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ELEVEN GREAT PROBLEMS OF MATHEMATICAL
HYDRODYNAMICS

V. I. YUDOVICH

Abstract. The key unsolved problems of mathematical fluid dynamics,
their current state and outlook are discussed. These problems concern
global existence and uniquness theorems for basic boundary and initial-
boundary value problems in the theory of ideal and viscous incompress-
ible fluids, the spectral problems in hydrodynamic stability theory for
steady and time periodic flows, creation of secondary, tertiary, etc...
flow regimes as a result of bifurcations and the asymptotics of vanishing
viscosity. Several new problems are formulated.
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The prince in person led his troops to attack
eleven times.

Alexander Dumas

Eleven times the foolhardy battalion attacked the
enemy.

Nikolay Tikhonov

1. Introduction

Regardless of the fact that this paper was written on the other occasion, I respect-
fully dedicate it to Vladimir Arnold. An interviewer once asked me whether I had
heroes in mathematics. I said that I had just heroes, not gods, and first mentioned
Arnold. His unique ability to respond to all alive and new in mathematics and
physics by unexpected and stimulating ideas, his impeccable mathematical taste, his
extraordinary penetrating power, making us to recall classics, his remarkable gift
to point out the research directions promising maximal results—all this made him
one of the world leaders in modern mathematics.

This is a slightly extended version of a talk that was given at the Conference
on mathematical hydrodynamics at Hull University, UK, on the 10th April 2001.
This talk was also repeated at the Newton Institute, Cambridge, on the 23rd April
2001. The title of this paper was suggested by V. A.Vladimirov, who invited me
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to participate at the conference in Hull. “Why exactly eleven?” I asked him. “For
no particular reason,” he replied. “Hilbert pointed out 20 problems, and Smale
pointed out 19, but these referred to mathematics in general... Well, if you do
not like it, we can change the title.” However, I liked the number 11. It is not
as common as, for instance, 12 or 7. Besides, I recalled that some of my favorite
authors mentioned this number while talking about battles and attacks. During
the talk, I was reminded that a football team consists of 11 players. More recently,
I read in Kazantsev’s article in Shahmatnoe Obozrenie (Chess Review) no. 2, 2001,
that “11, according to investigations of V. I. Avinsky, a founder of alphametrics,
is a module of the Universe involved in all dimensions of both micro- and macro-
worlds.” So, this is an intriguing number, and let it stay in the title, although one
shouldn’t take it too seriously. As a matter of fact, there are actually a greater
number of problems, and almost all of them split into even more new problems.
While choosing the 11 problems for this list, I tried to use the following criteria:

(1) The solution of the problem should bring us to a new level of understanding
of fluid dynamics, or at least help to explain a sufficiently wide range of
hydrodynamical phenomena.

(2) In general, it is impossible to solve the problem with any known method.
We need some new ideas and approaches which will probably give rise to
new mathematical theories and promote the improving art of the descrip-
tion of natural phenomena.

(3) Again quoting S. Smale [1], “We believe that the questions, their solutions,
partial results, or even attempts to solve them are likely to be of great
importance for mathematics and its development in the next1 century.”

(4) I spent a good amount of time trying to solve the problem and know some
things about it. At the very least, I now know of several approaches that
do not lead to the desirable results.

As a result almost all of the problems in this list deal with incompressible ho-
mogeneous ideal and viscous fluids. However, some others were excluded from the
list only for the sake of brevity. Those were various problems concerning compress-
ible fluids, nonhomogeneous fluids, asymptotic models of convection, magnetohy-
drodynamics, multi-component and especially infinite-component media, analytical
dynamics and differential geometry of continuous media, problems with unknown
and particularly free boundaries, etc. Some of those omitted still satisfy all of the
above four criteria, and I hope to return to them in future publications.

Of course, it would be desirable that a problem be formulated in a mathemati-
cally rigorous manner. However, unfortunately, this is not always possible. I sup-
pose that a physical problem cannot be formulated completely until it is resolved.
Only a beautiful solution will eventually confirm the correctness of the problem’s
initial statement.

Many of the problems discussed below are well-known, while some of them are
rather new. In the current mathematical literature, one can find solutions for
probably all known problems, especially for those where the hypothetical result is
sufficiently clear and needs only to be rigorously justified. According to Francois

1twenty-first
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Rabelais, “every respectable citizen should believe everything he is told and every-
thing which is published.” In mathematical hydrodynamics, this great principle
should be applied carefully, since too many published proofs are erroneous.

The following is a list of problems with some comments. The first two problems
concern the fundamentals of mathematical physics and are not part of the list of
eleven great problems in fluid dynamics.

2. Mathematical Models of Hydrodynamics

Problem G1. Construct mathematical models of continuous media including phase
transitions (boiling water, ferroelectrics which can turn into dielectrics, liquid crys-
tals, etc.).

This is mainly a question of the correct mathematical statement of the initial
boundary-value problem under conditions when a continuous medium can undergo
phase transitions at a priori unknown moments of time and in a priori unknown
regions of the space occupied by it. For example, it is necessary to learn how to
describe the flow of water under conditions when its temperature changes within
the interval containing one or several points of phase transition (freezing–melting,
boiling–condensation, or triple critical points of the equation of state nearby which
all three phases can coexist). This problem belongs as much to physics as to math-
ematics, since the interpretation of the phase transitions is still an unsettled area
of physics. Current physical journals regularly publish works on the fundamentals
of this theory (see, for example, [2]).

The available phenomenological models of a liquid-gas mixture and boiling water
are rather rough, while it would be interesting to obtain appropriate equations
starting from the “first principles” of statistical thermodynamics. By the way,
the possibility of transition of water into ice reminds us once again about the
impossibility to establish partitions between the natural sciences once and for all,
since such partitions do not exist in nature.

Interfaces arising at phase transitions very often turn out to be unstable, and
waves appear on them. A number of interesting problems are connected with these
phenomena; many of them do not even require the creation of new methods and
are quite accessible to investigation. I recall the experiment conducted by Rostov
physicists (Fridkin and Grekov) [3] as long ago as the 1970s. The edges of a rod
made of ferroelectric material (such as barium titanate) were kept at constant
temperatures. The temperature was lower than the Curie point on one edge and
higher on the other. One could expect that the part of the rod close to the hot
edge would be in the dielectric phase and the cold part would be in the ferroelectric
phase. In general, the experiment confirmed these expectations, but the point of
interface started to oscillate along the rod. As far as I know, an appropriate theory
of this phenomenon was never constructed.

Another example: It is doubtless that a flat boundary between water and ice
while freezing or melting is often unstable. It would be of interest to investigate the
spontaneous waves appearing on such a boundary. It would also be of great interest
to consider the parametrically excited waves generated by oscillations of the outer
temperature and pressure. The results may become significant for the investigation
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of glacier motions, the formation and thawing of icebergs, and the freezing of water
reservoirs. The obtained results can also be applied in the development of practical
methods for the destruction of ice covers on rivers and lakes.

Problem G2. Determine the dependence of kinetic coefficients (viscosity, ther-
moconductivity, diffusion, surface tension, permittivity, ...) on thermodynamic pa-
rameters (temperature T , pressure p, density ρ, impurity concentration c, ...).

It is very important to determine the restrictions on kinetic coefficients imposed
by the requirement of global solvability in basic evolution initial boundary-value
problems. I believe that it is possible to build up a general theory of globally solv-
able systems of ordinary and partial differential equations. Of course, the global
existence of solutions to initial boundary value problems is a very special physical
property of the system, since, as we know, there are some explosive continuous me-
dia which can exist only within a limited period of time. Speaking in mathematical
language, the possibility of collapse is a generic property, while the global solvabil-
ity is in a sense a degeneration. (Such is the eccentric mathematical language — the
most interesting and beautiful systems are called degenerate.)

