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Welcome to PDEs!
欢迎来到偏微分方程讲座课程！

Prof. Mikhail Korobkov
Office: 2117, East Guanghua Tower.
E-mail: mikhail-korob@yandex.ru
Class materials will be available at:
http://phys.nsu.ru/korobkov/Fudan_2022_PDEs/

Fudan University PDEs



Welcome to PDEs!

班组长叫什么名字？请在聊天中回答。请写下您的姓名和您的电
子邮件地址.
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HEAT EQUATION

∂tu −∆u = 0.
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HEAT EQUATION

∂tu −∆u = 0.

It’s a parabolic equation. Very interesting: between elliptic and
hyperbolic equations.
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HEAT EQUATION

∂tu −∆u = 0.

It’s a parabolic equation. Very interesting: between elliptic and
hyperbolic equations.
Roughly speaking: basic properties of elliptic equations hold for
the parabolic equations in more subtle and sometimes more
complicated forms.
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WEAK MAXIMUM PRINCIPLE for the LAPLACE’s EQUATION
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STRONG MAXIMUM PRINCIPLE for the LAPLACE’s EQUATION
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MAXIMUM PRINCIPLE for the HEAT EQUATION

Let Ω — bounded open set in Rn and T > 0, then

ΩT = (0,T]× Ω, ΓT = ∂′ΩT = Ω̄T \ ΩT ,

ΓT =

(
{0} × Ω̄

)
∪
(
[0,T]× ∂Ω

)
.
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MAXIMUM PRINCIPLE for the HEAT EQUATION

Let Ω — bounded open set in Rn and T > 0, then

ΩT = (0,T]× Ω, ΓT = ∂′ΩT = Ω̄T \ ΩT ,

ΓT =

(
{0} × Ω̄

)
∪
(
[0,T]× ∂Ω

)
.

u ∈ C1,2(ΩT) ∩ C(Ω̄T), ∂tu −∆u = 0 ⇒ max
(t,x)∈Ω̄T

u = max
(t,x)∈ΓT

u
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MAXIMUM PRINCIPLE for the HEAT EQUATION

Let Ω — bounded open set in Rn and T > 0, then

ΩT = (0,T]× Ω, ΓT = ∂′ΩT = Ω̄T \ ΩT ,

ΓT =

(
{0} × Ω̄

)
∪
(
[0,T]× ∂Ω

)
.

u ∈ C1,2(ΩT) ∩ C(Ω̄T), ∂tu −∆u = 0 ⇒ max
(t,x)∈Ω̄T

u = max
(t,x)∈ΓT

u

min
(t,x)∈Ω̄T

u = min
(t,x)∈ΓT

u
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HARNACK’s INEQUALITY for HEAT EQUATION
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HARNACK’s INEQUALITY for HEAT EQUATION
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HARNACK’s INEQUALITY for HEAT EQUATION

Theorem 1. Let u ≥ 0 be a smooth solution to the heat equation
in (0,T]× B2R. Then for any 0 < t1 < t2 ≤ T, x, y ∈ BR the
inequality

u(t1, x) ≤ u(t2, y)
(

t2
t1

)n

e
|x−y|2

2(t2−t1)
+c t2−t1

R2

holds, where c = c(n).
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HARNACK’s INEQUALITY for HEAT EQUATION

Denote QR = (−R2, 0]× BR — “parabolic ball”.
Corollary 2. Let u ≥ 0 be a smooth solution to the heat equation
in Q2R. Then

max
(t,x)∈(−3R2,−2R2)×BR

u ≤ C∗ min
(t,x)∈(−R2,0)×BR

u

holds, where C∗ = C∗(n).
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Proof:

Suppose u > 0 is continuous in [0,T]× B2R. Put
f (t, x) = ln u(t, x). Then ∇f = ∇u

u . Suppose we can prove:
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Proof:

Suppose u > 0 is continuous in [0,T]× B2R. Put
f (t, x) = ln u(t, x). Then ∇f = ∇u

u . Suppose we can prove:

−∂tf ≤ −1
2
|∇f |2 + n

t
+

c
R2 (∗)
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Proof:

Suppose u > 0 is continuous in [0,T]× B2R. Put
f (t, x) = ln u(t, x). Then ∇f = ∇u

u . Suppose we can prove:

−∂tf ≤ −1
2
|∇f |2 + n

t
+

c
R2 (∗)

Let 0 < t1 < t2 ≤ T and x, y ∈ BR. Denote

L(s) = s(t1, x) + (1 − s)(t2, y)

(the linear segment joining these two points). Then
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Proof:

Suppose u > 0 in (0,T]× B2R. Put f (t, x) = ln u(t, x). Then
∇f = ∇u

u . Suppose we can prove:

−∂tf ≤ −1
2
|∇f |2 + n

t
+

c
R2 (∗)

Let 0 < t1 < t2 ≤ T and x, y ∈ BR. Denote

L(s) = s(t1, x) + (1 − s)(t2, y)

