holder’s inequality

N 52
h, * i,
(i.jz=1 Ox; 5xj(u UJ))’

1 a|1l/a 1 B]1/p
gC[Sup —(um u) :| .[sup —(U—J[ v) } ;
>0 Bf t Bf‘ >0 Bf ! Bf‘

where a, B satisfy: (1/a)+(1/B)=1, 1<a<p*=Np/(N—p), | <B<g*=Ng/(N—g). This
is clearly possible since

N
<Cc ¥

i, j=1JBF

: (f‘fﬁ,x i (1,)

sup
t>0

1 1
" o
P* g

+

<l

=
|-
Z |

by assumption. Using Lemma II.2, we deduce that

1 o |1/o
i M G 0
>0 Bf t Bf t>0 Bf

N 2
belong respectively to L? (RY), L?(RN). Therefore, sup | A, * ( ¥ i~(ui v )
t>0 : .»_j:lax,-ﬁxj

to L"(R™) with 1/r=(1/p)+ (1/g) and Theorem VII.1 is proven.
We conclude this section by proving Theorem VII.3. We write

XA —anlal—
h,*(;ﬁ]u[)(x) LN}:,(X y)zAu ][:B{u

foo();
BIX I 2
(%)
- u— u

I B¥

LT
=] = v -
T Bg‘

belongs

2 e &
dy+j[ u.(Au*hy)
Bf
(4,
—~lu—F u
t BF

2
dy+M (u)sup | Au * h, |.

t>0

2
dy+:f u.(Aux*h,).
B

Therefore, we have

h,*(lmuiz)
2
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We may then conclude in view of Lemma II.2 since

sup:F (1/!)(uﬁ,J; u)
t>0 JBF By

with (1/p)+(1/q)=2/r.

" dyeL"? (RN, M () e L7 (RY), sup | Au* b [e L*(RY),

>0

VIII. Pointwise definition of these nonlinear quantities

We have seen in the preceding sections that it is possible to define the ‘“‘compensated
compactness” nonlinear expressions as distributions “below L!” and to prove they belong
to some #°. On the other hand, in most of the situations where we did so, it is also
possible to define these expressions - pointwise, obtaining thus measurable functions
that lie into L?. We want to explain in this section the relationships between these
definitions. Of course, we do not want to go through the full list of examples we treated
in the preceding sections and we shall explain what can be shown in general on only one
example namely the div-curl example.

Hence, let us take EeL?(RMN, BeL?(RMM where l<p<oo, l<g<oo and
(1/p)+ (1/g)<1+(1/N) and let us assume

(55) div B=0, curlE=0, in 2'(RY).

We have seen (for instance in section II) that E. B may be defined as a distribution and
then lies into #" (RY) with 1/r=(1/p)+(1/q). Recall that E.B is defined by: div(Bn)
where Vi=E. Of course, this result also shows that if we smoothe E and B say
E,=E * h, B,=B*h, then E,. B, converges in #', as t goes to 0, to div (Bn).

On the other hand, the product E.B makes sense pointwise and yields a measurable
function which belongs to L"(RY). The relationships between those quantities is not
clear when r < 1, in particular if the pointwise product does not belong to L!. But, even
if the pointwise product belongs to L!, the two quantities are in general different. Let us
give one example of such a phenomenon (many more interesting examples are possible
but we shall not pursue this matter here). Take n=x,/r so that

2 :
E=(l_i‘31, —xlfl)eLﬁc(RZ) for all p<2(E€L*®)
K r r

and take

2
B=(l—x2 "‘xz)eer(W) for all p<2(BeL?®);

T3
r r3 r3

then, E.B computed pointwise vanishes identically while div (B )=2nd,.

To clearly distinguish between these two definitions, we write (E.B),=div(Bn) and
(E.B),, the pointwise defined measurable function.
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In order to state our main result connecting these two quantities, we have to recall a
more or less classical fact on Hardy spaces #'(R™) when re(0, 1)—it is a simple
consequence of the maximal function characterization of #7”. There exists a linear,
continuous map P from #7 into L? such that P(f)=/if fe #7 M L}, and f* h, converges

loc

a.e. to P(f) (and in L?) as t goes to 0, for every fe 7. In other words, one can
define the “pointwise part” of elements of #”. For instance, if fis a bounded measure,
P(f) is its regular part.

Then, we have the

CoroLLARY VIII.1. — Let EeLP (RN, BeLY(RMN where 1<p<oo, 1<g<oo and
(1/p)+(1/g) <1+ (1/N). Assume that (55) holds. Then, (E.B),& #" with 1/r=(1/p)+(1/q)
and P((E.B),)=(E.B),,.

Remark VIII.1. — The same result holds locally.
Remark VIII.2. — We can also treat the borderline case (1/p)+(1/g)=1+(1/N).

Remark VIII.3. — It is even possible to take E=#7 (R™M™, Be #(R") where 0<p,
g< o with (1/p)+(1/q)<1+(1/N). Then P((E.B),)=(P(E).P (B)),..

The above result is indeed a consequence of the arguments of section II since it suffices
to show that {(E.B)d} xh,—(Exh,).(Bx*h) converges a.c. to 0 as f goes to 0.. We
recall from section II that we have

{(E.B)d}*hsf[nu)—f n}B(y).H;w(g)}dy
=EI.B,+J.|:n(y)—f n}[B—B,(x)].[;TVh(L:l)de,

where we denote by E,=E* A, B,=B *h,.