3. Uniqueness, global existence, and nonexistence of a solution

Problem 1. The global solvability of the basic boundary-value problems for the 3D
Euler and Navier–Stokes equations in the case of homogeneous incompressible fluid
and regularity of the solutions.

There is no point in giving a detailed description of these well-known problems,
even more so that I recently wrote an extensive article about them [4]. However, it
is worth noting that similar problems arise in many areas of nonlinear mathematical
physics. The situation in the 2D Euler and Navier–Stokes equations is good enough,
since there are global theorems on the existence of generalized and smooth solutions,
as well as rather strong uniqueness theorems. That is why it is widely believed that
only 3D problems are difficult, while 2D problems are not so hard to solve. As a
matter of fact, “2D or not 2D, that is not the question”. The issue here is not
so much two-dimensionality but the specific properties of the Euler and Navier–
Stokes equations, which make it possible to obtain strong a priori estimates of the
solutions. In the case of Euler equations, this is the existence of the vortex integrals.
In the case of Navier–Stokes equations, this is the specific embedding theorems for
the function spaces that play the decisive role. The kinetic energy in the 3D case is
still a quadratic functional; however in order to follow in a fashion similar to that
for plane flows, one needs the velocity norm in the L3 space (in the n-dimensional
case, we need Ln).

If we consider the generalized solutions of Euler equations with initial velocity
fields which possess only finite kinetic energy with no additional assumptions on
smoothness, then the advantage of the 2D case fails immediately. The question
of the existence and uniqueness of a global solution to the basic initial boundary-
value problem in the 2D case turns out to be as complicated as for the similar 3D
problem.
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Figure 1.

Let us consider also the equations of ideal convection
d~v

dt
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where ~v is the velocity field, p is the pressure, θ is temperature, k̂ is a unit vector
directed upwards, and D is a bounded domain in R3 or R2; ~v0 ≡ ~v0(x) and θ0 ≡
θ0(x), where x ∈ D, are the initial velocity and initial temperature fields.

If θ0 = const, then θ(x, t) is constant for all x and t, and we face the problem for
Euler equations. The proof of the global existence theorem in the class of smooth
solutions is quite inaccessible for non-isothermal flows even in the 2D case. The
question of whether or not blow up is possible arises once again. Two-dimensionality
is of no use in this case, since the conservation law for the vorticity in a fluid particle
is no longer valid.

In the right way, all these problems are stated informally: find a proper defini-
tion of a (generalized) solution, so that both the global existence theorem and the
uniqueness theorem could be proved.

Problem 2. Global existence theorems for stationary and periodic flows.

After the classic works by J. Leray [7] and his successors (see, for instance, [5]),
the following two problems still resist the efforts of researchers.

Problem 2a. A global existence theorem for a solution to the 2D problem on a
viscous fluid flow past a rigid body.

The velocity at infinity is assumed to be given and equal to a prescribed constant
vector ~U (see Fig. 1).

This problem goes back to the Stokes paradox. Stokes established that, in the
linear case with the term (v, ∇)v neglected, the solution doesn’t exist. This is in
a sharp contrast with the existence of a 3D flow past a bounded body, which is a
very important result from a practical point of view. The Stokes solution for the
slow flow past a sphere has numerous applications in the natural sciences.
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We could reverse the problem and consider a translational movement of an in-
finite rigid cylinder at a constant velocity −~U in the fluid which is at the rest at
infinity. Stokes’ result implies that, in the course of time (as t → ∞), all the fluid
will start to move at the same velocity −~U and the condition at infinity will be
violated. The question is whether this result will change if we consider the com-
plete Navier–Stokes equations. It is worth to notice that all the principal results
on the Navier–Stokes equations were obtained, so to say, in spite of nonlinearity,
by extending (while struggling against nonlinearity!) results that we can get more
or less easily for linearized equations to the complete equations. As for the 2D flow
problem, the desired result must be obtained with the help of nonlinearity. So far,
this has been done only for low Reynolds numbers [6].

Similar questions for non-translational motions of a body and for motions peri-
odic in time still stay without proper investigation.

Problem 2b. Prove or disprove the global existence of stationary and periodic
flows of a viscous incompressible fluid in the presence of interior sources and sinks.

Consider the following steady-state boundary-value problem for the Navier–
Stokes system. Let the flow domain D of R3 or R2 have boundary ∂D consisting
of connected components S1, S2, . . . , Sk, and let the velocity v be prescribed along
the boundary:

v|∂D = q, (5)

where q is a given vector field on the boundary. Then the incompressibility condition
(2) imposes certain restriction on the vector field q, namely,

k∑
l=1

∫
Sl

qn dS = 0 (6)

(i. e., the total velocity flux through the boundary ∂D must be equal to zero).
Meanwhile, in the classic work by J. Leray [7], the global existence theorem for the
stationary flow was proved only under the more restrictive condition∫

S1

qn dS = · · · =
∫

Sk

qn dS = 0, (7)

which coincides with the necessary condition (6) only in the case of a connected
boundary (i. e., when k = 1). Condition (7) means that the fluid neither enters the
flow domain D from the interior domains bounded by the surfaces S1, S2, . . . , Sk

(we assume that Sk is the outer boundary of the flow domain), nor leaves the
domain D through these surfaces. So there are no interior sources or sinks (more
precisely, their sum is equal to zero).

It was necessary to impose the same boundary condition (7) on the boundary
field q(x, t) in order to prove the global existence theorem for periodic motions [8].
We face the following problem:

Prove (or disprove by constructing a counterexample) a global theorem on exis-
tence of stationary and forced periodic motions of viscous incompressible fluids in
the case when the domain D in R2 or R3 has boundary which consists of connected
components S1, . . . , Sk, where k > 1, and only the necessary condition (6) holds.
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Here the boundary ∂D, the vector field q, and the external mass force F (x) in
the stationary case and F (x, t) in the periodic case are assumed to be C∞-smooth.

My feeling is that the solution is most likely negative. If this is true, then the
necessary counter-examples can be constructed, probably even for the simplest case
of the concentric circular ring.

The exterior problems with interior sources and sinks are also not without in-
terest. Some unusual phenomena related to outer rotationally symmetric flows are
considered in [9].

In addition, I would like to note that condition (7) makes it possible to prove
the dissipativity of the non-stationary Navier–Stokes system [10]. When only the
general condition (6) is valid, this result (except in the slow flow case) will probably
fail as well.

It seems to be possible that, when the Reynolds number increases, the stationary
regime can disappear (i. e., move to infinity in the corresponding function space) as
R→ R∗, where the critical value of R∗ is finite. However, before disappearing, this
stationary regime becomes unstable and generates a self-oscillating periodic regime.
Of course, there is a chance that at first the branching in the class of stationary
regimes takes place. It would be interesting to examine the possibility of such a
march of events, at least by a numerical experiment.

4. General stability theory for viscous fluid flows

Problem 3. The existence of unstable stationary and periodic flows in an arbitrary
domain.

Let a = a(x) be a velocity field of a stationary flow of a viscous incompressible
fluid in a prescribed bounded domainD in R2 or R3. We assume a to be a solution to
the boundary-value problem for the Navier–Stokes system with prescribed external
forces and boundary velocity field. By linearizing the Navier–Stokes equation on
this basic flow and searching for a solution in the form eσtu(x), we get the following
spectral problem:

σu+ (u, ∇)a+ (a, ∇)u = −∇q + ν∆u, (8)

∇ · u = 0, (9)

u|∂D = 0. (10)

We define the stability spectrum of the main flow a (denoted by Σa) to be the set of
the complex numbers σ for which the problem (8)–(10) has a nonzero solution. It is
well-known that the stability spectrum of any flow is countable and the correspond-
ing system of eigenvectors and adjoint vectors is complete [14]. (Note that, in the
case of an unbounded domain, one should consider also the continuous spectrum.)

