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Although in three dimensions it has been shown under various conditions that 
the time-independent Navier-Stokes equations 1 

A w - w .  V w - V p = O  

(0.1) v.  w=O 

admit solutions defined in a neighborhood o ~ of infinity, which achieve prescribed 
continuous data w* on ~8  and tend to a prescribed limit woo at infinity [1, 2, 3, 4, 
5, 6, 7], the corresponding problem for solutions in two dimensions has remained 
open. To our knowledge, the only significant contribution of mathematical preci- 
sion is that of LERAY [112, who proved the existence of a solution which achieves 
the data w* and has finite Dirichlet integral. Unfortunately the method of LERAY 
yields little information on the important  question of the sense in which the 
solution satisfies the condition at infinity. This question has a particular interest 
in view of the Stokes paradox, according to which the corresponding problem for 
the linearized equations 

A w - V p = O  

(0.2) V. w=O 

has no solution in the case of greatest physical interest, w * - 0 .  Further doubt has 
been cast on the matter  by the observations that in two dimensions the solutions 
are in general not unique [4, p. xi] and do not permit asymptotic developments at 
infinity in terms of elementary functions [6, p. 228] a. 

In the present work we demonstrate the existence of strict solutions of the 
indicated problem for (0.1) when the data are small. We approach the problem 
from the point of view of singular perturbation theory, as developed in our preced- 
ing paper [10]. To fix the ideas, consider the physically important case, w * -  
0, w ~ w ~  4=0 at infinity. The solution is sought as a (finite) perturbation of the 

1 We assume throughout that the viscosity coefficient v= 1. If not originally the case, this 
can always be arranged by a suitable coordinate change. 

2 Recently, some interesting computational methods have been proposed, which appear to 
converge at low Reynolds number to answers in qualitative agreement with experiment. See, 
e.g., [13], also [8], Chapter VIII, for discussion and references. It should be remarked, however, 
that experimental (and computational) results on two dimensional flows may be open to some 
question, because of the tendency of a disturbance in a uniform flow field to spread large distances 
from its source. Demonstrations of LERAY'S result which differ in some respects from his original 
one have been given by FUJITA [5] and by LADYZHENSKAIA, cf. [4, Chapter 5]. 

3 The examples in both references are special cases of a general family of explicit solutions of 
(0.I), given in [9, p. 14]. 



Stationary Solutions of the Navier-Stokes Equations 27 

solution u (x) of the equations linearized about the value woo (OSEEN [11]) 

Aw-woo. V w - V p = O  
(0.3) V. w=O 

with the same data, the existence of which is shown in [10, Theorem 7.2]. Using the 
estimates of [12] in conjunction with methods developed in [7], it is possible to 
show the existence of a solution w(x) of (0.1), which tends to woo at infinity, and 
which achieves on a 8  prescribed data which are to lie in a certain functional 
neighborhood aft of woo. 

The crux of the matter is to prove that for sufficiently small I w| I, the function 
w * - 0  is interior to .A/'. This result is not evident, as A P shrinks with Iwoo [ and 
degenerates to the single "po in t "  w -  0 in the limit woo = 0. What occurs is a dispute 
between the value at infinity and the coefficient of the first order term in (0.3), 
which in the indicated problem equal each other. Letting the value at infinity tend 
to zero reduces the effect of the nonlinearity in (0.1) and facilitates the construc- 
tion of a solution; on the other hand, as the coefficient woo ~ 0  the equation (0.3) 
becomes singular in the sense that the value at infinity cannot be prescribed. 

It is our good fortune that the dispute is won by the data at infinity; in this 
regard the basic lemma may be considered to be Theorem 8.3 of [10] which shows 
that if these data are unvaried, then the force J(woo) exerted on a r  in the motion 
vanishes like I log [woo ]1-1, as (the coefficient) w~o ~ 0 .  A general estimate follows 
on the asymptotic behavior in x, woo of the solutions of (0.3). This result is con- 
tained in the material of [10], but we restate it here in a form convenient to our 
purpose as the First Estimate (Lemma 2.1). 