(the linear segment joining these two points). Then
ln u(t1,x

u(t2,y)
= f (t1, x)− f (t2, y) =

1∫
0

d
ds
(f (L(s)))ds=

1∫
0

(
∇f (L(s)) · (x − y) + ∂tf (L(s)) · (t1 − t2)

)
ds
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Proof:
Suppose u > 0 in (0,T]× B2R. Put f (t, x) = ln u(t, x). Then
∇f = ∇u

u . Suppose we can prove:

−∂tf ≤ −1
2
|∇f |2 + n

t
+

c
R2 (∗)

Let 0 < t1 < t2 ≤ T and x, y ∈ BR. Denote

L(s) = s(t1, x) + (1 − s)(t2, y)

(the linear segment joining these two points). Then
ln u(t1,x

u(t2,y)
= f (t1, x)− f (t2, y) =

=

1∫
0

d
ds
(f (L(s)))ds=

1∫
0

(
∇f (L(s)) · (x− y)+ ∂tf (L(s)) · (t1 − t2)

)
ds

(∗)
≤

1∫
0

(
∇f (L(s))·(x−y)+(t2−t1)

[
−1

2
|∇f |2(L(s))+ n

st1 + (1 − s)t2
+

c
R2

])
ds.
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We have

ln
u(t1, x)
u(t2, y)

≤
1∫

0

(
∇f (L(s))·(x−y)+(t2−t1)

[
−1

2
|∇f |2(L(s))+ n

st1+(1−s)t2
+

c
R2

])
ds
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We have

ln
u(t1, x)
u(t2, y)

≤
1∫

0

(
∇f (L(s))·(x−y)+(t2−t1)

[
−1

2
|∇f |2(L(s))+ n

st1+(1−s)t2
+

c
R2

])
ds

By Cauchy inequality ab ≤ a2

2ε +
εb2

2 we get

|∇f | · |x − y| ≤ t2 − t1
2

|∇f |2 + |x − y|2

2(t2 − t1)
.
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We have

ln
u(t1, x)
u(t2, y)

≤
1∫

0

(
∇f (L(s))·(x−y)+(t2−t1)

[
−1

2
|∇f |2(L(s))+ n

st1+(1−s)t2
+

c
R2

])
ds

By Cauchy inequality ab ≤ a2

2ε +
εb2

2 we get

|∇f | · |x − y| − t2 − t1
2

|∇f |2 ≤ |x − y|2

2(t2 − t1)
.
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We have

ln
u(t1, x)
u(t2, y)

≤
1∫

0

(
∇f (L(s))·(x−y)+(t2−t1)

[
−1

2
|∇f |2(L(s))+ n

st1+(1−s)t2
+

c
R2

])
ds

By Cauchy inequality ab ≤ a2

2ε +
εb2

2 we get

|∇f | · |x − y| − t2 − t1
2

|∇f |2 ≤ |x − y|2

2(t2 − t1)
.

Putting the last inequality into the first formula, we obtain

ln
u(t1, x)
u(t2, y)

≤ |x − y|2

2(t2 − t1)
+ n(t2 − t1)

1∫
0

n
st1 + (1 − s)t2

ds + c
t2 − t1

R2
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We have

ln
u(t1, x)
u(t2, y)

≤
1∫

0

(
∇f (L(s))·(x−y)+(t2−t1)

[
−1

2
|∇f |2(L(s))+ n

st1+(1−s)t2
+

c
R2

])
ds

By Cauchy inequality ab ≤ a2

2ε +
εb2

2 we get

|∇f | · |x − y| − t2 − t1
2

|∇f |2 ≤ |x − y|2

2(t2 − t1)
.

Putting the last inequality into the first formula, we obtain

ln
u(t1, x)
u(t2, y)

≤ |x − y|2

2(t2 − t1)
+ n(t2 − t1)

1∫
0

n
st1 + (1 − s)t2

ds + c
t2 − t1

R2

=
|x − y|2

2(t2 − t1)
+ n ln

t2
t1

+ c
t2 − t1

R2 .
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We have

ln
u(t1, x)
u(t2, y)

≤
1∫

0

(
∇f (L(s))·(x−y)+(t2−t1)

[
−1

2
|∇f |2(L(s))+ n

st1+(1−s)t2
+

c
R2

])
ds

By Cauchy inequality ab ≤ a2

2ε +
εb2

2 we get

|∇f | · |x − y| − t2 − t1
2

|∇f |2 ≤ |x − y|2

2(t2 − t1)
.

Putting the last inequality into the first formula, we obtain

ln
u(t1, x)
u(t2, y)

≤ |x − y|2

2(t2 − t1)
+ n(t2 − t1)

1∫
0

n
st1 + (1 − s)t2

ds + c
t2 − t1

R2

=
|x − y|2

2(t2 − t1)
+ n ln

t2
t1

+ c
t2 − t1

R2 .