Let us try to imagine a great future hydrodynamic stability theory that has
already solved all the fundamental problems and is able to entrust with computers
the investigation of particular flows, their stability and transitions. Maybe, the
following concepts will play an essential role in this theory.

Definition 1. The destabilizer D = D(D) is the set of all smooth solenoidal
(div v = 0) vector fields a on the domain D such that the spectral problem (8)–(10)
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has at least one eigenvalue σ0 on the imaginary axis:

D = D(D) = {a : ∇ · a = 0, ∃σ0 ∈ Σa : Reσ0 = 0}. (11)

Definition 2. The bifurcator B = B(D) is the set of all solenoidal vector fields a
on the domain D such that the stability spectrum Σa contains the point 0:

B = B(D) = {a : ∇ · a = 0, 0 ∈ Σa}. (12)

Definition 3. The oscillator O = O(D) is the set of all smooth solenoidal vector
fields a on the domain D such that the stability spectrum Σa contains at least one
pair of complex conjugate numbers ±iω, ω 6= 0:

O = O(D) = {a : ∇ · a = 0, ∃ω ∈ R, ω 6= 0, iω ∈ Σa}. (13)

Now, let aλ = aλ(x) be a solenoidal vector field depending on a real parameter λ.
Assume that, if λ = 0, this flow a0 = a0(x) is asymptotically stable, and its stability
spectrum is situated in the left half-plane. Then the property of asymptotic stability
is also preserved for small λ. Let us now gradually increase λ (without loss of
generality, we can assume that λ > 0). It is possible that the flow aλ is unstable for
some λ. The critical values of λ∗, which correspond to transitions of the eigenvalues
from the stable half-plane to the unstable one (in particular, those which separate
the intervals of stability and instability), are determined by the condition that the
spectrum Σa includes at least one point of the imaginary axis. In other words, the
critical values λ∗ are defined by the condition aλ∗ ∈ D(D) (Fig. 2). Of course, while
we change the parameter λ, the curve {aλ} may cross the destabilizer D several
times.

If it is already known that the flow aλ loses its stability, the question arises
about the nature of the corresponding transition. Generically, the answer depends
mainly on the nature of the neutral spectrum (the intersection of the spectrum
with the imaginary axis) of the critical flow aλ∗ . If aλ∗ ∈ B(D), one can expect
branching of the stationary regimes. And if aλ∗ ∈ O(D), then (again generically)
the Poincaré–Andronov–Hopf bifurcation of branching off the cycle (self-oscillatory
periodic regime) takes place.

If we imagine that the sets D, B, and O are stored in a computer memory, then,
in each particular case, we need only to track up when the family {aλ} hits them.

Let us state the problem in the following form.



ELEVEN GREAT PROBLEMS OF MATHEMATICAL HYDRODYNAMICS 719

Prove that, for any domain D in R3 or R2, the sets D(D), B(D), and O(D) are
nonempty.

So far, this result is known only for rotationally symmetric domains in R3 [11]–
[13]. Certainly, when it is proved that the sets D(D), B(D), and O(D) are non-
empty (which is the main property of any set), the questions on the structures of
these sets will arise. Each of them are likely to be stratified with respect to the
codimensions of the bifurcations arising when the family {aλ} intersects them.

It would be natural to raise quite similar questions for periodic regimes (for
instance, of fixed period p). In addition to the sets Dp, Bp, and Op, which naturally
generalize the sets D, B, and O, we need to include here the duplicator Dbp, i. e.,
the set of all time-dependent solenoidal vector fields in the domain D such that they
are p-periodic in t and the corresponding monodromy operator has multiplier −1.
Nonlinear perturbations of these critical situations lead generically to the period
doubling bifurcation.

Finally, we notice that, in the finite-dimensional case, the definitions given above
work fairly well. For example, it turns out to be possible to construct sets similar
to D, B, and O for the Galerkin approximations to the Navier–Stokes equations
(Yudovich V. I., On the bifurcators, oscillators and destabilizers of the Navier–
Stokes system (in preparation)).

Problem 4. The completeness of the Floquet solution system in the stability prob-
lem for periodic flows of viscous fluids.

Linearization of the Navier–Stokes equations on a known T -periodic flow a(x, t)
in a (bounded) domain D with a rigid boundary produces a system of equations
with T -periodic coefficients. Searching for solutions of the form eσtu(x, t), where
the vector-function u is T -periodic, we obtain a spectral problem with complex
parameter σ:

∂u

∂t
+ σu+ (u, ∇)a+ (a, ∇)u = −∇q + ν∆u, (14)

∇ · u = 0, (15)

u|∂D = 0. (16)

The set of complex numbers σ for which this problem has a nonzero solution is
called the stability spectrum, or Floquet spectrum, of the flow a(x, t). Note that, if
this spectrum contains a point σ, then it also contains a countable number of points
σ + inω, where ω = 2π/T and n ∈ Z. Along with eσtu(x, t), the solutions of the
form eσt

∑n
k=0 t

kuk
m(x, t), where m = 0, 1, . . . , r, are also referred to as Floquet

solutions. Here uk
m are T -periodic vector-functions, which are called adjoint Floquet

solutions, or generalized Floquet solutions (which is extremely ambiguous).
Let us define the Hilbert space S2(D) as the closure of the set of all C∞-smooth

and compactly supported solenoidal vector fields on the domain D with L2(D)-
norm. We formulate the following problem:

Prove that, for any T -periodic solution a, the system of Floquet solutions is
complete, i. e., their values at t = 0 form a complete system in S2(D).

Let us introduce the monodromy operator UT of the linearized system, which is
obtained from (14)–(16) when σ = 0. By definition, for any solution u(x, t) of this
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system, we have UTu0 = u(·, T ), where u0 is the initial value: u0(x) = u(x, 0). An
equivalent statement of the problem is:

Prove that the monodromy operator UT has a complete system of eigen- and
adjoint vectors.

In the case of a stationary flow, the completeness of the normal modes system
was proved long ago by S. G. Krein (see [14]). The application of the well-known
Keldysh theorem plays the crucial role in this proof. The idea is that for a = 0, we
have a self-adjoint spectral problem, for which the completeness of the eigenvector
system can be derived in a standard way, with the help of the Hilbert–Schmidt
theorem. The terms that contain the flow a form a weak in a sense, if not small,
perturbation of the basic self-adjoint positive-definite operator. This is what makes
it possible to apply the Keldysh theorem.

It is rather surprising that, in the periodic case, the Keldysh theorem is non-
applicable. Some results on the completeness of Floquet solutions were obtained
in the 1970s by my post-graduate student A. I.Miloslavsky [15]. He instead ap-
plied the Dunford–Schwartz theorem [16], which also tells us that the completeness
of the root vector system is preserved under perturbations, though it is based on
principles quite different from those used by the Keldysh theorem. The conditions
of this theorem prohibit the eigenvalues of the unperturbed operator from com-
ing arbitrarily close to each other. This kind of behavior is typical for spectral
boundary-value problems on the interval or on a plane domain. However, for the
Laplace operator (and for the Stokes operator as well) in a bounded domain D
in Rm, the eigenvalues λn grow like n2/m as n → ∞ and approach each other
for m ≥ 3. It is due to this restriction that the desired conclusion follows from
Miloslavsky’s general theorems only in the cases of total separation of variables,
when the problem is reduced to a second-order parabolic equation (or a system of
such equations) with coefficients periodic in t and only one spatial variable. This
class certainly includes a lot of interesting flows, such as parallel flows in a circular
pipe or in a channel, time-periodic symmetric flows between two coaxial cylinders,
etc. But the general problem turned out to be very complicated, and the difficulties
here are of a fundamental nature.