The Second Estimate (Lemma 3.7) shows that the nonlinear contribution to 
any solution can be estimated by functions whose asymptotic properties are 
qualitatively as good or preferable to those of the solutions of the unperturbed 
equations (0.3). The quadratic character of the nonlinearity in (0.1) then permits 
us to prove in w 4 that for small data a solution of the indicated problem exists 
(Theorems 4.1 and 4.2; Corollary 4.2). Our method here is the classical one of 
successive approximations, based on properties of contraction mappings. It is in 
principle constructive. 

It may be pointed out that the zero-outflux condition ~w*. d~r=0, which is 
necessary in a bounded domain, plays no role in the considerations of this paper. 

We devote some effort to determining properties of the solutions. We note, 
for example (w 6), that they are "physically reasonable" in the sense of [12] and 
hence satisfy the estimates of that paper. They are also unique (w 7) among "smal l"  
solut ions-  a property which is perhaps significant in view of the fact, noted above, 
that uniqueness in general does not hold. They satisfy the same qualitative asymp- 
totic estimates as do the solutions of (0.3) (Theorem 5.6). 

FinaUy we mention a property which has no counterpart in the three dimen- 
sional case (or, to our knowledge, in any other flow theory), and which seems to 
us of particular interest (Theorem 5.4). In the problem discussed above, there 
holds as woo ~ 0 ,  

) 1 J(woo)= 4rr[--ff~[+o(1) [loglwool] -1 
Iwool 
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Thus, asymptotically, the force of reaction is determined entirely by w~o (which is 
the zeroth order term in an asymptotic expansion at infinity), and it is directed along 
the line of this vector. It is independent of the geometrical configuration. These 
results are in fact a special case of a more general result for nonconstant boundary 
data, formulated as Theorem 5.5. 

1. Formalities 

Throughout this paper we lean heavily on the results of our preceding work [10], 
and also on some basic estimates due to SMITH [12], to which we shall refer freely. 
Notation is with minor exceptions the same; the section on notation in [10] is 
intended to serve also the present work. We shall use here, however, two new 
quantities h 1 (0,  h2(O defined as follows for 0 < [ ~ ] <  Go, ~ a point of two-dimen- 
sional Euclidean space, 

2 
~ hi(~)=l~ 141' i = 1 , 2  

(El) 
141>1: {h~(~)=l~l-~ 

h2(~)=l~l -+-", 0 < e < l .  

We intend to majorize the solution of (0.3) in terms of the hi(lwoo Ix). The reason 
for introducing two such quantities, rather than a single majorant, is to take 
account of the differing asymptotic behavior of the two components Wl, w2 of the 
solution vectors (cf. the remarks on pp. 346-7  of [12]). Our choice of functions 
hi(O does not lead to best possible majorizations, but it has turned out to be 
convenient to the technical needs of the material. It permits us to place the solu- 
tions in the class PR [12], and qualitatively sharp majorizations (Theorem 5.6) 
then follow afort iori  by use of the methods and results of that reference. 

The symbol woo refers, in general, to a velocity vector prescribed at infinity. 
We suppose throughout that this vector has been normalized so that it is directed 
along the positive xl-axis: woo = (woo1, 0), woo ~ > 0. 

2. The First Estimate 

Lemma 2.1. Suppose 0 < 2 < 2 o < ~ ,  let w* be prescribed data of class ~2 +~ on 
aS. Let 1woo1=2, let w(x; 2) be a solution of (0.3) in 8, such that w ~ w *  on 08 
and w 4 0  at infinity. There exists a constant C, depending only on 20, on w* and 
on the geometry, such that throughout 8, I w i(x ; 2) 1 < C hi( 2 x) l log 21-1 

Proof. Let Z1 be a circumference (we may suppose it of unit radius) surround- 
ing aS. Interior to Z~ we have Iw~(x; 2 ) [ < M < ~  by Theorem6.52 of [10]. 
Exterior to Zt we have the representation 

Woo 

so that, letting 8 o denote the convex closure of the complement of 8, 

I wi(x; 2 ) -  J(,D" [i(x; 2) I 
(2.1) 

< C 2  max IE i (x -y ;  2)1+C max {I e i ( x - y ) l  + 1 V E , ( x - y ;  2)1} 
y ~ 0 8  y E S  ~ 
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where E i is the vector (Ei~, E i 2) and C depends on the indicated parameters. 
The estimates (8) and (14) of [12] show that I E i ( x - y ;  2 ) t = 1 E i ( 2 ( x - y ) ;  1)1< 
Chi(2x ) when y~r  and x is exterior to XI. The corresponding estimates for the 
derivatives of E and of e yield uniform bounds for these functions in the interval 
1 <lxl=<l ~.l-1, and show that they decay faster than h i(2x) outside this interval. 
By Theorem 8.4 of [10], 13t(2) 1 <C] log  21-1. Thus, (2.1) and the bound near ao ~ 
contain the assertion of the lemma. 