So we have finished the proof! .
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We have

ln
u(t1, x)
u(t2, y)

≤
1∫

0

(
∇f (L(s))·(x−y)+(t2−t1)

[
−1

2
|∇f |2(L(s))+ n

st1+(1−s)t2
+

c
R2

])
ds

By Cauchy inequality ab ≤ a2

2ε +
εb2

2 we get

|∇f | · |x − y| − t2 − t1
2

|∇f |2 ≤ |x − y|2

2(t2 − t1)
.

Putting the last inequality into the first formula, we obtain

ln
u(t1, x)
u(t2, y)

≤ |x − y|2

2(t2 − t1)
+ n(t2 − t1)

1∫
0

n
st1 + (1 − s)t2

ds + c
t2 − t1

R2

=
|x − y|2

2(t2 − t1)
+ n ln

t2
t1

+ c
t2 − t1

R2 .

So we have finished the proof! Not yet,really:)
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It remains us to prove the used inequality

−∂tf ≤ −1
2
|∇f |2 + n

t
+

c
R2 in (0,T]× BR (∗)

if u > 0 is a solution to the heat equation in [0,T]× B2R，
f = ln u.
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Step 1.

Put F = t
(
|∇f |2 − 2∂tf

)
. We would like to estimate ∂tF −∆F

and then to estimate maximum of F. This is a very close to the
“maximum principle for the heat equations”, but this is a rather
long way.
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Step 1.

Put F = t
(
|∇f |2 − 2∂tf

)
. From f = ln u, ∂tu = ∆u we have

∂tf = ∆f + |∇f |2,
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Step 1.

Put F = t
(
|∇f |2 − 2∂tf

)
. From f = ln u, ∂tu = ∆u we have

∂tf = ∆f + |∇f |2,

∆f = −|∇f |2 + ∂tf = − F
2t

− |∇f |2

2
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Step 2.

For any scalar function h one has:

1
2
∆h2 =

1
2

div(∇h2) = div(h∇h) = |∇h|2 + h∆h.

Fudan University PDEs



Step 2.

For any scalar function h one has:

1
2
∆h2 = |∇h|2 + h∆h.

Applying it for h = |∇g|2, one has

1
2
∆|∇g|2 = |∇2g|2 + ⟨∇g,∇∆g⟩ ≥ |∆g|2

n
+ ⟨∇g,∇∆g⟩.
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Step 2.

∆|∇f |2 ≥ 2
|∆f |2

n
+ 2⟨∇f ,∇∆f ⟩. (1)
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Step 2.

∆|∇f |2 ≥ 2
|∆f |2

n
+ 2⟨∇f ,∇∆f ⟩. (1)

Step 3. Recall that F = t
(
|∇f |2 − 2∂tf

)
.
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Step 2.

∆|∇f |2 ≥ 2
|∆f |2

n
+ 2⟨∇f ,∇∆f ⟩. (1)

Step 3. Recall that F = t
(
|∇f |2 − 2∂tf

)
. Therefore by (1)

∆F = t
(
∆(|∇f |2)−2∂t(∆f )

)
≥ t

(2
n
|∆f |2+2⟨∇f ,∇∆f ⟩−2∂t(∆f )

)
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Step 2.

∆|∇f |2 ≥ 2
|∆f |2

n
+ 2⟨∇f ,∇∆f ⟩. (1)

Step 3. Recall that F = t
(
|∇f |2 − 2∂tf

)
. Therefore by (1)

∆F = t
(
∆(|∇f |2)−2∂t(∆f )

)
≥ t

(2
n
|∆f |2+2⟨∇f ,∇∆f ⟩−2∂t(∆f )

)
Put the previous identity ∆f = − F

2t −
|∇f |2

2 in the above
inequality . Then
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Step 2.

∆|∇f |2 ≥ 2
|∆f |2

n
+ 2⟨∇f ,∇∆f ⟩. (1)

Step 3. Recall that F = t
(
|∇f |2 − 2∂tf

)
. Therefore by (1)

∆F = t
(
∆(|∇f |2)−2∂t(∆f )

)
≥ t

(2
n
|∆f |2+2⟨∇f ,∇∆f ⟩−2∂t(∆f )

)
Put the previous identity ∆f = − F

2t −
|∇f |2

2 in the above
inequality . Then

∆F ≥ F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t
+ ∂tF.
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Step 4.

∆F ≥ F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t
+ ∂tF.

Made the scaling coordinate transformation:

(t, x) 7→ (R2t,Rx),

then
(t, x) ∈

(
0,

T
R2

]
× B1.

All previous estimates are invariant under this coordinate
transformation.
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Step 4.

∆F ≥ F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t
+ ∂tF.

Made the scaling coordinate transformation:

(t, x) 7→ (R2t,Rx),

then
(t, x) ∈

(
0,

T
R2

]
× B1.

All previous estimates are invariant under this coordinate
transformation.
In other words, we can assume without loss of generality, that
R = 1.
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Step 5.

∆F ≥ F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t
+ ∂tF. (∗∗)

R = 1.
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Step 5.

∆F ≥ F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t
+ ∂tF. (∗∗)

R = 1.

