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HEAT EQUATION

Ot — Au = 0.

Fudan University PDEs



HEAT EQUATION

Ou— Au=0.

It's a parabolic equation. Very interesting: between elliptic and
hyperbolic equations.
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HEAT EQUATION

Ou — Au = 0.

It's a parabolic equation. Very interesting: between elliptic and

hyperbolic equations.
Roughly speaking: basic properties of elliptic equations hold for
the parabolic equations in more subtle and sometimes more

complicated forms.
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WEAK MAXIMUM PRINCIPLE for the LAPLACE’s EQUATION

Fudan University PDEs



STRONG MAXIMUM PRINCIPLE for the LAPLACE’s EQUATION
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MAXIMUM PRINCIPLE for the HEAT EQUATION

t

Let 2 — bounded open set in R” and T > 0, then

Qr = (0, T] X Q, I'r= 8/QT = QT \ QTa

Iy = <{O} X Q) U <[0, T] x 89).
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MAXIMUM PRINCIPLE for the HEAT EQUATION

Let 2 — bounded open set in R” and T > 0, then
QT = (0, T] X Q, FT = 8’QT = QT \ QT,

Ly = ({0} X Q> u ([0, T] x 89).

we CQ)NCQ),  u-Au=0 = max u= max u
(tx)€Qr (tx)el'r
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MAXIMUM PRINCIPLE for the HEAT EQUATION

t

Let Q@ — bounded open setin R” and T > 0, then
QT = (O, T] X Q, FT = a/QT = QT \ QT,

Ty = ({0} x Q> U <[0, 7] x ag).

ue C(Qr)NC(Qr),  Ou—Au=0 = max u= max u
(1.x)eQr (tx)el'r
min yu= min u
(t,X)EQr (tx)el'r
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HARNACK’s INEQUALITY for HEAT EQUATION
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HARNACK'’s INEQUALITY for HEAT EQUATION

C. G. Axel von Harnack
(1851-1888)

o = = = Qe
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HARNACK'’s INEQUALITY for HEAT EQUATION

Theorem 1. Let u > 0 be a smooth solution to the heat equation
in (0,T] x Bag. Thenforany 0 <1, <1, <T,x,y € Bg the
inequality

|X—y\2 t)—1

t n
u(ty,x) < u(tz,y) <t2> PECE AR

1

holds, where ¢ = ¢(n).
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HARNACK’s INEQUALITY for HEAT EQUATION

Denote Qr = (—R?,0] x Bg — “parabolic ball”.
. Let u > 0 be a smooth solution to the heat equation
in Org. Then

max u<C, min u
(t,x)e(—3R%,—2R?)x Bg (t,x)€(—R2,0) x Bg

holds, where C, = Ci(n).

TR " R
" L -
* &
|u.;:|t"1 R
- 3R
* -
4R
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Suppose u > 0 is continuous in [0, T] x Bag. Put
f(t,x) = Inu(t,x). Then Vf = ¥ Suppose we can prove:
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Suppose u > 0 is continuous in [0, T] x Bag. Put
f(t,x) = Inu(t,x). Then Vf = ¥ Suppose we can prove:

P 1 2 n C
7()Lf§7§‘vf| P (%)
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Suppose u > 0 is continuous in [0, T] x Byg. Put
f(t,x) = Inu(t,x). Then Vf = ¥ Suppose we can prove:

1 n c
—Of < —=|VfP+ =+ —
f<—5IVIP+ 2+ (*)
Let0 <t < <Tandux,y € Bg. Denote

L(s) = s(t1,x) + (1 = 5)(t2,)

(the linear segment joining these two points). Then
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Suppose u > 0in (0, 7] x Byg. Put f(¢,x) = Inu(t,x). Then
Vf = Y. Suppose we can prove:

~of < VP4 25 (+)
Let0 <t <1 <Tandux,yc Bg. Denote

L(s) = s(t1,x) + (1 = 5) (12, )