3. The Second Estimate 

For any tensor field B (x, y; 2) defined for x, y s 8, 0 < 2 < I, and subset ~ of 8, 
we define the quantity 

^ I aBiJ(x' y; 2). dy,  i = 1 , 2 .  
[ 

(3.1) Ii(x; 2; B; 8 ) =  2 S hi(2y)hk(2Y) I t3Yk 

Let G(x, y; 2) be the GREEN'S tensor for (0.3) in o ~, with 2 =  [w~ I, introduced in 
w 6 of [10], G ( x , y ;  2 )=  E ( x - y ;  2 ) - A ( x , y ;  2). Let 8p be the part of r exterior 
to a circumference of radius p. 

Lemma3.1. Ii(x; 2; E; r where C depends only on w* and on 
the geometry. 

Proof. From E ( x - y ;  ;~)= E(A(x-y ) ;  1) follows 

~ E i j ( x - y ;  2)] dy=)._l [. hj(r/)hk(rl) alzu(~-r/ ;  1) dr/. (3.2) hj(A y) hk(A y) 
~_~ ayk ~r~ ~r/k 

In 81 there holds hi (~)<lr/I -~, h2(~/)<l r/I-~-~, so that if x~r the result is 
obtained as a particular case of the Estimates 1 and 2 (pp. 352, 358) of [12]. If 
x~Sz-~, then 1 ~ l = [ 2 x l < l  and the integral on the right in (3.2) is bounded. 

Lemma3.2.  Ii(x; 2; E; r  where C depends only on w* 
and on the geometry. 

Proof. Let Ca denote the image of r under the transformation ~=2x .  The 
right side of (3.2) is now to be replaced by an integration over C A- 81 . If 2 x e r  a -  r 
the integral is bounded, while if 2 xe  82 , the pointwise estimate I VE (x; 1) I < C I x I - ~ 
(cf. [12, w 2]) yields the result. 

Lemma3.3.  Let x~o~2 . Then Ii(x; 2; A; r where C depends only 
on w* and on the geometry. 

Proof. Lemma 6.61 of [10] implies that if xe82 ,  then 

I Ai (x, y; 2)1 < C h i (2x) max I E ( z - y ;  2)1, 
z e O ~  

a relation which may be differentiated formally in y. The estimate (14-iii) of [12] 
thus implies, for all x~82,  

lz(x; 2; Ai; gl)< C hi(gx ) ~ hj(r/) hk(r/) I VE( - r / ;  1)l dr/ 
t~x 

< C hi(2 x). 
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Lemma 3.4. Let x~82. Then Ii(x; 4; A; 8 -  81)< C4 ht(4x) log 2 4. 

Proof. By Lemma 6.51 of [10] and the estimates (14) of [12], xe82, y e S -  r 
imply ]Vy.4i(x,y; 4)]<__CQi(x; 2) where Qi(x; 4) denotes a bound, for zeao ~, 
of the magnitudes of E ( x - z ;  4) and its derivatives up to second order. Since 
E ( x - z ;  4)= E(4(x-z) ;  1), the estimates (14) of [12] yield Qi<Ch~(4x). Hence 
x~r implies 

Ii(x; 4; At ; ,~- ,~l)<C4hi(4x)  ~ hj(4 y)hk(4 y)dy 
d ' - r  

< C 4  -1 hj(2x) ~ t log 2 tdt  
o 

<C4hi(4x) log2 4. 

Lemma 3.5. Let x ~ 8 - 8 2 .  Then Ii(x; 4; A; r C4 log 2 4. 

