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Solution ““in the Large” of the Nonstationary
Boundary Value Problem for the Navier-Stokes
System with Two Space Variables
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1. A Priori Estimates

We consider the Navier-Stokes system

2
vi—rdv+ 3 v, v, = — grad p-+1(z, t),
k=1
divy =0,

for the functions v = (v, (%, %, , 2}, vs(%,, %, , 1)) and p(z;, 2, ,¢) in the
region £ of the Euclidean z-plane = = (x,, #,) with boundary S. We
assume the boundary and initial conditions

(1)

(2) vig =0, Vo = a(x), (diva=0, alg=0).

It was proved in [1] that the problem (1)—(2) (in the case of two and three
space variables) is uniquely solvable for all time ¢ = 0, if f has a potential and
if the Reynolds number at the initial moment is small, and for a period of
time which is short enough even if these conditions are not fulfilled. Moreover,
the unique solvability ““in the large” of the Cauchy problem for system (1) in
the case of two space variables was proved by J. Leray [2] (and later by the
author in a different way). As to the question of the unique solvability “in
the large” of the boundary value problem (1)—(2), it seemed dubious even
for two space variables (see the detailed investigations of J. Leray [3] on
this question). Here we establish the following

THEOREM 1. The problem (1)—(2) is uniquely solvable ‘“in the large”
(¢.e. for all times t = 0) for any value of the Reynolds number at the initial
moment of time and for arbitrary forces f, if only the integrals

¢
[ e 0z, [ Vi 0)dw, [ (@17 dwdt
are finite. The region Q may be bounded or unbounded.!

1The solution will have the derivatives v, , v,, Vi, in Ly(@x[0, £]) and v, in

L (02'2[0, 2]), &’ C Q.

x5

427



428 O. A. LADYZHENSKAIA

In [1] the whole question of unique solvability “in the large’ of problem
(1)—(2) was reduced to obtaining a priori estimates for the integrals

(3) f f vidxdt, z vidz,
Q k=1
or for max |v|. Therefore we shall deal here only with the a priori estimates

for the solutions of problem (1)—(2).
Let us introduce the following notation:

wm (s =] g

p2(t) = fg vi(x, t)dx, F2) = fg > V;‘;k(x, t)dx.

k=1
It is known (see [1]) that the solutions of problem (1)—(2) satisfy the in-
equality
(e, HliF+2v [ $2@)dt < [lall>+2ilall [ 1f1az-+2 ([ l1az)*
< 2lal[*+3 ([ 1F1d2)"

Let us find one more estimate for v. In order to do this we differentiate the
system with respect to £, scalarly multiply the result by v, and integrate
over £. After simple transformations we obtain the identity

(4)

14
> —-1p2(t)—|—y572(t)+f Vs Vi, Vi A :f f,v,dx
Q o)

2 @t

from which

B Lo s ([ Sddae) i
dlf 2%k

follows.

Let us verify that for any continuously differentiable function #(x; , %)
of compact support in the plane the inequality

(6) ff ut(zy, Xp)dw, dzy < 2 J'f (%, , %,)dz, dz, f[ (e, 043 )dae, dec,

is true. (Here the integration is extended over the whole space.) It is clear
that

u? (e, , x,) = 2fj:° uumkdx,c, k=1, 2,
and hence

max u(z,, z,) < 2 J.m luw, |de,, E=12
5 —00 E
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Therefore

_”:o whda, dz, < f:o dz, (m;llx ut - J. °°°° u? dxl)

=2 J._c; dzx, (ﬁ; lu, |de, - mazx ﬁl u? dxl)

= 4ffj; [wtt,, |dy dz, - f J.:o |14, | A2, Ay ,
implying inequality (6).

Let us use (6) to estimate J(f) = ([ D5 v3,v% d2)* in (5). Since the
functions v, are equal to zero on the boundary of £2, we have, because of
(6), the estimate

S) < 2pOF (1)
and therefore, from (5),

d
— Y0202 () < 2|If|lp(t) +4 (v (1) F ()

(7 “

< 3ty T + = POV,
This yields

a 4
() S0 < 20y () + = $ v
and

©) 90 < v exp > [ $2ae] + [ e, o)1 exp [ f;wr)dz} .

From (7) and (9) we deduce also

t t t
(10) o[ Froa s o2 it [ ppa
0 0 0

These inequalities give us a priori estimates for the solutions which are even
stronger than (3). From the proof given above it may be seen that neither
the size of the region £ nor the smoothness of the boundary influence the
value of the constants in inequalities (9), (10).

2. Stability of Solutions of Problem (1)—(2)

It is known that the vector space L,(£2) can be decomposed into two
orthogonal subspaces: J'(@2) and G(£). The subspace G(£2) consists of gradi-
ents of simple valued functions; our solution v and v, belong to the subspace
J(9Q). Corresponding to this decomposition of Ly(£2) we decompose f into
two components and add the gradient part to grad p. For the remaining
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part we shall retain the old notation f. It is this part of the force that is
included into (4)—(10). For example, if the forces have a potential, then f
in (4)—(10) is equal to zero.

Here as well as above we assume that the initial disturbances a are such
that ||a|| and ||v,(z, 0)]] are finite; it is easy to see that these conditions are
really fulfilled if 2 e W2(Q2) and diva = 0, a|g = 0.