(the linear segment joining these two points). Then
n ;((tlzl,;c) =f(t,x) —f(t2,y) =

/I c(zjs(f@(s»)ds:/] (L6 (=) + 406 - 1~ 1))
0 0
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Suppose u > 0in (0, 7] x Bag. Put f(¢,x) = Inu(z,x). Then
Vf = Y. Suppose we can prove:
—0f < —f|Vf|2 i 2 2 ()
LetO <t < <Tandx,y € Bg. Denote
L(S) = S(thx) + (1 - S)(t27y)

(the linear segment joining these two points). Then
In 205 = f(01,x) — f(12,y) =

\)

1 1
= [ S oo (Vo) -3 +osw)- (- )as
0 0

1
() n c
< /(Vf(L(s))-(x—y)Hm—n)[—;IVfIZ(L(s))+m+(1_%+m]>ds'
0
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1 n c
< [ sy | SR+ s
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We have

1

u(ty, x) 1 n c
um)sO/(Vf<L<s>>-<x—y>+<rz—n> SR b o

In

By Cauchy inequality ab < g + # we get

h — 1

Jx—yl <
VAl =l < 2

2
V2 + lx — _
A\ 61
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We have

1

u(ty, x) 1 n c
um)sO/(Vf<L<s>>-<x—y>+<rz—n> SR b o

In

By Cauchy inequality ab < g + # we get

_ 2
2P < k)]

VL b=yl = STt
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We have

1
SO/(Vf(L(s))-(x—y)+(tz—t1) _%’vf‘z(l‘(s))"FL-i- ¢ )ds

u(ty, x)

In
u(t,y)

Sl1+(1—s)t2 R?

By Cauchy inequality ab < % + # we get

h—1H
2

e —yf?
vi? < 22
|Vf] <31

Putting the last inequality into the first formula, we obtain

V|- Jx =yl =

1
u(ty, x) x — y[? / n h—1
In < +n(tr—t —  ds+c
u(ta,y) = 2(r —t1) (2= 1) sti+ (1 —9s)n R?
0
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We have

1

u(ty, x) 1 n ¢
i) O/(Vf(L(S))-(x—y)+(tz—f1) SRR+ )

By Cauchy inequality ab < g + # we get

e — P
- 2(t2 — [1)

Putting the last inequality into the first formula, we obtain

V|- Jx =yl =

1

u(ty, x) \x—yl2 / n—1
1 < n(ty — d +
nu(tz,y) - 2(2‘2 —l‘l 2 i l—s sTe R?
0
x — y|? 15) h—1n
=———+nln—=-+c¢ .
2(1‘2 —l‘l) + I3 R?
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We have

lnu(tl,x)
u(tz,y)

1

< O/<Vf(L(S))'(x—y)+(tz—t1) RO r——

sti+(1—s)r,  R?

By Cauchy inequality ab < % + # we get

e —y?
- 2(t2 — ll)

Putting the last inequality into the first formula, we obtain

V|- Jx =yl =

1

u(ty, x) \X—Y|2 / h—1
1 < n(ty — 1) ds—|—
nu(tz,y) - 2(1‘2 —tl 2 : st + l—S ¢ R?
0
|X—)’|2 15) n—n
S
2(t2—t1)+nnt1+c 72

So we have finished the proof!  [J.
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We have

lnu(tl,x)
u(tz,y)

1

< O/<Vf(L(S))'(x—y)+(tz—t1) RO r——

sti+(1—s)r,  R?