Proof. By Lemma 6.51 of [10], if x~o~-o~ 2 and y e 8 - 8 4 ,  then 

IVyA(x, y; 4 ) l<Clx-y1-1  
Thus 

I ( x ; 4 ; A ; 8 - r  j" h i ( 4 y ) h k ( 4 y ) l x - y l - l d y  
- 8 4  

4 2  

<C ~ log 2 t d t < C 4  10g24. 
0 

Lemma3.6. Let x E g - 8 2 .  Then Ii(x; 4; G; 84)<C. 

Proof. Lemma 6.51 of [10] shows that on 27 a there holds ] G ] +]TG ] < C. The 
representation 

G(x,y; 2)= ~ (G. TE*-E*. TG+2G. E*~}.dtr 
s 

shows that if Y~r then 

IG(x, y; A)l <C max {IE*(y-z ;  2)1§ E*(y-z; 4)1} 
zeZa 

and this relation can be differentiated formally in y. Using again the estimates (14) 
of [12], we obtain 

Ii(x; 4; G; 84)=4 S hj(4y)hk(4y) aGu 
~4 6~y k dy 

1) I <C ~ hj(tl)hk(rl) max dtl<C. 

Corollary3.6. Let x E r  2. Then It(x; 2; A; r 

ProoL Apply Lemmas 3.1, 3.2, 3.6. 

From Lemmas 3.1 to 3.6 we conclude: 

Lemma 3.7. There is a constant H, depending only on w* and on the geometry, 
such that Ii(x; 4; G(x, y; 4); 8)<Hht(4x). 
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4. Existence 

If w(x; woo) is a solution in 8 of the Navier-Stokes equations 

A w - w .  F w - V p = O  

(4.1) V. w=O 

such that w(x; woo) -~w~ at infinity, then for any positive z, the vector field 

u(x; w~)=~ -1 w-wo~ 
Iwool 

defines a solution of the system 

(4.2) 
A u - w ~ .  V u - F  p=z Iw~l u. Vu 

F.u=O 

and u(x; woo)~0 at infinity. Conversely, every solution of (4.2) defines a corre- 
sponding solution of (4.1). 

We seek a solution of (4.1) which achieves prescribed data, w* on d#  and woo 
at infinity. We begin by finding a solution of (4.2) which achieves the data 

U* --  W* - -  Woo 

and which vanishes at infinity. Setting 

w| ;t=lw~l 

and introducing the GREEN'S tensor G(x, y;  2) for the linearized system (0.3), we 
seek u(x; 2) as solution of the integral equation 

(4.3) u (x ;2 )=  u t~  z 2 S u.  u.  Vy a (x, y ;2)  dy .  
dr 

Here uc~ 2) is the unique solution of (0.3) corresponding to the given data 
(cf. [10], Theorem 7.2). We shall obtain a solution as a formal expansion 

oO 

(4.4) u(x; 2)= u(~ 2)+ T, u (") (x;2) z" 
1 

corresponding to vector functions u(n)(x; 2) which vanish on a 8 and at infinity. 
It is thus required to determine the {u'(x; 2)}, and to prove the convergence of 
(4.4) in #. 

Inserting (4.4) into (4.3) and equating coefficients of equal power of �9 yields 

(4.5) " ("+')(x; 2)= 2j" ~(u~.')u~ "- ')) dGij 
"i - dr v=o ~ dy. 

Let us write u~k)(x; 2)= v(k)(x; 2) hi(2x), i=  1 or 2. Then (4.4) becomes 

oO 

(4.6) v (x; 2) = v (~ (x ; 2) + ~ v (") (x; 2) ~" 
1 
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and (4.5) becomes 
n 

(4.7) vt"+l)(x;A)=-2h71(2x)S ~.,(v(')v("-'))hihk r �9 =o ~ dy.  

By Lemma 3.7 

I OGij(x, y; 2) d y < H  
2hTl(2x)ShJ (2y) hk(2y) t~y k d~ 

uniformly in 0<  2 < 1. It follows that the series with constant coefficients 
oo 

(4.8) V= V (~ + ~  V (") ~" 
1 

will be a dominant series for (4.6), provided 

(4.9) I v~~ 2) 1 < V w) 

in g, and 

(4.10) V (" + 1) = H ~ V ~) V ("- ~). 
V = 0  

The convergence of (4.8, 4.10) implies 

(4.11) V= V(~ H V 2 . 