Now we have a good estimate for F and for ∂tF −∆F. We can
try to apply maximum principle for F. The problem is, that the
maximum can be attained on the boundary ∂B2R = ∂B2, where
F is not under our control. We have to find a way somehow to
exclude the boundary.
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Step 5.

∆F ≥ F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t
+ ∂tF. (∗∗)

R = 1.

Let 0 ≤ φ ≤ 1 be a C∞-smooth functions such that

φ(x) =

{
1, x ∈ B1,

0, |x| /∈ B2.
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Step 5.

∆F ≥ F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t
+ ∂tF. (∗∗)

R = 1.

Let 0 ≤ φ ≤ 1 be a C∞-smooth functions such that

φ(x) =

{
1, x ∈ B1,

0, |x| /∈ B2.

Put η = φ2.
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Step 5.

∆F ≥ F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t
+ ∂tF. (∗∗)

R = 1.

(∂t −∆)(ηF) = −∆η · F − 2⟨∇η,∇F⟩+ η(∂t −∆)F

(∗∗)
≤ cF − 2⟨∇η,∇F⟩ − η

(
F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t

)
.
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Step 5.

∆F ≥ F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t
+ ∂tF. (∗∗)

(∂t −∆)(ηF) = −∆η · F − 2⟨∇η,∇F⟩+ η(∂t −∆)F

(∗∗)
≤ cF − 2⟨∇η,∇F⟩ − η

(
F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t

)
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Step 6.

(∂t −∆)(ηF) ≤ cF − 2⟨∇η,∇F⟩ − η

(
F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t

)
. (∗ ∗ ∗)

Let F0 = (ηF)(t0, x0) = max
(t,x)∈[0,T]×B2

F(t, x). If F0 < 0, nothing to

estimate. Suppose F0 > 0. Then t0 > 0 and |x0| < 2, i.e., x0 is
an interior point of B2. In particular,

∂tF ≥ 0, ∇(ηF) = 0, ∆(ηF) ≤ 0 at the point (t0, x0).
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Step 6.

(∂t −∆)(ηF) ≤ cF − 2⟨∇η,∇F⟩ − η

(
F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t

)
. (∗ ∗ ∗)

Let F0 = (ηF)(t0, x0) = max
(t,x)∈[0,T]×B2

F(t, x). If F0 < 0, nothing to

estimate. Suppose F0 > 0. Then t0 > 0 and |x0| < 2, i.e., x0 is
an interior point of B2. In particular,

∂tF ≥ 0, ∇(ηF) = 0, ∆(ηF) ≤ 0 at the point (t0, x0),

∇F = −∇η

η
· F at the point (t0, x0).
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Step 6.

(∂t −∆)(ηF) ≤ cF − 2⟨∇η,∇F⟩ − η

(
F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t

)
∂tF ≥ 0, ∇(ηF) = 0, ∆(ηF) ≤ 0 at (t0, x0)

∇F = −∇η

η
· F at (t0, x0)
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Step 6.

(∂t −∆)(ηF) ≤ cF − 2⟨∇η,∇F⟩ − η

(
F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t

)
∂tF ≥ 0, ∇(ηF) = 0, ∆(ηF) ≤ 0 at (t0, x0)

∇F = −∇η

η
· F at (t0, x0)

Therefore,

0 ≤ (∂t−∆)(ηF)(t0, x0) ≤ c1−
ηF2

2nt0
−1

n
|∇f |2·ηF−2⟨∇f ,∇η⟩F+ηF

t0
.

Fudan University PDEs



Step 6.

(∂t −∆)(ηF) ≤ cF − 2⟨∇η,∇F⟩ − η

(
F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t

)
∂tF ≥ 0, ∇(ηF) = 0, ∆(ηF) ≤ 0 at (t0, x0)

∇F = −∇η

η
· F at (t0, x0)

Therefore,

0 ≤ (∂t−∆)(ηF)(t0, x0) ≤ c1−
ηF2

2nt0
−1

n
|∇f |2·ηF−2⟨∇f ,∇η⟩F+ηF

t0
. (5)

By Cauchy inequality,

−2⟨∇f ,∇η⟩F ≤ 1
2n

|∇f |2 |∇η|2F
C2 + 2nC2F
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Step 6.

(∂t −∆)(ηF) ≤ cF − 2⟨∇η,∇F⟩ − η

(
F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t

)
∂tF ≥ 0, ∇(ηF) = 0, ∆(ηF) ≤ 0 at (t0, x0)

∇F = −∇η

η
· F at (t0, x0)

Therefore,

0 ≤ (∂t−∆)(ηF)(t0, x0) ≤ c1−
ηF2

2nt0
−1

n
|∇f |2·ηF−2⟨∇f ,∇η⟩F+ηF

t0
. (5)

By Cauchy inequality,

−2⟨∇f ,∇η⟩F ≤ 1
2n

|∇f |2 |∇η|2F
C2 + 2nC2F

Putting this inequality into (5), we obtain

0 ≤ c2F − ηF2

2nt0
+

ηF
t0

at (t0, x0)
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Step 6.