By Cauchy inequality ab < % + # we get

e —y?
- 2(t2 — ll)

Putting the last inequality into the first formula, we obtain

V|- Jx =yl =

1

u(ty, x) \X—Y|2 / h—1
In < n(ty — 1) ds
w(ny) = 26—y T [T l—s TR
0
|X—)’|2 15} h—1
S 4 In 2
2(t2—t1)+nnt1+c 72

So we have finished the proof! Not yet,really:)
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It remains us to prove the used inequality

—Oof < wwf\z +2 o+ ﬁ in (0, 7] x Bg (%)

if u > 0 is a solution to the heat equation in [0, 7] x Bog,
f=Inu.
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Put F = t(|Vf]* — 20,f). We would like to estimate 9,F — AF
and then to estimate maximum of F. This is a very close to the
“maximum principle for the heat equations”, but this is a rather
long way.
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Put F = ¢(|Vf]* — 20f). From f = Inu, du = Au we have

of = Af + [VfI,
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Put F = 1(|Vf]> — 20f). From f = Inu, du = Au we have
af = Af + VI,

F 2
af= P o= 5 -
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For any scalar function # one has:

%Ahz = %div(th) = div(hVh) = |Vh|* + hAh.
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For any scalar function 4 one has:

1
EAhz = |Vh|* + hAh.

Applying it for h = |Vg|?, one has

|Ag|?
n

1
SAIVe? = Vgl + (Vg, VAg) > == + (Vg, VAg).
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Recall that F = ¢(|Vf|*> — 20,f).
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Recall that F = (|Vf[> — 29,f). Therefore by (1)

AF = ((A(VIP) - 20(A) = (CIATP +2{VF, VA ~20,(87))
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Recall that F = (|Vf]* — 29,f). Therefore by (1)

AF = ((A(FP) - 20(A1) > (CIATP +2(VF, V) ~20,(87))

Put the previous identity Af = —£ — @ in the above

2t
inequality . Then
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Recall that F = (|Vf|* — 20,f). Therefore by (1)

AF = ((A(VIP)~20(A1) = (CIATP +2{VF, VA ~20,(87))

Put the previous identity Af = —5 — @ in the above

inequality . Then
2

F F
AF > 5t |Vf|2F 2(Vf,VF) — — -+ OF.
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Made the scaling coordinate transformation:

(t,x) — (th, Rx),

then

(t,x) € (0,

,RZ} X Bl.

All previous estimates are invariant under this coordinate
transformation.
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Made the scaling coordinate transformation:

(1,x) — (R*t,Rx),
then
T
(1,x) € (0, ﬁ} X Bj.

All previous estimates are invariant under this coordinate

transformation.
In other words, we can assume without loss of generality, that
R=1.
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R=1.

Now we have a good estimate for F and for 0,F — AF. We can
try to apply maximum principle for F. The problem is, that the
maximum can be attained on the boundary 9B,z = 9B,, where
F is not under our control. We have to find a way somehow to
exclude the boundary.
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R=1.

Let 0 < ¢ < 1 be a C*°-smooth functions such that

( ) 1, «x € By,
px) =
O, |x| ¢Bz.
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R=1.

Let 0 < ¢ < 1 be a C*°-smooth functions such that

( ) 1, x € By,
p(x) =
0, ]x] §éBz.

Put n = ¢>.
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R=1.

(O = A)(nF) = —=An-F = 2(Vn,VF) + n(0; — A)F
2

F* o1 F
cF —2(Vn, VF) — ”<2m + ~|VfI°F — 2(Vf, VF) ~ t).

()

ok
<
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(0 — A)(nF) = —An - F = 2(Vn, VF) +n(0; — A)F

() F2 1 5 F
< ¢F =2(Vi,VE) = ( 5+ ~[VfPF = 2(Vf, VF) - ~
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Let Fo = (nF)(t0,x0) = max  F(t,x). If Fy <0, nothing to
(t,x)€[0,T]x B,

estimate. Suppose Fy > 0. Then 1y > 0 and |xo| < 2, i.e., x¢ is
an interior point of B,. In particular,

OF >0, V(nF) =0, A(nF) <0 at the point (7, xo).