Concentrating our attention on the essential properties of the linearized Navier–
Stokes system which we are really able to deal with, we come to the following
abstract statement of the problem.

Consider the following ordinary differential equation in the Hilbert space H:

du

dt
+Au = B(t)u, (17)

where A is a (constant) self-adjoint operator (similar to the Laplace operator −∆ or
the Stokes operator −Π∆) such that its inverse operator A−1 = G (Green operator)
is completely continuous. The operator-function B(t) is t-periodic with period T ;
for any t, it is subordinate to the operator A in the strong sense which means that
the operator-functionsG1/2B(t) andB(t)G1/2 are bounded and continuous in t with
respect to the uniform operator topology (generated by the operator norm on H).
More precisely, the operator B(t) can be unbounded and not defined everywhere,
but its domain (dom(B(t)) should be everywhere dense and contain the image of
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the operator G1/2. At the same time, the above-mentioned operator-functions must
be continuously extendable up to bounded and continuous operator-functions.

In the case where B is constant, the completeness can be derived from the
Keldysh theorem. Seemingly, this result can be extended to operators B(t) periodic
in t. However, Miloslavsky constructed an example of an equation of form (17) with
bounded coefficient B(t) for which the monodromy operator is quasi-nilpotent!
This equation does not have Floquet solutions at all. Note that the importance of
the completeness property of the normal modes or of the Floquet solutions in the
stability/instability problem is strongly exaggerated by many authors. The fact
that the equation (17) does not have Floquet solutions indicates its overstability :
each of its solutions decays faster than any exponential as t → +∞, at least like
e−kt ln t for some k > 0, or even like e−ktα

for some α > 1.
The example of Miloslavsky is of a rather abstract nature. It would be very

interesting to determine if this kind of overstability is possible for parabolic par-
tial differential equations and for the linearized Navier–Stokes system. My guess is
that this is not possible; it is more likely that overstability exists on some invariant
subspace. The reason is that any pair of differential operators with variable coef-
ficients, say, of orders m and n, “almost commute”, their commutator “loses the
order”. This differential operator is of order less than m + n. On the other hand,
for commuting (in the natural sense) operators A and B(t), the conclusion on the
completeness certainly holds.

I would also like to refer to the paper [18], where an example of a parabolic
equation of the form ∂u

∂t −∆u = q(x, t)u on the torus T 3 with coefficients bounded
with respect to x and t is constructed. In this example, the equation has some
solutions decaying like e−ct2 with c > 0 as t → +∞. However, the issue remains
open, whether or not such a fast damping is possible when the function q is periodic
in t.

There exists a class of equations (17) with self-adjoint and strictly positive mon-
odromy operators. These are equations for which the following condition ([12], [13])
is satisfied:

B∗(−t) = B(t). (18)

In this case, the monodromy operator of equation (17) certainly has an orthonormal
eigenbasis. Unfortunately, only a few rotational periodic fluid flows and periodic
convective flows of a stratified fluid lead to equations of form (17) with the condition
(18) satisfied.

5. Stability of ideal fluid flows

Problem 5. Justify the validity of linearization in the problem on the instability
of a stationary flow of an ideal incompressible fluid with respect to weak norms.

Instability must be understood as a lack of Lyapunov stability. The definition of
Lyapunov stability uses the norm on the function space of solenoidal vector fields
tangent to the boundary of the flow domain. The answer to the stability question
depends crucially on the choice of this norm [14], [19]–[22]. There exist strong
reasons to believe that all the flows of ideal incompressible fluid are unstable with
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respect to “strong” norms, such as maxx |∇ × v(x, t)| + · · · in the 3D-case and
maxx |∇(∇× v(x, t))|+ · · · in the 2D-case. Here the dots stand for weaker norms,
for instance the L2-norm. Although this statement in its general form still remains
a hypothesis, a large number of examples and theorems, related to various types of
flow, strongly confirms its correctness. Apparently, even a solid rotation of a fluid
is not an exception.

Everything convinces us that even Lp-norms of a curl in the 3D-case and its Cλ-
norms in the 2D-case also grow infinitely as t → ∞ for very wide classes of flows.
These classes are likely to be so wide that no stationary flow that is Lyapunov
stable with respect to these norms exists.

In the 2D-case, the known global existence theorem suggests a natural choice of
the norm. It is the norm in the space V of solenoidal vector fields in the domain
D ⊂ R2 with a bounded vortex:

‖v‖V = ess max
x∈D

|∇ curl v(x)|+ · · · . (19)

Here dots again denote a minor norm. The norm of the vector field v(x, t) in the
space V is estimated uniformly in t ∈ R [26]. This is the strongest norm that is
still uniformly bounded for all t ∈ R.

In any case, it is obvious that the stability and instability definitions are of
interest only when stable flows exist. It is easy to check that flows with constant
vortex are Lyapunov stable in the space V .

In the 3D-case, the “right” choice of a norm is obscure, at least because we do
not know of any global existence theorem for the initial boundary-value problem.
At the same time, in the case of Lyapunov stability, according to the definition, the
motion in the presence of small initial perturbations must be defined for any t > 0.
In principle, this does not prevent us from treating the collapse (going of the motion
to infinity for a finite time) as a special case of instability. Maybe, we have to soften
the definition of the Lyapunov stability, admitting only smooth perturbations from
some set which should be everywhere dense in the chosen function space. Somehow
or other, at the moment, there are only two reasonable candidates for the role of
the “right” norm, namely, the C-norm and L2-norm. In Problem 5, another choice
is, of course, possible; however, the norm must be weaker than max | curl v| in the
case of 3D flows.

At present, only one general result on the justification of linearization in the
stability problem for stationary flows of ideal incompressible fluid is known [23].
However, in [23], in the case when the stability spectrum contains a point of the
right half-plane, the instability was proved only for norms which were much too
strong. The other weakness of this article is the presence of an additional restriction
on the spectrum. This is the requirement that the spectrum must contain a spectral
set which lies entirely in the right half-plane (in fact, a stronger requirement may
be needed). I suppose, this disadvantage can be easily removed with the use of
Krein’s [24] approach connected with the so-called “almost eigenvectors”.

Problem 6. Justification of Arnold’s method in the stability problem for an ideal
fluid flow.
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In spite of the significant progress achieved by applying Arnold’s method, be-
ginning from his pioneering works of the mid-1960s (see [25]), many fundamental
questions of the theory remained in a shadow and are still unclear.

Problem 6a. Prove the Lyapunov stability in the space V in the case when the
stationary flow satisfies Arnold’s criterion.

Let me remind the reader that, in the case of a stationary flow with stream
function ψ satisfying the equation

ψ = F (∆ψ), (20)

this criterion requires that the quadratic form

H = H[ϕ] =
1
2

∫
D

[
(∇ϕ)2 +

∇ψ
∇∆ψ

(∆ϕ)2
]
dx dy, (21)

ϕ
∣∣
∂D

= 0. (22)

be positive-definite or negative-definite.
Under natural restrictions, Arnold proved an a priori estimate for L2-norm of the

vorticity perturbation ‖∆ϕ(·, t)‖L2(D). However, for such initial data, although we
know the global existence theorem [26], there is no uniqueness theorem. To prove
uniqueness, it is sufficient to assume that the initial velocity belongs to V , i. e.,
∆ϕ ∈ L∞(D) (see also [27], where the uniqueness is proved for some class of flows
with unbounded vorticity). So the stability in this space is proved only in some
impaired sense: even if there are many perturbed flows (corresponding to the same
initial data), all of them are very close to the basic stationary flow. In a natural
way, the following problem arises.