The solution of this equation has a branch which is analytic in z interior to a 
circle whose radius is determined by the vanishing of the discriminant. We con- 
clude that the series (4.8), and hence the series (4.4), converges throughout g, 
whenever z < ( 4 H  V(~ - 1. We shall show that this function is a solution of (4.2) 
with the indicated data, but it will in general not solve the original problem, as the 
corresponding solution w(x; 2 ) = w ~ + z  Iw~l u(x; 2) assumes the data woo+ 
z (w*-w~)  on ag.  The original problem will however be solved as soon as the 
convergence of (4.6) can be established with z = 1. Evidently this will be the case 
if V~~ -a. We are thus required to choose the data in such a way that each 
of the two functions ]v~~ 2) 1 = [u~~ 2)[h~- 1 (2x), i=  1 or 2 satisfies 

I v~~ (x; 2) I < (4 H ) -  1 

throughout 8. By Lemma 2.1, lu~~ 2)[ <Mh~(Ax)[log 2[ -1, so that 

Iv(~ < M  Ilog 21-1 

For fixed 2 = I w| 1, M ~ 0  with the boundary data and its first two derivatives. 
Thus for sufficiently small data there will be a solution of the integral equation 
(4.3) in the form of an expansion (4.4) with z=  1. Using (4.3), one then verifies 
successively the HOlder continuity of u (x, 2) and its differentiability in 8. We 
have proved: 

Theorem 4.1. Let woo~O be given and let w*=[w~l u* +w~ be prescribed 
data on aS. Then if u* and its first two derivatives in arc are sufficiently small in 
magnitude, there exists a solution w(x) of (4.1) in ~ such that w(x)--+w* on ag 
and w(x) -+woo at infinity. 

A case of somewhat deeper interest is that in which 2 = I w| I is small, M being 
suitably restricted. We find: 
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Theorem 4.2. Let w*(2) be data on a8 and let M be a bound in magnitude for 

W* U* - -  - -  W~176 

Iwool 
and its first two derivatives in arc. I f  as 

2=]w~l ~0, M=o (log 1 ) ,  

then for all sufficiently small 2 there will exist a solution w(x; 2) of (4.1) in 8 such 
that w(x; 2 ) ~ w *  on a8 and w(x; 2) ~woo at infinity. 

The proof is the same as for Theorem 4.1. We need only note that under the 
hypotheses, Iv(~ 2)1-~0 uniformly in r as 2 4 0 .  

The physical problem, w * - 0 ,  has a particular interest. We then have: 

Corollary 4.2. I f  I woo I = 2 is sufficiently small, depending only on the geometry, 
there is a solution w(x; 2) of (4.1) in 8 such that w(x; 2) =0  on ~ andw(x; 2) ~w~o 
at infinity. 

5. Asymptotic Properties 
We show first that the strict solutions constructed in the preceding section 

have asymptotic properties, in x and in 2, similar to those of the linearized equa- 
tions (0.3) described in Lemma 2.1. 

Lemma5.1. Let w*(2) be data satisfying the hypotheses of Theorem 4.2 with 
M < M o <  c~, all 2. Then the solutions w(x; A) satisfy 

I ui(x; 2)1- I wi(x; ,D-woo il Iwool <M1 h~(&x) ] logA1-1 
uniformly in x and 2, as 2 -o O. 

Proof. Since I v~~ 2) 1= I u!~ 2) h~- ~ (2x) l < CI log 21-1, i=  1, 2, it follows 
that there is a 2o such that I v(~ 20) I < C I log 20 I- 1 < (4H)-  1. Choose V <~ 

such that Cllog 2o]-1 < V(~ -1. Suppose 2<20 ,  set 

n (2,  20) = Ilog 2 ] [log 201- 2. 

Then I v(~ (x; 2) I < C I log 21 - 1 = C I log 201 - 1 ~/- 1 so that 

Iv(~ 2)1 tl(2; 20)< V (~ 
Then (4.9) holds, and the series (4.6) with coefficients (4.7) will converge. But since 
t/=> 1, the method of formation of the v(n)(x; 2) shows that 

[ v(n)(x; 2)1 t/(2; 20)< Ivfn)(x; 2)1 ~/n+l < v(n). 