Fudan University PDEs



Let Fo = (nF)(t0,x0) = max  F(t,x). If Fy <0, nothing to
(t,x)€[0,T]x B,

estimate. Suppose Fy > 0. Then 1y > 0 and |xo| < 2, i.e., x¢ iS
an interior point of B,. In particular,

OF >0, V(nF) =0, A(nF) <0 at the point (7, xo),

VF = _Vn -F at the point (79, xo).

Ui
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Therefore,

F? F
0< (B A)(F)(t0,10) < €10 [Vf PP —2(9F, Vi) F 2

Fudan University PDEs



Therefore,

nF? 2 nk
OS(@—A)(UF)(fo,xo)<Cl—ﬁ—*\vf’ nF— 2<Vf7V77>F+*- (5)

By Cauchy inequality,

|2‘V77’

—2(Vf,Vn)F IVf + 2nC*F
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Therefore,

nF? 2 nk
OS(at_A>(77F)(IOaXO)<Cl_ﬁ_"vf’ nF— 2<Vf7V77>F+*- (5)

By Cauchy inequality,
|V77|

—2(Vf,Vn)F < — |ny2 +2nC*F
Putting this inequality into (5) we obtaln
nF*  nF
0<cF ——— 41—
Cc) 2ty + 0 at (l‘(),xO)
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Therefore,

77F2 2 nF
0< (B A)(0F) (10, 10) < 1= 3 [VFPonF-2(VS, Vi) F+ 0 (5

By Cauchy inequality, —2(Vf, Vn)F < z‘—n]nyz‘Vg—fF +2nC?F
Putting this inequality into (5), we obtain

2
nF= nF
0<cF — — + — at (¢ .
<o 2nt0+ o (t0,x0)

In other words, (nF)(ty,x0) < 2n + c3tp.
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In particular,

F <2n+c3tg <2n+c3T in (0,7] x By.
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In particular,

F <2n+c;T in(O,T]xBl.
Using the same technique,

F <2n+c;T in (0,7"] x By.
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In particular,

F <2n+ 3T in (O,T]XBl.
Using the same technique,
F <2n+ T in (0,7] x By.

Since F = t(|Vf|* — 20f) and T’ € (0, T} is arbitrary, we have

2 .
IVF|> — 201 < 7” te; in(0,7] x By
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Step 7.

In particular,

F <2n+cT in (0,T] x By.
Using the same technique,

F <2n+ T in (0,7] x By.

Since F = t(|Vf|> — 20f) and T’ € (0, T is arbitrary, we have

2 .
IVF|> — 20 < 7” +e3  in(0,7] x By.

After the back rescaling, finally we obtain the required estimate
3
R?
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2 .
IVF2 - 20,f < 7” + in (0, 7] x Bg.



Step 7.

In particular,
F <2n+cT in (0,T] x By.
Using the same technique,
F <2n+ 3T in (0,7] x By.
Since F = 1(|Vf|* — 20,f) and T’ € (0, T) is arbitrary, we have

2 .
V2 20 < 7” tes  in(0,7]  By.
After the back rescaling, finally we obtain the required estimate
V> —20,f < 27n+% in (0,7] x Bg.

So, finally we have finished the proof of the Harnack inequality
for the heat equation.
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Step 7.

In particular,
F <2n+cT in (0,T] x By.
Using the same technique,
F <2n+ 3T in (0,7] x By.
Since F = 1(|Vf|* — 20,f) and T’ € (0, T) is arbitrary, we have

2 .
V2 20 < 7” tes  in(0,7]  By.
After the back rescaling, finally we obtain the required estimate
V> —20,f < 27n+% in (0,7] x Bg.