Problem 6b. Prove (or disprove) the uniqueness of the solution to the basic initial
boundary value problem for the Euler equations in a bounded domain D in the case
when the initial vorticity belongs to Lp(D) for some p > 1.

So far, we have to acknowledge that the Lyapunov stability in the space V is
proved completely only for the flows with constant vorticity. By the way, for such
flows, the form (21) is not defined, and the result about stability is obtained directly.
It is time to note that by no means all stationary flows satisfy an equation of form
(20) with a univalent and smooth function F . Generally, a stationary flow is defined
by the equation

D(ψ, ∆ψ)
D(x, y)

= 0, (23)

i. e., the requirement that ψ and ∆ψ are functionally dependent. For instance, the
starting hypotheses of Arnold are broken for the stream function defined uniquely
by the boundary-value problem

−∆ψ = −ψ3 + 1,

ψ
∣∣
∂D

= 0.
(24)

In this case, ψ = 3
√

∆ψ + 1, so the function F exists, but it is not smooth. Another
example in which there does not generally exist any univalent function F : the
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function ψ satisfies the equation

ψ2 + (∆ψ)2 = 1 (25)

and the boundary condition is ψ
∣∣
∂D

= 0. The stability problem for such flows
remains completely uninvestigated.

Problem 6c. Investigate the stability of the flows (24), (25) and similar.

It is most likely that all flows which do not admit a univalent function F are
unstable. Thereupon, I would like to draw attention to the works [28], [29], where it
was proved that the solution of the problem about maximum of the kinetic energy on
the set of isovortical vector fields leads to flows with univalent dependence between
ψ and ∆ψ.

Further, it is important in principle to develop the Arnold approach, which is a
special form of the direct Lyapunov method, as applied to the instability problem.

Problem 6d. Prove the instability of a stationary flow in the case when the Arnold
criterion is roughly violated.

Seemingly, everything confirms the opinion of the famous author that his crite-
rion is “close to necessary” (see, for instance, [30]). However, as a matter of fact, in
hydrodynamics, instability is very rarely established by using the direct Lyapunov
method. A kind of exception is given by the results of Vladimirov [31] obtained
with the use of virials in problems related to the motion of a body in a fluid.

It is a pity that the beautiful criterion for the stability of a three-dimensional
stationary flow obtained by Arnold, as it was expected by its author, turned to be
inapplicable to any flow, except, maybe, to the rigid rotation.

Problem 6e. Does a stable three-dimensional stationary flow of an ideal incom-
pressible fluid exist?

It is likely that even a rigid rotation is unstable with respect to strong norms, for
instance, with respect to the vorticity norm max | curl v|+ · · · . Thus, if the stable
flow does exist, we still need to explain in what sense (in what function space, etc.)
it is stable.

6. Stability of the simplest laminar flows and first transition

Problem 7. Prove that the Hagen–Poiseuille flow in a circular pipe and the Cou-
ette flow in a channel are absolutely stable (i. e., stable at any Reynolds number).

This time, we are dealing with rigorously formulated spectral boundary-value
problems for ordinary differential equations (see, for instance, [32]). In the case of
the Poiseuille flow, confining ourselves to axisymmetric perturbations, we should
prove that all eigenvalues σ of the following spectral problem are located in the left
half-plane Reσ < 0:

{(L− α2)− [σ + iαR(1− r2)]}(L− α2)ψ = 0, (26)

ψ = ψ′ = 0, r = 1, (27)
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where α is the wave number of the perturbation, R is the Reynolds number, σ is
a complex parameter, and the function ψ = ψ(r) is defined on the segment [0, 1].
The second-order differential operator L is defined by the equality

L =
d2

dr2
+

1
r

d

dr
− 1
r2

=
d

dr

(
d

dr
+

1
r

)
. (28)

There is no boundary condition at r = 0, and it is easy to understand why: the
points of the axis of the pipe are interior for the initial problem in the cylinder,
and there are no singularities at them. Instead of a boundary condition, we state
the “boundedness condition” coming from the requirement that the rate of energy
dissipation is finite (or that the velocity field belongs to the class W (1)

2 ). This
condition has the form ∫ 1

0

(|(L− α2)ψ|2 + |ψ|2)r dr <∞. (29)

In fact, we must also handle the corresponding spectral boundary-value problems
for non-axisymmetric perturbations. They are well-known (see [32]), and let me
omit them here.

It is necessary to prove that, for arbitrary real α and R, all possible eigenvalues
σ of the spectral problem (26)–(28) are situated in the left half-plane Reσ < 0.

For R = 0 (and an arbitrary α), we have the self-adjoint boundary-value problem
and all eigenvalues σ are negative (the equilibrium state is, of course, asymptotically
stable). Being guided by the results of perturbation theory and simple estimates
of the σ-spectrum, we can easily prove that the eigenvalues cannot go to infinity
for finite values of the Reynolds number R. Hence the absolute stability property
is equivalent to the non-existence of a critical value of the Reynolds number.

By a critical value, we mean a value R = R∗ such that there exists at least
one eigenvalue σ0 on the imaginary axis. It is convenient to express it in the
form σ0 = −iαcR, where c is an unknown real constant (the phase velocity of the
neutral perturbation). Thus, the absolute stability problem can be formulated in
the following form.

Prove that, for any real α and R, the differential equation

(L− α2)2ψ − λg(r)(L− α2)ψ = 0 (30)

with conditions (27), (28) has only zero solution. Here we put

g(r) = 1− r2 − c; λ = iαR. (31)

Let us emphasize that only pure imaginary eigenvalues have physical sense. If,
instead of the boundary conditions (27), we take the conditions

ψ = Lψ = 0, r = 1, (32)

then we obtain the self-adjoint Sturm–Liouville boundary-value problem for the
function ω = (L − α2)ψ. In this case, all eigenvalues of the parameter λ are real.
This proves the absolute stability in the case of “soft” boundary conditions (32).

The idea appears to watch the change of eigenvalues λ resulting from the change
of the boundary conditions (27) into the conditions (32) and prove that they remain
real. If this were the case, then the problem would be resolved. Alas, this is true
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only in the case c 6∈ (0, 1). However, for c ∈ (0, 1), the boundary-value problem
(26), (28), (32) admits complex (unreal) eigenvalues together with the set of real
eigenvalues [33]. The fact that the phase velocity c should lie in the interval of
values of the velocity of the Poiseuille flow can be obtained more directly from
integral estimates [33].

In the case of the Couette flow in a channel, we come by the same way to the
following problem.

Prove the absolute stability of the plane Couette flow in a channel by establishing
that the boundary-value problem

(D2 − α2)2u = iαR(y − c)(D2 − α2)u, D =
d

dy
, (33)

u = Du = 0 (y = ∓1) (34)

on the segment [0, 1] has only the zero solution for all real α and R.
It should be noted that, beyond a shadow of a doubt, the Poiseuille flow in a

pipe and the Couette flow in a channel are absolutely stable. This statement is
supported by repeated and very bulky calculations (that is true, time and again,
“no doubt” statements turn out to be wrong). Moreover, for the Couette flow, an
“almost analytical” proof was constructed [34]. The numerical part of this work
was reduced to the checking of some, not so complicated, inequality for the Bessel
function.