(∂t −∆)(ηF) ≤ cF − 2⟨∇η,∇F⟩ − η

(
F2

2nt
+

1
n
|∇f |2F − 2⟨∇f ,∇F⟩ − F

t

)
∂tF ≥ 0, ∇(ηF) = 0, ∆(ηF) ≤ 0 at (t0, x0)

∇F = −∇η

η
· F at (t0, x0)

Therefore,

0 ≤ (∂t−∆)(ηF)(t0, x0) ≤ c1−
ηF2

2nt0
−1

n
|∇f |2·ηF−2⟨∇f ,∇η⟩F+ηF

t0
. (5)

By Cauchy inequality, −2⟨∇f ,∇η⟩F ≤ 1
2n |∇f |2 |∇η|2F

C2 + 2nC2F
Putting this inequality into (5), we obtain

0 ≤ c2F − ηF2

2nt0
+

ηF
t0

at (t0, x0).

In other words, (ηF)(t0, x0) ≤ 2n + c3t0.
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F ≤ 2n + c3T ′ in (0,T ′]× B1.
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Using the same technique,
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(
|∇f |2 − 2∂tf

)
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Fudan University PDEs



Step 7.
(ηF)(t0, x0) ≤ 2n + c3t0.

In particular,

F ≤ 2n + c3T in (0,T]× B1.

Using the same technique,

F ≤ 2n + c3T ′ in (0,T ′]× B1.

Since F = t
(
|∇f |2 − 2∂tf

)
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After the back rescaling, finally we obtain the required estimate

|∇f |2 − 2∂tf ≤ 2n
t
+

c3

R2 in (0,T]× BR.
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for the heat equation.
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(
|∇f |2 − 2∂tf
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and T ′ ∈ (0,T] is arbitrary, we have

|∇f |2 − 2∂tf ≤ 2n
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+ c3 in (0,T]× B1.

After the back rescaling, finally we obtain the required estimate

|∇f |2 − 2∂tf ≤ 2n
t
+

c3

R2 in (0,T]× BR.

So, finally we have finished the proof of the Harnack inequality
for the heat equation.
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The homework problems:

1. In the beginning of our proof we assume that u > 0 is a
smooth solution to the heat equation in [0,T]× B2R. Prove the
same estimate under original assumption, namely, that u ≥ 0 is
a smooth solution to the heat equation in the domain
(0,T)× B2R continuous on (0,T]× B2R.
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The homework problems:

1. In the beginning of our proof we assume that u > 0 is a
smooth solution to the heat equation in [0,T]× B2R. Prove the
same estimate under original assumption, namely, that u ≥ 0 is
a smooth solution to the heat equation in the domain
(0,T)× B2R continuous on (0,T]× B2R.
2. For any constant α > 1 prove the similar estimate

|∇f |2 − α∂tf ≤ nα2

2t
+

cα2

R2

(
1 +

α2

α− 1

)
in (0,T]× BR

if u ≥ 0 is a solution to the heat equation in (0,T]× B2R and
f = ln u.
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The homework problems:

1. In the beginning of our proof we assume that u > 0 is a
smooth solution to the heat equation in [0,T]× B2R. Prove the
same estimate under original assumption, namely, that u ≥ 0 is
a smooth solution to the heat equation in the domain
(0,T)× B2R continuous on (0,T]× B2R.
2. For any constant α > 1 prove the similar estimate

|∇f |2 − α∂tf ≤ nα2

2t
+

cα2

R2

(
1 +

α2

α− 1

)
in (0,T]× BR

if u ≥ 0 is a solution to the heat equation in (0,T]× B2R and
f = ln u.
Hint: We have proved this estimate for α = 2.

Fudan University PDEs



The homework problems:
1. In the beginning of our proof we assume that u > 0 is a
smooth solution to the heat equation in [0,T]× B2R. Prove the
same estimate under original assumption, namely, that u ≥ 0 is
a smooth solution to the heat equation in the domain
(0,T)× B2R continuous on (0,T]× B2R.
2. For any constant α > 1 prove the similar estimate

|∇f |2 − α∂tf ≤ nα2

2t
+

cα2

R2

(
1 +

α2

α− 1

)
in (0,T]× BR

if u > 0 is a solution to the heat equation in [0,T]× B2R and
f = ln u.
3. Taking R → +∞ and α → 1, prove that

|∇f |2 − ∂tf ≤ n
2t

in (0,T]× Rn

if u ≥ 0 is a solution to the heat equation in the strip (0,T]× Rn

and f = ln u.
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The homework problems:

4. Using
|∇f |2 − ∂tf ≤ n

2t
in (0,T]× Rn,

prove
Theorem 2. Let u ≥ 0 be a smooth solution to the heat equation
in the strip (0,T]× Rn. Then for any 0 < t1 < t2 ≤ T, x, y ∈ Rn

the inequality

u(t1, x) ≤ u(t2, y)
(

t2
t1

) n
2

e
|x−y|2

4(t2−t1)

holds.
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The Harnack inequality for general domains