So, finally we have finished the proof of the Harnack inequality
for the heat equation. O
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The homework problems:

1. In the beginning of our proof we assume that u > 0 is a
smooth solution to the heat equation in [0, 7] x Byg. Prove the
same estimate under original assumption, namely, that u > 0 is
a smooth solution to the heat equation in the domain

(0,T) x Byg continuous on (0, T| x Bag.
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The homework problems:

1. In the beginning of our proof we assume that u > 0 is a
smooth solution to the heat equation in [0, 7] x Byg. Prove the
same estimate under original assumption, namely, that u > 0 is
a smooth solution to the heat equation in the domain

(0,T) x Bag continuous on (0, T| x Bag.

2. For any constant a > 1 prove the similar estimate

2 2 2
2 no Cx « .
— ) f < —— S
V" —adf < ==+ 75 <l+ozl> in (0, 7] x Bg

if u > 0 is a solution to the heat equation in (0, 7] x Bz and
f=Inu.
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The homework problems:

1. In the beginning of our proof we assume that u > 0 is a
smooth solution to the heat equation in [0, 7] x Byg. Prove the
same estimate under original assumption, namely, that u > 0 is
a smooth solution to the heat equation in the domain

(0,T) x Bag continuous on (0, 7] x Bag.

2. For any constant o > 1 prove the similar estimate

2 2 2
. o . no cx a .
|Vf|2_(ydt]l<2[+R2<]+G_l) In(O,T]XBR

if u > 0 is a solution to the heat equation in (0, 7] x B,z and
f=Inu.
We have proved this estimate for a = 2.
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The homework problems:

1. In the beginning of our proof we assume that u > 0 is a
smooth solution to the heat equation in [0, 7] x Bag. Prove the
same estimate under original assumption, namely, that u > 0 is
a smooth solution to the heat equation in the domain
(0,T) x Bag continuous on (0, T] x Bag.
2. For any constant a > 1 prove the similar estimate

cx «

, nol 2 2
2 o, _na’  co? :
V> — adf < 5+ <1+a_ ]> in (0, 7] x Bg

if u > 0 is a solution to the heat equation in [0, T] x B,k and
f=Inu.
3. Taking R — +o0 and a — 1, prove that

VP -af <5 in(0.7) xR

if u > 0 is a solution to the heat equation in the strip (0, 7] x R"
and f = Inu.
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The homework problems:

4. Using

VfP-of <5 in(0.T] xR,

prove

Theorem 2. Let u > 0 be a smooth solution to the heat equation
in the strip (0,7] x R". Thenforany 0 <t <5, <T,x,y € R"

the inequality

=y

)\ 2
M(ll,X) S u(t27y) (;) e*=r)

holds.
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The Harnack inequality for general domains

Theorem 3. Let T > 0 and let Q2 C R” be an open set. Then for
any compact subdomain Q' € Q andforany pair0 < <6, <T
there exists a constant C = C(€Y',Q, 11, 1,) such that

sup u(t1,x) < C inf u(t,x)
xeq xeq)/

for any smooth solution u > 0 to the heat equation in
QT = (0, T] x Q.
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The Harnack inequality for general domains

Theorem 3. Let T > 0 and let Q2 C R” be an open set. Then for
any compact subdomain Q' € Q andforany pair0 <t <t <T
there exists a constant C = C(€Y',Q, 11, 1,) such that

sup u(t;,x) < C inf u(t,x)
xeq xeQ

for any smooth solution u > 0 to the heat equation in
QT = (0, T] x €.
Take

r= min |x—y|.
x€Q yed)
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The Harnack inequality for general domains

Theorem 3. Let T > 0 and let Q@ C R” be an open set. Then for
any compact subdomain Q' € Q andforany pair0 <t <16, <T
there exists a constant C = C(€Y',Q, 11, 1) such that

sup u(t1,x) < C inf u(f,x)
xeQy xeq

for any smooth solution u > 0 to the heat equation in
QT = (0, T] x Q.