However, I would like to believe that it is possible to construct some beautiful
algebraic-analytical proof. I imagine a general theorem which imply without embar-
rassment the absolute stability of both flows. This theorem cannot be very general,
because it should be based on rather deep and special properties of the linearized
Navier–Stokes equations. The point is that, for parallel flows in non-circular tubes,
which are quite similar to the Poiseuille flow, stability most likely can be lost al-
ready for finite values of the Reynolds number. It would be desirable (and I hope
not so difficult) to prove this rigorously for tubes with elongated rectangular and
elliptic cross-sections.

It is also interesting to note that, for the Poiseuille–Couette flow in a channel
with the profile U(y) = ay+ b(1− y2), according to calculations of several authors,
absolute stability takes place not only for b = 0 (pure Couette) but also for suffi-
ciently small values of the parameter k = |b/a|, say for k < k∗; for a = 0, we have
the Poiseuille flow in a channel, which is unstable for large R. A really good theory
should also predict the value k∗ separating absolutely stable and unstable flows.
The role of a computer should be reduced to the calculation of the concrete values
of the parameters k∗ = k∗(α) and R∗ = R∗(α) for k > k∗(α).

Several other absolutely stable flows are known. Such is, for example, the Couette
flow in the case when only the outer cylinder is rotating. Another example is given
by the Kolmogorov spatially periodic flow with sinusoidal profile in the case of a
short longitudinal period. For these particular flows the absolute stability is proved,
and for the former, even global (nonlinear) stability takes place [36]. However,
the problems on global nonlinear stability and the development of turbulence still
remain topical. We discuss these problems below, in this and next sections.



ELEVEN GREAT PROBLEMS OF MATHEMATICAL HYDRODYNAMICS 727

Problem 8. Exchange stabilities principle. When a parameter on which the
basic regime depends arrives at its critical value, generically, the following two
basic cases can occur: either a pair of complex conjugate eigenvalues appear on
the imaginary axis or the eigenvalue σ0 is 0. The term oscillatory instability is
attributed to the former case, while with the latter we connect the term monotonous
instability.

In the second case, we also say that the monotonicity principle, or the exchange
of stabilities principle, takes place. The former term has remained from that (short)
time when researchers believed that, in viscous fluid dynamics, instability is always
monotonic.

In several cases, it turn out to be possible to prove the monotonicity principle
rigorously. I mention the free convection problem, in which the result was achieved
by reduction to the spectral problem for a self-adjoint operator. For the spatially
periodic Kolmogorov flow with velocity profile U = sin y, the monotonicity principle
was proved in [35] with the help of explicit analytical considerations based on the
possibility to express the characteristic equation by means of continued fractions.
For several special steady rotational flows periodic in t, the monotonicity princi-
ple was established in [12], [13]. Sometimes, in order to justify the monotonicity
principle, we can apply the theorem on the positive leading eigenvalue of a positive
linear operator (Perron–Frobenius–Ientch–Rutman–M.G. Krein).

However, in the most interesting hydrodynamical case of the Couette–Taylor flow
between co-rotating rigid cylinders, the principle is still not justified. The following
mathematical problem is not resolved.

Prove that, for an arbitrary α ∈ R, the minimal critical Reynolds number R of
the spectral boundary value problem

(L− α2)2u− σ(L− α2)u = 2α2Rω(r)v, (35)

(L− α2)v − σv = −λg(r)u, (36)

u = u′ = v = 0 (r = r1, r2) (37)

corresponds to the eigenvalue σ = 0.
Here r1, r2 are the radii of the cylinders, 0 < r1 < r2, α is the axial wave number,

and the functions ω and g are expressed through the basic Couette profile

v0 = v0(r) = Ar +
B

r
(38)

by the equalities

ω(r) =
v0(r)
r

; g(r) = −
(
dv0
dr

+
v0
r

)
. (39)

The constants A and B are defined by the boundary conditions v0(r1) = Ω1r1,
v0(r2) = Ω2r2, where Ω1 and Ω2 are the angular velocities of the cylinders. At
that we should assume that ω(r) ≥ 0 for r ∈ [r1, r2]) and the Synge condition for
instability at A < 0 holds (for A ≥ 0, stability takes place for all R; see [32]).

Repeated many times, calculations and natural experiments show us, beyond
a shadow of a doubt, that the monotonicity principle is true. In some particular
cases (narrow gap r2 − r1, close angular velocities Ω1 and Ω2), it was actually
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proved. However, a rigorous proof for the general case is still absent. Let me
repeat, the problem here is not the mathematical rigor per se, but it is necessary to
understand the reasons of the phenomenon. Why self-oscillations do not appear at
the first transition? When the desirable result is achieved, no doubt, it will enable
us to decide, together with this particular case, many other problems, and first of
all for the rotational flows with profiles different from the Couette one (38).

Note that, after the spectral problem (35)–(37), we must consider also the spec-
tral problems for non-rotationally symmetric modes depending on the polar angle
through the multiplier eimθ.

The existence of an infinite sequence of critical values R1(α) < R2(α) < . . .
going to infinity at σ = 0 (and even for σ > 0) was proved by reduction to the
integral equation with an oscillatory (in the Gantmakher–Krein sense) kernel [36].
Thus we will have the right to consider the problem as completely resolved when
it is rigorously proved that, at R < R1, the entire σ-spectrum (including its part
corresponding to the non-symmetric modes, for m 6= 0) is located in the left half-
plane.

In the case of counter-rotating cylinders, the existence of monotonous instability
critical values corresponding to the creation of Taylor vortices was proved in [37].
In this case, however, the monotonicity principle is not always valid: for large
angular velocities of the outer cylinder, the first transition may be connected with
the appearance of an unstable oscillatory mode, which is not symmetric.

In the Soviet times, scientists often had to answer the question about the eco-
nomical effect of their results. They had to spin answers out of thin air. However,
in the case of the monotonicity principle, this effect can be really evaluated in rou-
bles or pounds. The point is that researchers time and again find themselves in a
typical position described by Confucius. They have to catch a black cat in a dark
room, and, in addition, the cat is absent. A huge work is necessary to get the result
that oscillatory instability is impossible in this or that situation. And as the only
result, the melancholic sentence “Oscillatory instability is not found” appears at
the end of the paper. Moreover, as it is impossible to get the absolute certainty, the
succeeding authors re-examine the result again and again. Only a rigorous proof
of the monotonicity principle preserves us at one go from this Sisyphean toil and
saves a lot of human and computer time.

Problem 9. Instability “in the large” of the Poiseuille flow in a pipe and the
Couette flow in a channel (asymptotic bifurcation theory).

How can we achieve an agreement between the result on the absolute stability of
the Poiseuille flow in a circular pipe and the Couette flow in a channel and, on the
other hand, the results of experimentalists who, beginning from Reynolds, report
regularly about the observed instability and development of turbulent regimes? In
general, the frame of the answer is discernible, though we are still far from the com-
plete clarity. Most likely, these flows, staying stable “in the small” for all Reynolds
numbers, are globally stable only for sufficiently small R. However, beginning from
some value of the Reynolds number R, these flows become unstable in the large.
The reason for this is that, as R→∞, the domain of attraction contracts (at least
in one direction) to the point corresponding to the basic flow itself. This happens,
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for instance, when some unstable equilibrium O′ is coming closer and closer to a
given asymptotically stable equilibrium O (see Fig. 3), and in the limit they merge
together. Of course, it may happen that this is an unstable limit cycle or an even
more complicated invariant set that approaches the equilibrium O. There is also
another variant for which the equilibrium O is stuck in the limit into a separatrix
trajectory (Fig. 4). The results of computer experiments seemingly testify to the
first variant (Fig. 3), though the situation of Fig. 4 is more difficult to disclose and,
maybe, it will be also found out.