Thus the series (4.8) dominates, for i= 1 or 2, the series 

ui(x; 2) h71 (2 x) n(2; 20) = ~  u~n)(x; 2) h71(2 x) r/(2; 20) 

=Y~ v(")(x; 2) n(2; 20) 
so that u i (x ;2 )<Vh~(2x)~- l (2 ;2o)<Ch~(2x)[ log21-1 ,  which was to be 
proved. 

3 Arch. Rational Mech. Anal., Vol. 25 
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Lemma 5.2. Corresponding to prescribed data w* on ~8, the solutions w(x; 4) 
of Theorem 4.2 satisfy 

~ [ Vie(x; 4)[ 2 d x < M 2  2, 
dr 

M depending only on a bound for w*-wool[woo I and its derivatives of first two orders 
and on the geometry. 

Proof. We suppose the origin of coordinates to be not in 6 ~, and choose the 
real quantity ~o such that the field ?= ~o Vlog r satisfies 

~(2 -1 w*-y) ,  dr 
O8 

We introduce a solenoidal extension ~(x) into 8 of the field (w*-w| I ) -~,  
such that the estimates of Lemma 6.31 in [10] will hold. The field W(x; 4)= 
2-1 [w (x; 4) - woo ] - r - ~ (x) then satisfies 

A W-woo. V W - V p = - A ~ + w o o .  V~+2W. VW+ 

(5.1) + 2~. vw+ 2 w. v~ + 2~. v~ + 

+woo. V~+2~,. VW+2 W. V~+2~,. V~ 

in 8, and W~0  on aS. Let ~ be the support of ~. We multiply (5.1) by Wand 
integrate over the region between ~ 8 and a circumference X a of (large) radius R. 
After certain integrations by parts, noting that 

ayi _ ~Yj 
~x~ ax~ ' 

and neglecting terms which integrate to zero, we may write the result in the form 

[VWI2dx=�89 "da+  ~ p W .  d a + � 8 9  
d' - 8R ZR ~a 2R 

(5.2) + ~v.w~ w. d~+~ ~(v. w)(~+w), do+ 
s $R 

2 + -  ~ w~(~+ w). do+ ~ vw.  vr dx+ ~ W. w . .  vr dx+ 
2 ~ d d 

+2~ w. ~. v~ dx. 
d 

Lemma 5.1 shows that the boundary integrals which do not involve p or VW 
vanish in the limit as R--+oo. The same lemma shows that w(x; 4) is "physically 
reasonable" in the sense of [12]. The estimates of that paper now imply that all 
boundary integrals approach zero. We may therefore use (5.2) in conjunction with 
Lemma 1.1 of [10] to obtain an inequality 

$[VWI 2dx<�89 S IVW[ z d x + C  
e 

where C depends only on ~ (and hence only on 2-1(w*-woo) and on r as 2-+0. 
Since 8=  8, this completes the proof of the lemma. 
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Theorem 5.3. Let w*=w*(2) be data on Og such that 

u*(2)= w*-w+ 

and its first two derivatives in arc converge uniformly as 2= [wo~ I ~ 0 ,  and let u* 
be the limit function. We suppose u* (2) sufficiently small to yield 

I vW)(x; 2)l < V[~ -1, 

all 2, and we denote by w (x ; 2) the corresponding solutions of (4.1). Then the functions 

u(x; 2)= w(x; 2)-w| 
Iw~l 

converge uniformly in every compact subset of 8 + 8 8 ,  to a solution Uo(X) of the 
Stokes equations (0.2), which assumes the data u* on 88 and has finite Dirichlet 
integral. The force associated with this solution is zero, and Uo (x) is unique among 
all solutions of (0.2) which achieve the same data and have finite Dirichlet integral. 