From inequalities (4)—(10) it follows that for arbitrary initial disturb-
ances the estimate

v, )2+ [ 42()dt < const.
holds if [§°||f||@¢ < const., and that the estimate
w2 () + f0°°572(t)dt < const.
holds if in addition [§*[|f,[|d# < const.. These estimates imply

THEOREM 2. The solution v of problem (1)—(2) for which ||v(x, 0)|| and
|V, (z, 0)|| are finite and the forces f satisfy the condition [ (||f]|4If,|])dt = const.
tends to zero when t — c0; this means that for v the integrals [ 3%, V5 (x, t)dz
and [o v3(x, t)dx (Q' is any finite part of Q) tend to zevo when t — co.

To prove this it is sufficient to use the finiteness of the integrals
[& ¢%(t)dt and [ F%(t)dt and to take into consideration that

¢2 = 2F, f vide < co B2

The solution of problem (1)—(2) is stable with respect to changes in
the initial conditions and in the external forces. Indeed, the following
theorem is true

THEOREM 3. Let v’ and v'’ be the solutions of problem (1)—(2) correspond-
ing to a' (x) and a''(x) and to the forces ' (x, t) and £’ (x, t). For the difference
u(z, t) of these solutions the estimate

2 [t
lute, )]l < lla'—a)| exp| > [ Foteyn)
(11) t 2
+ [ e o @ oo 2 [ g ax
holds. Here $2(t) = [g Zees (Vo (@, 1)) de.
To prove this we form the system foru=v'—v", p=p"—p":
u,—vAutv,u, +uw,v, = —gradp+f, diva =0,

where f = f'—f"”. Let us multiply it scalarly by u and integrate the result
over £. After some simple transformations we get
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5 ol o2 0) + [ wviiude = [ fade,

where ¢2(2) J'g b1 U, % (v, t)dz. From this equality we have

(12) Il"ll2+2vq52 ) < 44 llull$ + 20if]] - |lul],
and hence estimate (11) and also the estimate

3) | $0d < e, o2 [ttt 2 [ 32 e

follow. The theorem is proved.

Let us suppose that the force £’ does not depend on ¢ and let v (z) be
the corresponding solution of the stationary problem. Let us show that if
the “generalized Reynolds number” 2dc,/v corresponding to v'’(z) is less
than one, then the solutions v'(z, ¢) of the non-stationary problem corre-
sponding to the same f"’(x) and any a(z) tend, in a certain sense, to v''(z)
when ¢— o0, Here cq is a constant depending only on the region 2; ¢ is
the supremum of

f b%dx

2 b; dw
2 k=1
taken for all continuously differentiable functions b(x) which vanish on the
boundary of £.

THEOREM 4. If for the solution v'' (x) of the stationary problem, correspond-
ing to the forces " (x), “‘the gemeralized Reynolds wumber”’ 2¢cqlv is less than
one, then for all arbitrary solutions of problem (1)—(2), corresponding to the
same " (x), the integral

Jm z [Va, (. 1) =V, (2)]? dzdt
0

2 k=1
s finite.
Indeed, from (12), which is true for u = v'—v", and from the inequality
flu(z, t)]| < co(t), we have
a
7 [lar] |- 2042 (2) < deg 42(¢)

which implies the statement of our theorem.
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Appendix

1. Let us say a few words about the case when 2 is an unbounded
region and when for the function a(z) the integral [ a?(z)dz is infinite.
Let a(z) be represented at infinity as

a(z) = a® + ﬁ +0 ([ 1]2) a9 = const., a‘'l! = const..
More precisely, it is sufficient to know that div 4 =0, max s, |a, a,,| <
const., and &, , &, . € L,(¢2). Let us take some twice differentiable solenoidal
function ' (x) which is equal to zero on S and for which max [, u;k[ =< const.,
a(z)—u'(z), u, , Au’ e Ly(R2). We shall seek the solution v(z, ¢) of problem
(1)—(2) corresponding to a(z) in the form v(z, t) = u'(z)+u(z, ). To
determine u(z, ) we have the system

u,—vAu+(u+uy) (U, +u, ) = — grad p+f+vdu’, divu = 0,
and the conditions
ulg =0, u(z, 0) = a(z)—u'(x) e Ly(2).

It is easy to verify that for u a theorem of the type of Theorem 1 holds. The
case of non-homogeneous boundary conditions is treated similarly.

2. Estimates (3), (9), (10) and the results of [1] imply the existence of
a ‘““generalized solution” v of problem (1)—(2), which has only the deriva-
tives v,, v, , vy, . This solution v satisfies a certain integral identity (see
[1]). Proceeding from this identity we proved that v has also the derivatives

Vs.z,- Based on J. Leray’s article [3], K. Golovkin investigated when ‘““the
generalized solution” possesses continuous derivatives.

3. The method of estimates given above permits one to prove the unique
solvability “in the large” of problem (1)-—(2) for three space variables
x = (2, , %y, %3) in case of axial symmetry, provided that the domain  has
no points in common with the axis of symmetry.

4. While obtaining the a priori estimates for the solutions of the non-
stationary problem (1)—(2) we encountered the question of existence of
inequalities of the type (6). For functions of two variables also the in-
equality
ff udde,dz, < § ff ndz, dr, ff Ei—{—um. dz, dz,

if ulg =0, u =0,
is true. The proof of inequality (6) given above is analogous to the proof of
(16) which was given by A. O. Gelfond. For functions of three and more

independent variables inequalities (6) and (16) do not hold. Instead the
following relation, for instance,

(16)
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% 3 %l
-U f uldx, dr,dz, < 4 ('”I u?dz, dz, dx3> ( ff 3 ul dv, dzx, da:3) ,
Q Q2 2 k=1

is true for functions of three variables.
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