Therefore, exactly as in section 11, we deduce

H(E.B)d}*ht-ﬁ,.&lgC(jC |E|°'dy)m(f ..1'B—B,(x)v*ary)”B
Bf B "

for some o, P satisfying: | <a<p, 1<B<g, (1/o)+(1/B)=1+(1/N).
This allows us to conclude since the right-hand side goes to 0 a.e. in x by classical

measure theory results.

Let us finally conclude this section by mentioning that the above result contains a
recent result by S. Miiller [32] showing under the same conditions that if (E.B);€ Ly,
then (E.B),=(E.B),,. This is clearly the case since P((E.B),)=(E.B), in that case by
the very definition of P.
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IX. Applications

We begin by showing how the #' regularity of the Jacobian yields various known
results. First of all, since W N(RY) g VMO, by duality #* ¢ W™ N(R"). Therefore,
if ueWEN(RYN, det (Vu)e W™ 1 N(RN)—a fact shown by H. Wente [47], L. Tartar [46],
H. Brezis and J. M. Coron [7] when N =2, note that the proof in [46] can be adapted to
the case N=3. In addition, if we solve

(56) —Ap=det(Vu) in R?,

(a unique solution vanishing at infinity exists...), then it was shown that, if ue W' ? (R*)?,
then @€ C,(R?) (see [47), [7]) and even peF L' (R?) (see [46]). This last result can be
extended a bit since, for all 1<i, j<2, 8? ¢/0x;0x;=R;R;(det(Vw)e #* (R*). And if
Agpe #*' (R*) then (B=(l/|§|2)(f6)EL1(R2). Indeed, recall that if fe#'(R™) then
(1/]§[™ feL* (RY).

Another result that can be deduced from the #* regularity of the jacobian is of course
the result by S. Miiller [31]: indeed, if ue WLN(RMN and det (Vu)=0 a.e., then
(det V u)log(det (Vu))e LL, just because ([41], [42]) =0 belongs to #},. if and only if
@log@eLy,.

The next fact we want to mention is the crucial role played by the improved #*
regularity in the results of F. Hélein ([27], [28]) about the regularity of weak harmonic
maps from two dimensional open manifolds into arbitrary manifolds—see also
L. C. Evans [21]. We do not want of course to repeat the delicate arguments in [27],
[28] but it is possible to repeat them in one simple case namely for a weak harmonic
map from an open set Q in R? into SN(N=2). We thus consider ue H' (Q)"*! such
that |u|=1a.e. in Q and

(57) —Au=u|Vul* in 2'(Q).

By standard elliptic theory, it is easy to deduce that ueC® (QN** if we show that
ueC(QN*'. And by the arguments shown above, it is enough to show that
Aue L (QN*! To this end, let us observe first that (57) implies

loc

(58) div(u; Vu;—u;Vu)=0 'in 2'(Q), forall 1=i, jsN+1.
And since |u|=1 a.e., we also find

N+1
Ou;

(59) Y u;—2=0 ae inQ, forall 1<ig2.

i=1 Xi

Combining (57) and (59), we may write for all 1 £/<N+1

N+1

—Auy=u;|Vul*= Y u;Vu,—wVu).Vu, in 2'(Q).
k=1
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Next, we see that UV, =1, Vue L2 (Q), Vi, e L2(Q)? and in view of (58) we deduce
that for all 1 <j, k<N+1

(; V=, Vuy) . Vu e #L_(Q).

And we conclude the proof of the regularity of u.

We now conclude this section with a few remarks on weak solutions of incompressible
Navier-Stokes equations in 3 dimensions: we thus consider

ueL? (0, co; H' (R%)* ML= (0, oo; L (R?))?
satisfving
- ‘:I; +@.V)u—vAu+Vp=0 in (0, o) x R?,
divu=0 in (0, o0)x R?,
for some pe L' (0, T; Li,. (R*)) (¥ T<o). We assume that v>0 and we normalize the

loc

pressure by assuming it vanishes at infinity in a rather weak sense like, for example,
{|p|28} has finite measure in ((0, T) x R?) for all >0 (for all T<oo). Then we have
the

THEOREM IX.1. — With the above notations and conditions,

. V)u, VpeL? (0, co; #* (R, 8% pjox,0x;(1 <iy j<3)eL! (0, o0; # (R?))
i

and thus
VpeL'(0, oo; L¥*1(R%)’,  peL!(0, co; L3 (RY))™.

In addition, ue L' (0, T; Co)* (YT<o0) and if curl u is a bounded measure on R® then
VueL® (0, co; L} (R?)).

Remark IX.1. — Those last two facts are essentially known: the first one was shown
in [24] while the second one is a small extension of a result by P. Constantin [15].

Proof. — By the results of section II, we see that (u.Vyue #*' (R?) a.e. te(0, oo) and
Il (e . V)ull 1 =C|lull 2||Vu|.2 and thus (u.V)ueL?(0, co; #')®. Next, we take the
divergence of (60) and we find

(61) ~Ap=div[.V)u] in @' (R®).

Therefore, Vp=V(—A)~'div[(u.V)ule L (0, co: #7')°. In addition, by the results of
section II,

3
div((u.Vyu)= Z % %E L0, oo; s#2 (R%)
i,j=1 0X; 0x;

and we deduce easily the results claimed on p.
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These results (see P. Constantin [15]) imply the fact that Vue L® (0, co; L'): one just
has to write by a simple differentiation of (60)

%(Vu)—VA(Vu)= ~V((u.VyutVp)= —(w.VY(Vu)+f,

where fe L' (0, oo; L) (in fact L' (0, co; #°")). And this is enough to conclude.

Similarly, the regularity of u follows from simple considerations on linear parabolic
equations with divergence free first order terms since we have

Z—u—vAu;(u.',V’)u= —VpeL! (0, co; L¥% ! (R?)).
t i
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