Proof. A procedure parallel to the proof of Lemma 6.52 in [10], using Lem- 
ma 5.2, shows the equicontinuity of the {u(x; 2)} in compact subsets up to the 
boundary. Thus there is a sequence 2i->0 for which the solutions converge in 
#+c~8, uniformly on compact subsets, to a continuous vector field Uo(X). The 
representation (3.32) of [10] yields, however, for points removed from ~ ,  

u(x;2)=2 S E r ( x - y ; 2 ) .  u. V u d y +  SH r. u d y ,  

being a disk of radius ? centered at x. This relation may be applied using the 
uniform bound on Dirichlet integral (Lemma 5.2), to verify successively the 
H61der continuity of the u (x; 2i) and their derivatives of all orders, and we con- 
clude that these functions converge with their derivatives in 8, so that uo (x) is a 
solution of (0.2) with data u* on dS, and 

~ I IZUo(X)l ~ dx<oo. 
dP 

The uniqueness of Uo (x) and the vanishing of the associated force follow as in the 
proof of Theorem 8.3 in [10], and from the uniqueness follows that u(x; 2) --, uo(x) 
for every sequence 2~ --*0. 

In case w* =0  the limiting solution is 

uo(x) = lira - woo = ~ = const. 
Iw+l-.o Iw~l 

As a consequence we obtain: 

Theorem 5.4, Let {w(x; 2)} denote the solutions of Corollary 4.2, and let J ( 2 )  
be the force of reaction against Og in the motion. Then 

u(x; 2)= w(x; 2)-woo 

3* 
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admits the representation 

(5.3) u(x; 4)= ~ E ( x - y ; 4 ) . T u . d o r y + A ~ ( E . u ) u . d a y - 2 S u . u .  VEdy 
0d~ 0dg d' 

in 8. As Iw~ol=2~0,  there holds 
lim u(x; 4)=~ 
2 ~ 0  

uniformly on every compact subset of 8 + d 8, and 

1 J ( 2 ) - - ( 4 ~ + o ( 1 ) ) I l o g 4 1 - 1  (5.4) -Z 

where o(1) denotes a vector quantity tending to zero with 2. There holds also 

(5.5) u~(x; 4 ) = 4 n  E~j(x; 2) ~j [log 4 [ -1+  Qt(x; 2) 

where, denoting by #o the convex closure of the complement of ~, 

[ Q,(x; 2) I < e (2) {I E,~(x; 2) I I log 21 - 1+ max IVy E~i(x- y; 4) [} + 
yr 

j = I , 2  

+ C  2 1 log 21 + C h~(2 x)I log 21-2 

and e (2) is a quantity tending to zero with 4. 

N.B. The remarks following the corresponding Theorem 8.3 in [10] apply 
equally well in this case. 

Integrating by parts over the interior region bounded by 0 8, we obtain 

~ T E . d a + 4  ~E~c.da=O 
08 0~ 

so that (5.24) of [10] implics 

u(x;2)= ~ E ( x - y ; 2 ) .  Tu .day+4S l:. u. Vudy .  
0~ 8 

The last term may be integrated by parts in 8. The outer boundary integrals tend 
to zero, and we obtain (5.3). Using it, we find 

I u~(x; 4 ) -  Eij (x; 4). ~(4)  1 < C max IVy I:~(x- y; 4) 1 max I Tul + 
y ~ o  yeO~ 

(5.6) t= 1, 2 

+ C 4 l l o g 2 1 + C h ~ ( 2 x )  llog41-2 

by Lemmas 3.1, 3.2 and 5.1. The remainder of the proof parallels that of Theo- 
rem 8.3 in [10], as all terms on the right side of (5.6) are of negligible order as 
2-*0. 

We have also an analogue of Theorem 8.4 in [10]: 

Theorem 5.5. Under the hypotheses of Theorem 5.3, there exists 

1 
(5.7) lira ~ J ( ~ )  log T = u~o. 

~ o  4re 4 
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For the limit solution u o (x), there holds 

lim Uo (x) = u~o. 
X " *  00 

Proof. Analogous to (8.9) in [10] we may write 

!_2 ~ Eo . ru  . da, + u(x; 4)=4zc2 J (2 )  log 

(5.8) 
+ ~u* .TE  0 . d a , - 2 I u . u . V E d y + o ( 1 )  

08 ~f 

as 2 ~ 0 .  The last integral on the right is also o(1), by Lemmas 3.1, 3.2 and 5.1. 

We have 

lim 1 _ ~  or 1 
z-.o 4n2 -2 -=u~~ 

exists, since this is the case for all other terms in (5.8). Passing to the limit, we obtain 

Tuo(y ) �9 day=O, 

and 
Uo(X)=Uo~ - ~ Eo. Tuo. de+  ~ u*. TEo. da. 