Theorem 3. Let T > 0 and let Ω ⊂ Rn be an open set. Then for
any compact subdomain Ω′ ⋐ Ω and for any pair 0 < t1 < t2 ≤ T
there exists a constant C = C(Ω′,Ω, t1, t2) such that

sup
x∈Ω′

u(t1, x) ≤ C inf
x∈Ω′

u(t2, x)

for any smooth solution u ≥ 0 to the heat equation in
ΩT = (0,T]× Ω.
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The Harnack inequality for general domains

Theorem 3. Let T > 0 and let Ω ⊂ Rn be an open set. Then for
any compact subdomain Ω′ ⋐ Ω and for any pair 0 < t1 < t2 ≤ T
there exists a constant C = C(Ω′,Ω, t1, t2) such that

sup
x∈Ω′

u(t1, x) ≤ C inf
x∈Ω′

u(t2, x)

for any smooth solution u ≥ 0 to the heat equation in
ΩT = (0,T]× Ω.
Proof. Take

r = min
x∈Ω̄′,y∈∂Ω

|x − y|.
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Theorem 3. Let T > 0 and let Ω ⊂ Rn be an open set. Then for
any compact subdomain Ω′ ⋐ Ω and for any pair 0 < t1 < t2 ≤ T
there exists a constant C = C(Ω′,Ω, t1, t2) such that

sup
x∈Ω′

u(t1, x) ≤ C inf
x∈Ω′

u(t2, x)

for any smooth solution u ≥ 0 to the heat equation in
ΩT = (0,T]× Ω.
Proof. Take

r =
1
2

min
x∈Ω̄′,y∈∂Ω

|x − y|.

By our assumptions, the closure Ω̄′ is a compact subset of Ω,
so r > 0.
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The Harnack inequality for general domains

Theorem 3. Let T > 0 and let Ω ⊂ Rn be an open set. Then for
any compact subdomain Ω′ ⋐ Ω and for any pair 0 < t1 < t2 ≤ T
there exists a constant C = C(Ω′,Ω, t1, t2) such that

sup
x∈Ω′

u(t1, x) ≤ C inf
x∈Ω′

u(t2, x)

for any smooth solution u ≥ 0 to the heat equation in
ΩT = (0,T]× Ω.
Proof. Take

r =
1
2

min
x∈Ω̄′,y∈∂Ω

|x − y|.

By our assumptions, the closure Ω̄′ is a compact subset of Ω,
so r > 0. Fix 0 < t1 < t2 ≤ T and x1, x2 ∈ Ω̄′.
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Proof.

Take r = 1
2 min

x∈Ω̄′,y∈∂Ω
|x − y| > 0. Fix 0 < t1 < t2 ≤ T and

x1, x2 ∈ Ω̄′. Since the set Ω̄′ is connected and compact, there
exists a finite r-net y0, y1, . . . , yN ∈ Ω̄′ such that y0 = x1, yN = x2,

Ω̄′ ⊂
N⋃

i=0

Br(yi), |yi − yi+1| < r, i = 0, 1, . . . ,N − 1.
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Proof.

Take r= 1
2 min

x∈Ω̄′,y∈∂Ω
|x − y|>0. Then ∃ y0, y1, . . . , yN ∈ Ω̄′ such that

y0 = x1, yN = x2, Ω̄′ ⊂
N⋃

i=0

Br(yi), |yi−yi+1| < r, i = 0, 1, . . . ,N−1.

By our choosing of r, B2r(yi) ⊂ Ω for i = 0, 1, . . . ,N − 1. So
putting si = t1 + i

N (t2 − t1) and applying the previous Harnack
estimate for balls, we obtain
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i=0
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By our choosing of r, B2r(yi) ⊂ Ω for i = 0, 1, . . . ,N − 1. So
putting si = t1 + i

N (t2 − t1) and applying the previous Harnack
estimate for balls, we obtain u(si, yi) ≤ Ciu(si+1, yi+1),
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Take r= 1
2 min

x∈Ω̄′,y∈∂Ω
|x − y|>0. Then ∃ y0, y1, . . . , yN ∈ Ω̄′ such that

y0 = x1, yN = x2, Ω̄′ ⊂
N⋃

i=0

Br(yi), |yi−yi+1| < r, i = 0, 1, . . . ,N−1.

By our choosing of r, B2r(yi) ⊂ Ω for i = 0, 1, . . . ,N − 1. So
putting si = t1 + i

N (t2 − t1) and applying the previous Harnack
estimate for balls, we obtain u(si, yi) ≤ Ciu(si+1, yi+1), where

Ci =
(si+1

si

)ne
r2

2(si+1−si)
+c

si+1−si
r2 .
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Since si+1−si=
t2−t1

N , it’s easy to see that Ci ≤ C̄=C̄(t1, t2,Ω′,Ω).
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Take r= 1
2 min

x∈Ω̄′,y∈∂Ω
|x − y|>0. Then ∃ y0, y1, . . . , yN ∈ Ω̄′ such that

y0 = x1, yN = x2, Ω̄′ ⊂
N⋃

i=0

Br(yi), |yi−yi+1| < r, i = 0, 1, . . . ,N−1.