Take |
r=—- min |x—y|.
2 xey yeoQ

By our assumptions, the closure ) is a compact subset of 2,
sor>0.
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The Harnack inequality for general domains

Theorem 3. Let T > 0 and let Q@ C R” be an open set. Then for
any compact subdomain Q' € Q andforany pair0 <t <6, <T
there exists a constant C = C(€Y',Q, 11, 1) such that

sup u(t1,x) < C inf u(t,x)
xeY xeqY

for any smooth solution u > 0 to the heat equation in
QT = (0, T] x Q.

Take |
r=- min |x—y|.
2 xey yeoQ

By our assumptions, the closure ' is a compact subset of €,
sor>0.Fix0<t <t <Tandx,x €.
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Taker=3 min |x—y>0.Fix0<# <, <Tand
x€Q yedd

x1,x2 € €. Since the set (V' is connected and compact, there
exists a finite r-net yo, v1,...,yy € ' such that yo = x1, yy = x,

N

Q,CUBr(yi), |y,~—y,~+1\<r, iZO,l,...,N—l.
i=0
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Take r=3 min |x—y|[>0. Then Iyg,y1,...,yn € Q' such that
x€QY yedd

N
Yo=xi, w=x3, @clJBG), li—yinl<r, i=0,1,...,N—L
i=0

By our choosing Qf r, By (y;) c Qfori=0,1,...,N—1.So
putting s; = #; + 5 (2 — t1) and applying the previous Harnack
estimate for balls, we obtain
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Take r:% min |x—y[>0. Then Jyg,y1,...,yn € & such that

x€Q yed)
N
Yo = X1, YN = X2, Q,CUBr(yi), |)’i—)’i+1|<’"> lzoalaaN_l
i=0

By our choosing of r, By, (y;)) c Qfori=0,1,...,N—1.So
putting s; = 1, + 4 (-2 — 1) and applying the previous Harnack
estimate for balls, we obtain u(s;,y;) < Ciu(sit1,yi+1),
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Take r=1 min |x—y|[>0. Then Jyg,y1,...,yn € Q' such that
x€QY yedN

N
Yo = X1, YN = X2, Q/CUBr(yi), lyi—yip1| <r, i=0,1,...,N—1.
i=0

By our choosing Qf r, By (y;) cQfori=0,1,...,N—1.So
putting s; = #; + 5 (2 — t1) and applying the previous Harnack
estimate for balls, we obtain u(s;,y;) < Ciu(sit1,yi+1), where
Sig1 —Si

2

2
S __r
C = (lsi.])nez“iﬂﬂ'i) te
l
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Take r=1 min |x—y|[>0. Then 3yg,y1,...,yn € Q' such that
xeQY yedd

N
Yo = X1, YN = X2, Q,CUBr(y,‘), |yi—yi+1|<r, iZO,l,...,N—l.
i=0

By our choosing of r, By, (y;) c Qfori=0,1,...,N—1.So
putting s; = #; + 5 (2 — t1) and applying the previous Harnack
estimate for balls, we obtain u(s;, y;) < Ciu(sit1,yi+1), where
2 )
C = (Siil)nez“iﬂ—ff)-ﬂ +r12
Si

Since s, —s;="5", it's easy to see that C; < C=C(11,1,, %, ).
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Take r=% min [x—y|>0. Then 3yo,y1,...,yn € & such that

x€Q yedd
N
Yo = X1, YN = X2, Q/CUBr(yi)u |)7i—yi+1|<”7 l:O,l,,N—l
i=0

By our choosing Qf r, By (yi) c Qfori=0,1,...,N—1.So

putting s; = #; + 5 (2 — t1) and applying the previous Harnack

estimate for balls, we obtain u(s;,y;) < Ciu(si+1,yi+1), where
2 Siq1=5i

S
C; = (lsi'])nez(é'iﬂﬂ'i) 2
i

Since s, —s;="23", it's easy to see that C; < C=C(11,1,, %, Q).