08 0~' 

Since both boundary integrals vanish as x-,oo,  we find 

lim Uo (x) = uoo, 
x - ~ o o  

which completes the proof. 

As in the linearized case, we may note that the limiting (Stokes) equations 
control the solution in the region ix] =o(2-1), the non-uniformity in the pertur- 
bation 2 ~ 0 appearing outside this region. 

Qualitatively, the behavior of the solutions at infinity is similar to that of the 
solutions of the Oseen linearized equations (0.3), the effect of the nonlinear terms 
being of smaller order asymptotically. We may summarize this behavior in the 
following way: 

Theorem 5.6. For the solutions constructed in Theorems 4.1 and 4.2, the functions 

u(x; 2 ) -  .,(x; 2)-w| 
Iw| 

satisfy the results of Theorem 8.5 in [10]. 

The demonstration follows in general outline that of Lemmas 3.1 to 3.6. It 
requires a somewhat painstaking estimation in the spirit of these results and of our 
earlier papers [7, 12]. We omit details. 

6. General--Properties 
The solutions constructed in the preceding section are "physically reasonable" 

in the sense of [12]. Hence we may apply immediately the results of that paper to 
obtain: 
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Theorem 6.1. Setting 

there holds 

(def W)i j = 1 ~--~XJ + - - ~ i  ) ~ W i ~ Wj 

or woo =2~ (def w) 2 dx .  
dr 

Corollary 6.1. J .  Woo>0, that is, the solution exhibits a "drag force" in the 
4 direction woo. 

Theorem 6.2. Suppose the solution of Theorem 4.1 or 4.2 satisfies 

Iwl(x)-wooll=o(Ixl-*) 
as x - - .~ .  Then w(x)==-woo in 8. 

Thus the estimate (1.1), considered as a uniform estimate in 8 for fixed 2, 
cannot be improved. We remark, however, that the second component w2(x) 
does decay more rapidly at infinity; in fact, I w2 (x) I = O (I x I - 1 log I x I) as x ~ ~ .  
(We assume w~o = (w| 1 , 0).) 

7. Uniqueness 

According to Lemma 5.1, the solutions of Theorem 4.2 satisfy 

I w~(x; 2)-wooi[ <M2hi(2x) l log 21-1. 

Thus, for any prescribed e > 0 there will hold 

Iwi(x; 2 ) - w ~ , l  <sh~(2x) 
Iw| 

throughout 8 for all sufficiently small 2. We now show that if ~ is small, the solu- 
tion is unique in a corresponding class. 

Theorem 7.1. Let H be chosen as in Lemma 3.7, let 0 < e < ( 2 H )  -1. Then there 
is at most one solution w(x; 2) of (0.1) in 8, such that w(x; 2)~w*  on dg, 
w(x; 2)~woo at infinity, and 

Iw~(x; ,D-woo, I 
<eh~(2x). 

Iwo~l 

ProM. Let w ("), w (b) be two such solutions, 

W (j) -- Woo j = a , b .  u ~ J ) ( x ; 2 ) =  Iwool ' 
Then s 

u(J)(x; 2)=2 S u(j)" uCj)" VG(x, y; 2 ) d y +  ~ u* (J). T G  do,  
dr Odr 

(u ~a) - u ~b)) = 2 ~ u ~"). (u ~) - u~b))" V G d y + 2 ~ (u ~a) - u~D)). U ~b). V G d y .  
dr g 

4 For small I woo I this follows alternatively from Theorem 5.4. 
s The asymptotic estimates of [12] and Theorem 6.61 of [10] show that the outer boundary 

integrals vanish in the limit. 
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Let 
+ C a )  + ( b )  l 

~q=l.u.b.~. hi(,~x ) , i=1 ,2 ,  #=max(/~l,/t2) 

By Lemma 3.7, 
O Giy 

l+~ a ) - u ~ b ) l < 2 e A p ~  hj(2 y) hk(,~ y ) ~ dy 

<2epHhi(Ax) 

so that #<2e/~H, a contradiction. 
We remark that for solutions in three dimensions, the uniqueness of a small 

solution has been proved in the class of all solutions which exhibit the same 
qualitative asymptotic properties at infinity [7]. We have been unable to obtain a 
comparable result in the present case. 
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