Problem 9a. Prove that the Poiseuille flow in a pipe and the Couette flow in a
channel are unstable in the large.

It is very important to clarify the nature of this instability. Indeed, if the situa-
tion of Fig. 3 is realized, then the question is what the nature of the unstable regime
O′ is? The authors of the work [38] got over the huge computational difficulties
and calculated the two-dimensional and three-dimensional soliton-like stationary
regimes near the Couette flow in a channel (see also the references in this paper
to the results of other authors on the existence nearby the Couette flow of space-
periodic regimes even at lower Reynolds numbers). The results on the intermittency
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of “turbulent plugs” and zones of the laminar Poiseuille flow in the transition in-
terval of Reynolds numbers also can serve as some evidence on the existence of
soliton-like solutions to the Navier–Stokes equations.

Problem 9b. Prove that, for sufficiently large Reynolds numbers, there exist sta-
tionary (plane and periodic in the transversal direction) solutions to the Navier–
Stokes equations tending to the Couette flow as |x| → ∞.

Problem 9c. Prove that there exist solutions of the Navier–Stokes system in a
circular pipe of the travelling soliton type tending to the Poiseuille flow as z− ct→
∞ (z is the axial variable, c is the phase velocity).

Problem 9d. Prove the existence of travelling waves that are space-periodic and
soliton-like or stationary and periodic in time tend, as R → ∞, to the Poiseuille
flow in a pipe or to the Couette flow in a plane channel, respectively.

It is most likely that all these problems, 9a–d, will be resolved along with the
construction of an asymptotic bifurcation theory. I mean the case when the critical
Reynolds number is infinitely large: R∗ = ∞. The fact is, of course, that R = ∞ is
an essentially singular point for the Navier–Stokes system. Therefore, such a theory
should include the construction of boundary layer (or, maybe, other?) asymptotics
of the secondary regimes merging with the basic one as R→∞.

When this theory is built (no doubt it will happen!), many other applications will
be found in hydrodynamics as well as in other branches of mathematical physics.

7. Transitions and chaotic regimes

Problem 10. Find and rigorously justify the existence of strange attractors in
the Navier–Stokes system and its nearest relatives (convection problem, multi-
component fluids, magnetic hydrodynamics, etc.).

In a series of hydrodynamical problems, with the use of natural and computer
experiments, we have already settled chains of transitions leading from an asymp-
totically stable equilibrium (stationary motion) through secondary equilibria, limit
cycles, and/or invariant two-dimensional tori to complicated chaotic regimes. The
treatment of experimental data was obtained in the framework of ideas and images
of the general bifurcations theory. However, even in the case of ordinary differen-
tial equations, for the most interesting cases, this work was not carried through
up to the rigorous checking of the conditions of general theorems. During the past
decades, several prominent mathematicians even began to declare that, in such
problems, the abilities of rigorous mathematical analysis are exhausted and, hence-
forward, we have to pin our hopes only on computer calculations. And even the
realization of rigorous proofs has been entrusted with computers. It is impossible
to accept this point of view.

No doubt, direct numerical calculations always played a significant role in the
development of mathematics. Archimedes, however, not even for a minute, thought
it was sufficient to determine the volumes of a ball and a cone by weighing. He
followed up on developing his methods of calculating volumes up to the triumphant
conclusion. Euler, Gauss, and Ramanujan got many of their discoveries, especially
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in number theory, as a result of extensive calculations and observations. However
their discoveries became the property of mathematics only after the development
of the corresponding rigorous theories. The application of computers widened the
scope of numerical experiments utterly and now plays the decisive role in the in-
vestigation of processes described by differential equations.

Perhaps, mathematicians never thought that literally everything in the world
must be justified with complete rigorousness. If we consider mathematics as a
tool for investigating nature (for me, this is only one but the main of its sides),
then its characteristic feature is the aspiration to get absolutely reliable results.
Meanwhile, very often it is sufficient to obtain results with probability 0.99 or maybe
even 0.6. High reliability is very expensive — for instance, a rigorous proof of error
estimates (“demonstrative calculations” according to K. I. Babenko) requires much
more computer time than even the calculation itself.

It is not out of place to note that rigorous mathematical proofs give us results
with complete reliability, but... in the limit t→∞ only. So many times it occurred
that the falseness of proofs of important results (or even of the results themselves)
has been detected only years or even decades later. I heard that about 30% of
the theorems published in journals like “Comptes Rendus” or “Doklady Akademii
Nauk SSSR” turn out to be wrong.

It seems obvious that the most fundamental results supporting a great deal in
mathematics should be justified absolutely rigorously. Otherwise, very quickly, the
house-of-cards effect will convert our reasoning into taking shots in the dark.

I admit that, in future, the rigorous justifications of results within computers
such that their verification is also accessible for computers only will play an essential
role, for example, in structural calculations in extremely important situations when
human lives depend crucially on the work of the device. However, mathematics
has its “human side”. It is notable that, recently, this was a sufficient reason for
increasing the NSF grants for mathematicians.

Going back to our problem, note that the highest chances to its resolution are
connected with asymptotic methods and methods of bifurcation theory. In partic-
ular, when investigating intersections of bifurcations in the Couette–Taylor prob-
lem (viscous flow between rigid rotating cylinders), the Navier–Stokes system is
reduced to amplitude systems on the central manifold ([39], [40]). I performed ex-
tensive computer experiments with these amplitude systems and found homoclinic
bifurcations, doubling cascades of limit cycles, resonance breaking up of tori, and,
probably, other transitions leading to the creation of various chaotic regimes. The
original problem for the Navier–Stokes equations is reduced to the investigation of
a system of ordinary differential equations of comparatively small order (the sixth
or eighth, and, after the further reduction, even of fourth and, respectively, fifth
order).

Now, it is just the moment to recall that there are fairly big gaps even in the
theory of ordinary differential equations. For instance, Smale [1] states the problem
which, in a somewhat free exposition, sounds as follows:

“Prove that there exists the Lorenz attractor in the Lorenz system.”
In fact, up to now the experimental observations of the Lorenz attractor and

the general existence theorems are not united: nobody has examined the fulfilment
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of the general conditions for the special Lorenz system. I expect that the further
development of asymptotic methods will enable us to resolve both this Smale’s
problem and our Problem 10, say, for the Couette–Taylor problem. That is true, in
the former case, the analysis of the reduced system should be supplemented with
a proof that the found attractors sustain the addition of (initially removed) higher
order terms of the power series. This technical problem seems quite surmount-
able, though we should be ready to see that some of the observed attractors will
disappear.

It is not so difficult to find other situations in fluid dynamics displaying different
degenerated bifurcations and predisposed to the appearance of strange attractors
and chaotic regimes.

Of course, various limiting cases, first of all the case of vanishing viscosity, suggest
us different ways of searching for chaotic flow regimes.

8. Asymptotics of vanishing viscosity and turbulence

It cannot be even doubted that the problem of fluid motion at a very low viscosity
(i. e., at very large Reynolds numbers) is the central one in hydrodynamics. All the
problems discussed above are its more or less essential parts.

Problem 11a. Prove (or disprove) that, as ν → 0, a solution to the Navier–Stokes
system in a bounded domain D ⊂ Rm with fixed rigid boundary (v|∂D = 0) and
assigned initial velocity field (v|t=0 = v0(x)) approaches the solution to the Euler
equations with the same initial condition and boundary condition (vn|∂D = 0).