By our choosing of r, B2r(yi) ⊂ Ω for i = 0, 1, . . . ,N − 1. So
putting si = t1 + i

N (t2 − t1) and applying the previous Harnack
estimate for balls, we obtain u(si, yi) ≤ Ciu(si+1, yi+1), where

Ci =
(si+1

si

)ne
r2

2(si+1−si)
+c

si+1−si
r2 .

Since si+1−si=
t2−t1

N , it’s easy to see that Ci ≤ C̄=C̄(t1, t2,Ω′,Ω).
Therefore, u(si, yi) ≤ C̄u(si+1, yi+1),
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Take r= 1
2 min

x∈Ω̄′,y∈∂Ω
|x − y|>0. Then ∃ y0, y1, . . . , yN ∈ Ω̄′ such that

y0 = x1, yN = x2, Ω̄′ ⊂
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N (t2 − t1) and applying the previous Harnack
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Since si+1−si=
t2−t1

N , it’s easy to see that Ci ≤ C̄=C̄(t1, t2,Ω′,Ω).
Therefore, u(si, yi) ≤ C̄u(si+1, yi+1), and finally

Fudan University PDEs



Proof.
Take r= 1

2 min
x∈Ω̄′,y∈∂Ω

|x − y|>0. Then ∃ y0, y1, . . . , yN ∈ Ω̄′ such that

y0 = x1, yN = x2, Ω̄′ ⊂
N⋃

i=0

Br(yi), |yi−yi+1| < r, i = 0, 1, . . . ,N−1.

By our choosing of r, B2r(yi) ⊂ Ω for i = 0, 1, . . . ,N − 1. So
putting si = t1 + i

N (t2 − t1) and applying the previous Harnack
estimate for balls, we obtain u(si, yi) ≤ Ciu(si+1, yi+1), where

Ci =
(si+1
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)ne
r2

2(si+1−si)
+c

si+1−si
r2 .

Since si+1−si=
t2−t1

N , it’s easy to see that Ci ≤ C̄=C̄(t1, t2,Ω′,Ω).
Therefore, u(si, yi) ≤ C̄u(si+1, yi+1), and finally

u(t1, x1) = u(s0, y0) ≤ (C̄)Nu(sN , yN) = (C̄)Nu(t2, x2).
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Proof.
Take r= 1

2 min
x∈Ω̄′,y∈∂Ω

|x − y|>0. Then ∃ y0, y1, . . . , yN ∈ Ω̄′ such that

y0 = x1, yN = x2, Ω̄′ ⊂
N⋃

i=0

Br(yi), |yi−yi+1| < r, i = 0, 1, . . . ,N−1.

By our choosing of r, B2r(yi) ⊂ Ω for i = 0, 1, . . . ,N − 1. So
putting si = t1 + i

N (t2 − t1) and applying the previous Harnack
estimate for balls, we obtain u(si, yi) ≤ Ciu(si+1, yi+1), where

Ci =
(si+1

si

)ne
r2

2(si+1−si)
+c

si+1−si
r2 .

Since si+1−si=
t2−t1

N , it’s easy to see that Ci ≤ C̄=C̄(t1, t2,Ω′,Ω).
Therefore, u(si, yi) ≤ C̄u(si+1, yi+1), and finally

u(t1, x1) = u(s0, y0) ≤ (C̄)Nu(sN , yN) = (C̄)Nu(t2, x2).

So we have finished the proof!
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The strict maximum principle for the heat equation

Theorem 4. Let T > 0, Ω ⊂ Rn be an open set, and let u be a
solution to the heat equation in ΩT = (0,T]× Ω.
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The strict maximum principle for the heat equation

Theorem 4. Let T > 0, Ω ⊂ Rn be an open set, and let u be a
solution to the heat equation in ΩT = (0,T]× Ω. Suppose there
exists a point (t0, x0) ∈ ΩT such that

u(t0, x0) = max
ΩT

u.
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Theorem 4. Let T > 0, Ω ⊂ Rn be an open set, and let u be a
solution to the heat equation in ΩT = (0,T]× Ω. Suppose there
exists a point (t0, x0) ∈ ΩT such that

u(t0, x0) = max
ΩT

u.

Then u ≡ const in Ωt0 = (0, t0]× Ω.
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The strict maximum principle for the heat equation

Theorem 4. Let T > 0, Ω ⊂ Rn be an open set, and let u be a
solution to the heat equation in ΩT = (0,T]× Ω. Suppose there
exists a point (t0, x0) ∈ ΩT such that

u(t0, x0) = max
ΩT

u.