Therefore, u(si, yi) < Cu(sis1,yit1),
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Take r=% min [x—y|>0. Then 3yo,y1,...,yn € & such that

x€Q yedd
N
Yo = X1, YN = X2, Q/CUBr(yi)u |)7i—yi+1|<”7 l:O,l,,N—l
i=0

By our choosing Qf r, By (yi) c Qfori=0,1,...,N—1.So

putting s; = #; + 5 (2 — t1) and applying the previous Harnack

estimate for balls, we obtain u(s;,y;) < Ciu(si+1,yi+1), where
2 Siq1=5i

S
C; = (lsi'])nez(é'iﬂﬂ'i) 2
i

Since s, —s;="23", it's easy to see that C; < C=C(11,1,, %, Q).

Therefore, u(s;,y;) < Cu(si+1,yi11), and finally
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Take r=1 min |x—y[>0. Then Iyg,y1,...,yn € Q' such that
x€QY yedN
N
yo=x1i, w=x3, @clJBG), li—yinl<r i=0,1,...,N—1
i=0

By our choosing of r, By, (y;) Cc Qfori=0,1,...,N—1.So
putting s; = #; + 5 (2 — t1) and applying the previous Harnack
estimate for balls, we obtain u(s;, y;) < Ciu(siy1,yi+1), where
2 S; —5;
C = (Sii)nez“iﬂ—m'i_c .
Si
Since s, —si="23", it's easy to see that C; < C=C(t1,1r,V,Q).
Therefore, u(s;,yi;) < Cu(si+1,yit+1), and finally

u(ty, x1) = u(s0,y0) < (C)Nu(sn, yn) = (C)Nu(tz, x).

Fudan University PDEs



Take r=1 min |x—y[>0. Then 3yg,y1,...,yn € Q' such that
x€QY yedN

N
Yo = X1, YN = X2, Q,CUBF(yi)v |yi—yi+1|<r7 l:()alavN_l
i=0
By our choosing Qf r, By (y;) c Qfori=0,1,...,N—1.So
putting s; = 1 + § (2 — t1) and applying the previous Harnack
estimate for balls, we obtain u(s;,y;) < Ciu(sit1,yi+1), where
2 I

C = (Si;1 )ne2(»?i+1*~w) 2
i

Since s;1—s;=2% ” , it's easy to see that C; < C=C(t1,1,, Y, Q).
Therefore, u(s,,y,) < Cu(siy1,yi+1), and finally

u(ty, x1) = u(s0,y0) < (C)Nu(sn, yn) = (C)Nu(tz, x).

So we have finished the proof! [
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The strict maximum principle for the heat equation

Theorem 4. Let T > 0, 2 C R" be an open set, and let u be a
solution to the heat equation in Q7 = (0, 7] x Q.
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The strict maximum principle for the heat equation

Theorem 4. Let T > 0, 2 C R" be an open set, and let u be a
solution to the heat equation in Qr = (0, T] x Q. Suppose there
exists a point (7, xp) € Q7 such that

u(ty, xp) = maxu.
Qr
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The strict maximum principle for the heat equation

Theorem 4. Let T > 0, 2 C R" be an open set, and let u be a
solution to the heat equation in Q = (0, 7] x Q. Suppose there
exists a point (79, x0) € Qr such that

u(ty, xp) = maxu.
Qr

Then u = const in Q,, = (0, 7] x Q.
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The strict maximum principle for the heat equation

Theorem 4. Let T > 0, 2 C R" be an open set, and let u be a
solution to the heat equation in Q = (0, 7] x Q. Suppose there
exists a point (7, x0) € Qr such that

u(tp, xo) = maxu.
Qr
Then u = const in ©,, = (0, 7] x Q.