Assume that the data of the problem, namely, ∂D and v0, and the exterior mass
force (if it is present) are C∞-smooth.

Of course, it should be specified what kind of passage to the limit is in use
here. Is this the uniform convergence on an arbitrary interior subdomain? Or the
convergence in mean, in the norm Lp(D)? Or, maybe, in some measure?.. So far
it is hard to state any reasonable conjecture regarding this matter.

The main difficulty here is related to the presence of a rigid wall. Even in the two-
dimensional case, where we have strong existence theorems for the Navier–Stokes
equations as well as for the Euler equations, the situation is completely unclear. If
there is no boundary, say, in the case of spatially-periodic flows (equations on the
torus T 2), or if the boundary conditions are “soft” (vn|∂D = 0, ∇×v|∂D = 0), then
everything is fine [41]: the passage to the limit as ν → 0 is justified by using the
integral estimates of vorticity.

The other complicated case is when the initial velocity field has discontinuities
on some curves. The case of a weak discontinuity, when the velocity and hence
the pressure are continuous and only a vorticity jump takes place, can be analyzed
fairly well. The point is that, in a fluid without a boundary, when the initial
conditions are smooth, there are no boundary layers at all, and in the case of a
weak discontinuity or “soft” boundary conditions, the boundary layer equations
are linear and admit an explicit solution. It is also very important that we know
in advance where this boundary layer is formed, along the whole boundary (in the
case of soft boundary conditions) or along the whole weak discontinuity curve. On
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curves of strong discontinuity and on rigid walls, the boundary layers are described
by the Prandtl equations, which are nonlinear and cannot describe flow near the
whole rigid boundary or the whole curve of strong discontinuity. The fundamental
obstacle here is the separation of a boundary layer.

Let me notice that, on a fluid free boundary the boundary layer is also weak
and linear. (See [43], [44] on the results of V. A. Batishchev, L. S. Srubshchik, and
V. V. Pukhnachev.) However, we are still far from a rigorous theory because of the
fundamental difficulties related to the existence theorems.

Problem 11b. Determine the limit of a stationary solution to the Navier–Stokes
system as ν → 0. In particular, find the asymptotics of the stationary flow of a
viscous fluid past a rigid body.

In addition to the difficulties related to separation of the boundary layer, in sta-
tionary (and periodic in t) problems we encounter another serious difficulty related
to the determination of the limiting flow regime. The stationary Euler equations
have infinitely many stationary solutions, and the question is which of them is the
limiting one for the prescribed initial conditions. Things get even more complicated
since we do not know beforehand the smoothness degree of this limiting stationary
regime. If it is discontinuous, the location and nature of discontinuities also have
to be determined.

Furthermore, the question on the stability of these stationary regimes naturally
arises. They are most likely unstable at large Reynolds numbers. However, fluid-
dynamicists used to assume optimistically that the asymptotics is still valid for
those moderate Reynolds number, at which the stability is preserved. One can say
in addition that the self-oscillatory regimes arising at slightly supercritical Reynolds
numbers remain so close to the stationary flow that the integral characteristics, say
the resistance force, differ very little from their stationary values.

Problem 11c. Determine the average velocity field in the turbulence developed as
ν → 0 (Reynolds number R→∞) and calculate the correlations

〈v(x′, t)⊗ v(x′′, t)〉,
i. e., the average values of all possible products of the velocity field components at
the prescribed time t in the points x′ and x′′ of the flow domain. Determine also
the correlation functions corresponding to distinct times t′ and t′′,

〈v(x′, t′)⊗ v(x′′, t′′)〉.

A huge amount of literature is devoted to this problem [46] (see also the re-
cent survey [47]). However, all existing turbulence theories without exception are
based on hydrodynamics equations only to some, rather small, extent. In any case,
all of them include some hypotheses that are not derived from the Navier–Stokes
equations and may even contradict them. It is worth noticing that some of these
theories predict the average velocity field quite well. For instance, it is hardly an
accidental coincidence that the average profile of turbulent Couette flow in a chan-
nel calculated in [49] is the same as the one obtained experimentally. However, I
suppose, no theory manages to predict more complicated flow characteristics, be-
ginning with second-order correlation functions, not to mention the higher orders.
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I do not have a sufficiently clear answer to the inevitably arising question on the
exact type of averaging that we should bear in mind while stating Problem 11c.
The most common ones are averaging with respect to time and with respect to
an invariant measure on the phase space of the system. In the case of ergodicity,
these two types of averaging are the same. While pressing for theoretical results to
coincide with experimental data, we shall probably need to take into account that
a measuring instrument makes some kind of spatial averaging over a small region.

However, against all the odds, I believe that the consecutive theory of developed
turbulence, which describes flows with very low viscosity, can and will be built. It
is not inconceivable that this theory will bifurcate into several branches. Probably,
we will have to describe differently turbulent flows in pipes, turbulent convective
flows, Couette–Taylor flows, turbulent flows past bodies, etc. That is true, the lack
of a general theory leads to much more branching. Almost every flow needs to
be considered separately, which requires introducing new ad hoc hypotheses every
time. So far, the problem is to construct the asymptotics for at least one particular
case.

Sometimes experiments provide us with so beautiful and clear results that it
is a shame on theorists that they cannot interpret them. For instance, for the
Couette–Taylor flow between two cylinders (when the exterior cylinder is fixed),
Taylor obtained (1923) the expression vθ = c

r for the azimuthal velocity, which is
valid everywhere except narrow boundary layers (see [48]). It is quite remarkable
that Taylor’s vortices, which have lost their stability long ago, come alive once
again for very large Reynolds numbers. Apparently, they survive (stay stable)
for arbitrary large Reynolds numbers. An excellent survey on turbulent Taylor
vortices is presented in [45]. A large number of simple and explicit relations has
been also discovered in experiments on Bénard’s convection in a horizontal fluid
layer. I believe that the problem of rigorous mathematical interpretation of these
phenomena and patterns is not hopeless.

There is no reason to expect uniqueness in Problems 11b and 11c. It is quite
possible that there exist several stationary regimes having different asymptotical
behavior at vanishing viscosity. In fact, this is the case for the Couette flow between
two rigid spheres, as well as for Karman’s flow between rotating planes. There exist
some other turbulent regimes along with Taylor’s turbulent vortices; moreover, the
former themselves are not uniquely determined under the given boundary conditions
(their axial wave numbers vary).

In conclusion of this section, I would like to emphasize that it was the developed
turbulence, at the limit of vanishing viscosity, that we discussed here. Ideally,
the transition theory for moderate Reynolds numbers must describe all possible
types of flow regimes and the conditions of their births and deaths while moving
along parameters, and it should also provide us with methods for computing them.
It seems impossible to predict without particular calculations what sequence of
transitions will be realized in a prescribed situation. Rather, the theory must teach
researchers the rules according to which flow regimes change and methods for the
calculation of various regimes. Of course, it is very important to learn how to
formulate right questions and to point out the quantities that need to be calculated
first of all. One would say that this theory will more resemble traffic regulations
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than a train schedule. Although, I suppose, we have good chances that asymptotic
methods will enable us to predict even transition sequences in various limiting cases.
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for their invaluable help in translating of this paper into English.

I am greatful to the reviewer for the suggestion to include the interesting modern
books [50]–[52] into the list of references. Meanwhile one should remember that
nothing can substitute for reading of pioneers — such authors as Lyapunov, Leray,
and Hopf.

Let me conclude this paper with some small edification for a young researcher
who intends to start solving one or another of the problems discussed here. All
fore-quoted authors (and the present author is, of course, not an exception) have
never resolved these fundamental problems. Therefore one should study their works
with care not to go a hopeless way.
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