Then u ≡ const in Ωt0 = (0, t0]× Ω.
Proof. Fix ε > 0, t1 < t0, and take arbitrary compact subdomain
Ω′ ⋐ Ω.
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Theorem 4. Let T > 0, Ω ⊂ Rn be an open set, and let u be a
solution to the heat equation in ΩT = (0,T]× Ω. Suppose there
exists a point (t0, x0) ∈ ΩT such that

u(t0, x0) = max
ΩT

u.

Then u ≡ const in Ωt0 = (0, t0]× Ω.
Proof. Fix ε > 0, t1 < t0, and take arbitrary compact subdomain
Ω′ ⋐ Ω. Put

vε(t, x) = u(t0, x0)− u(t, x) + ε.
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The strict maximum principle for the heat equation

Theorem 4. Let T > 0, Ω ⊂ Rn be an open set, and let u be a
solution to the heat equation in ΩT = (0,T]× Ω. Suppose there
exists a point (t0, x0) ∈ ΩT such that

u(t0, x0) = max
ΩT

u.

Then u ≡ const in Ωt0 = (0, t0]× Ω.
Proof. Fix ε > 0, t1 < t0, and take arbitrary compact subdomain
Ω′ ⋐ Ω. Put

vε(t, x) = u(t0, x0)− u(t, x) + ε.

Then by construction vε ≥ ε > 0 in ΩT and vε is a solution to
the heat equations as well.
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Proof.

Fix ε > 0, t1 < t0, and take arbitrary compact subdomain
Ω′ ⋐ Ω. Put

vε(t, x) = u(t0, x0)− u(t, x) + ε.

Then by construction vε > 0 in ΩT and vε is a solution to the
heat equations as well.
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Proof.

Fix ε > 0, t1 < t0, and take arbitrary compact subdomain
Ω′ ⋐ Ω. Put

vε(t, x) = u(t0, x0)− u(t, x) + ε.

Then by construction vε > 0 in ΩT and vε is a solution to the
heat equations as well. By Harnack inequality,

sup
x∈Ω′

vε(t1, x) ≤ Cvε(t0, x0) = Cε

for some C = C(t1, t0,Ω′,Ω).
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Fix ε > 0, t1 < t0, and take arbitrary compact subdomain
Ω′ ⋐ Ω. Put

vε(t, x) = u(t0, x0)− u(t, x) + ε.

Then by construction vε > 0 in ΩT and vε is a solution to the
heat equations as well. By Harnack inequality,

sup
x∈Ω′

vε(t1, x) ≤ Cvε(t0, x0) = Cε

for some C = C(t1, t0,Ω′,Ω). Taking ε → 0, we get

sup
x∈Ω′

(
u(t0, x0)− u(t1, x)

)
≤ 0.
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Proof.
Fix ε > 0, t1 < t0, and take arbitrary compact subdomain
Ω′ ⋐ Ω. Put

vε(t, x) = u(t0, x0)− u(t, x) + ε.

Then by construction vε > 0 in ΩT and vε is a solution to the
heat equations as well. By Harnack inequality,

sup
x∈Ω′

vε(t1, x) ≤ Cvε(t0, x0) = Cε

for some C = C(t1, t0,Ω′,Ω). Taking ε → 0, we get

sup
x∈Ω′

(
u(t0, x0)− u(t1, x)

)
≤ 0.

In other words, (
0 ≤ u(t0, x0)− u(t1, x) ≤ 0

)
⇔
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Proof.
Fix ε > 0, t1 < t0, and take arbitrary compact subdomain
Ω′ ⋐ Ω. Put

vε(t, x) = u(t0, x0)− u(t, x) + ε.

Then by construction vε > 0 in ΩT and vε is a solution to the
heat equations as well. By Harnack inequality,

sup
x∈Ω′

vε(t1, x) ≤ Cvε(t0, x0) = Cε

for some C = C(t1, t0,Ω′,Ω). Taking ε → 0, we get

sup
x∈Ω′

(
u(t0, x0)− u(t1, x)

)
≤ 0.

In other words,(
0 ≤ u(t0, x0)−u(t1, x) ≤ 0

)
⇔
(

u(t1, x) = u(t0, x0) ∀x ∈ Ω̄′ ∀t1 < t0

)
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Proof.
Fix ε > 0, t1 < t0, and take arbitrary compact subdomain
Ω′ ⋐ Ω. Put

vε(t, x) = u(t0, x0)− u(t, x) + ε.

Then by construction vε > 0 in ΩT and vε is a solution to the
heat equations as well. By Harnack inequality,

sup
x∈Ω′

vε(t1, x) ≤ Cvε(t0, x0) = Cε

for some C = C(t1, t0,Ω′,Ω). Taking ε → 0, we get

sup
x∈Ω′

(
u(t0, x0)− u(t1, x)

)
≤ 0.

In other words,(
0 ≤ u(t0, x0)−u(t1, x) ≤ 0

)
⇔
(

u(t1, x) = u(t0, x0) ∀x ∈ Ω̄′ ∀t1 < t0

)
The proof of strict maximum principle is finished.
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