Fix e > 0, t; < 1y, and take arbitrary compact subdomain
Qe
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The strict maximum principle for the heat equation

Theorem 4. Let T > 0, 2 C R" be an open set, and let u be a
solution to the heat equation in Qr = (0, T] x Q. Suppose there
exists a point (7, xp) € Q7 such that

u(ty, x0) = max .
Then u = const in €, = (0, 7p] x €.
Fixe > 0, t; < tp, and take arbitrary compact subdomain
Q' € Q. Put
ve(t,x) = u(ty,x0) — u(t,x) + €.
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The strict maximum principle for the heat equation

Theorem 4. Let T > 0, 2 C R" be an open set, and let u be a
solution to the heat equation in Qr = (0, T] x Q. Suppose there
exists a point (7, xp) € Q7 such that

u(ty, xp) = maxu.
Qr

Then u = const in £, = (0, 7p] x €.
Fix e > 0, t; < 1y, and take arbitrary compact subdomain
Q' € Q. Put
ve(t,x) = u(ty, xo) — u(t,x) + €.

Then by constructionv. > e >0 in Q7 and v, is a solution to
the heat equations as well.
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Fix e > 0, t; < 9, and take arbitrary compact subdomain

e Q. Put
ve(t,x) = u(ty, xo) — u(t,x) + €.

Then by construction v. > 0 in Q7 and v, is a solution to the
heat equations as well.
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Fixe > 0, 1; < 19, and take arbitrary compact subdomain
Q' € Q. Put
ve(t,x) = u(to, x0) — u(t,x) + €.

Then by construction v. > 0 in Q7 and v, is a solution to the
heat equations as well. By Harnack inequality,

sup ve(1,x) < Cve(tg, x9) = Ce
xeQ

for some C = C(t1,19, 2, Q).
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Fix e > 0, 1, < 1y, and take arbitrary compact subdomain
Q' e Q. Put
VE(Z‘,X> = M([O,X()) - M([,X) te.

Then by construction v. >0 in Q7 and v, is a solution to the
heat equations as well. By Harnack inequality,

sup ve(t1,x) < Cve(t9,x0) = Ce
xe

for some C = C(1, 19,2, Q). Taking £ — 0, we get

sup (u(to,xo) — u(tl,x)) <0.
xeQ/
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Fixe > 0, t; < 19, and take arbitrary compact subdomain
Q' € Q. Put

ve(t,x) = u(ty, x0) — u(t,x) + €.

Then by construction v. > 0 in Q7 and v, is a solution to the
heat equations as well. By Harnack inequality,

sup ve(1,x) < Cve(tg, x9) = Ce
xeQ

for some C = C(t1,19, ', Q). Taking € — 0, we get
sup (u(to, x0) — u(r,x)) < 0.

xeY

In other words,
<O < u(to,x0) — u(ty,x) < O><:>
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Fix e > 0, t; < 19, and take arbitrary compact subdomain
Q' € Q. Put

ve(t,x) = u(ty, x0) — u(t,x) + €.

Then by construction v. > 0 in Q7 and v, is a solution to the
heat equations as well. By Harnack inequality,

sup ve(t1,x) < Cve(tg, x9) = Ce
xeQ

for some C = C(t1,19, ', Q). Taking £ — 0, we get
sup (u(to,xo) — u(tl,x)) <0.

xeY

In other words,
(0 < u(ty,x0)—u(tr,x) < 0><’;>(u(t1,x) = u(ty,x0) Vxe€Q vy < t0>
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Fix e > 0, 1, < 1y, and take arbitrary compact subdomain
Q' € Q. Put
ve(t,x) = u(ty,x0) — u(t,x) + .

Then by construction v. > 0 in Q7 and v, is a solution to the
heat equations as well. By Harnack inequality,

sup ve(t1,x) < Cve(tg, x9) = Ce
xeQ

for some C = C(t1,19, ', Q). Taking £ — 0, we get

sup (u(to,xo) — u(n,x)) <0.
xeQ/

In other words,
<0 < u(ty, xo)—u(ty,x) < 0)¢><u(t1,x) =u(ty,xo) Yxe€Q vy < t())

The proof of strict maximum principle is finished. . [J
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