Статистическая физика. Часть І

Основные законы термодинамики

- 1. Термодинамические системы. Релаксация и термодинамическое равновесие. Равновесные состояния и равновесные процессы, обратимость. Термодинамические переменные.
- 2. Термостат и изотермический процесс. PV-диаграммы, свойства изотерм, изотермы идеального газа. Условная температура и уравнение состояния вещества.
- 3. Адиабатический процесс. PV-диаграммы, свойства адиабат, совершенный газ. Условная энтропия, калорическое уравнение состояние вещества.
- 4. Абсолютная температура и абсолютная энтропия. Эквивалентность PV- и ТS-плоскостей. Уравнения состояния и энтропия идеального газа. Работа. Внутренняя энергия,
- 5. Количество теплоты. Первое начало термодинамики. Теплоёмкость газа. Начало отсчёта температуры.
- 6. Круговые процессы. Цикл Карно. КПД тепловых машин. Второе начало термодинамики. Теорема Нернста, третье начало термодинамики.
- 7. Термодинамика газа Ван-дер-Ваальса. Охлаждение газа. Процессы Гей-Люссака и Джоуля-Томсона. Энтальпия.
- 8. Термодинамические потенциалы. Внутренняя энергия, свободная энергия, энтальпия, термодинамический потенциал Гиббса. Преобразование Лежандра.
- 9. Процессы выравнивания. Рост энтропии. Экстремальные свойства термодинамических потенциалов. Термодинамические неравенства.

Статистические ансамбли

- 1. Статистический подход к описанию сложных систем. Статистические ансамбли. Статистический вес макроскопического состояния системы. Микроканоническое распределение. Энтропия. Условие теплового равновесия. Вывод уравнений термодинамики.
- 2. Каноническое распределение Гиббса. Распределение по энергиям для тела в термостате. Статистическая сумма и свободная энергия. Вывод равенства dF=-SdT-PdV из канонического распределения.
- 3. Классический идеальный газ. Распределение Максвелла-Больцмана.
- 4. Классический идеальный газ молекул с внутренними степенями свободы. Колебательные и вращательные спектры молекул.
- Системы с переменным числом частиц. Химический потенциал. Ω -потенциал. Равновесие фаз. Фазовые переходы первого рода. Условия равновесия фаз. Примеры диаграмм состояния. Тройная точка.
- 6. Тепловая ионизация атомов. Тепловая диссоциация молекул. Химическое равновесие. Закон действующих масс.
- 7. Флуктуации энергии в каноническом ансамбле. Флуктуации числа частиц в большом каноническом ансамбле.

Задачи по курсу статистическая физика І

1. Термодинамика

- 1.1 Идеальный газ расширяется от объёма V_1 до V_2 . Процесс происходит:
 - 1) изобарически (p = const); 2) изотермически (T = const); 3) адиабатически (S = const). Начертить графики этих процессов на pV- и EV-диаграммах.

Определить:

- а) при каком процессе произведённая газом работа наименьшая.
- б) знак изменения ΔE внутренней энергии газа в каждом процессе.
- 1.2 Температура одного моля идеального газа повышается от T_1 до T_2 . Процесс происходит: а) изохорически (V=const); б) изобарически (p=const); в) адиабатически (S=const). Построить графики этих процессов на pV-диаграмме. Вычислить совершённую газом работу, количество подведённого тепла и изменение внутренней энергии в каждом процессе.
- 1.3 Из сосуда откачан воздух. Приоткрыв на короткое время кран, сосуд заполняют атмосферным воздухом. Какой будет температура вошедшего в сосуд воздуха, если теплообмен со стенками сосуда не успевает произойти. Каким будет давление воздуха в сосуде, когда температура его за счет теплообмена сравняется с температурой атмосферного воздуха?
- 1.4 Найти соотношение между изотермическим и адиабатическим коэффициентами сжимаемости, если известен показатель адиабаты γ . $K_{s} = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{s}, \quad K_{T} = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T}.$
- 1.5 Идеальный газ находится в эластичной адиабатической оболочке под давлением P_1 при температуре T_1 , объём газа V_1 . Внешнее давление меняется скачком $P_1 \to P_2$. Определить установившуюся температуру T_2 и объём V_2 . Найти изменение энтропии для этого процесса.
- 1.6 Найти к.п.д. цикла, состоящего из двух изобар и двух адиабат (цикл Джоуля).
- 1.7 Найти к.п.д. цикла, состоящего из двух изохор и двух адиабат (цикл Отто).
- 1.8 Найти изменение температуры и изменение энтропии одного моля газа Ван-дер-Ваальса при расширении от V_0 до V_1 , если начальная температура равна T_0 .
- 1.9 Два разных газа в двух сосудах с объемами V_1 и V_2 имеют одинаковые давления и температуры. Газы смешали, как изменится энтропия $\Delta S = ?$
- 1.10 Два одинаковых газа в двух сосудах с объемами V_1 и V_2 имеют одинаковые давления, но разные температуры. Число молей газов одинаково. Газы смешали. Чему равно изменение энтропии $\Delta S = ?$
- 1.11 Два одинаковых газа в адиабатически изолированных сосудах разных объемов. Давления p_1 и p_2 различны. Число молей газов и температуры одинаковы. Газы смешали. Чему равно изменение энтропии $\Delta S = ?$
- $1.12~{\rm Два}$ одинаковых адиабатически изолированных сосуда, содержат равное число молей идеального газа при разных давлениях. Газы смешали, как изменилась энтропия, $\Delta S=?$

- 1.13 Два тела с температурами T_{01} и T_{02} и теплоемкостями C_1 и C_2 привели в тепловой контакт. Как изменилась энтропия этих тел? Показать, что всегда $\Delta S \ge 0$.
- 1.14 Используя свободную энергию F, доказать справедливость соотношения

$$\left(\frac{\partial E}{\partial V}\right)_T = T \left(\frac{\partial p}{\partial T}\right)_V - p.$$

1.15 Используя термодинамический потенциал Гиббса, доказать справедливость соотношения

$$\left(\frac{\partial H}{\partial p}\right)_T = -T\left(\frac{\partial V}{\partial T}\right)_p + V ,$$

где Н – энтальпия.

1.16 Показать, что из условий $\left(\frac{\partial E}{\partial V}\right)_T = 0$ и $\left(\frac{\partial H}{\partial p}\right)_T = 0$ следует уравнение состояния идеального газа.

2. Элементы статистики

- 2.2 Материальная точка колеблется по закону $x = \sin \omega t$. Найти вероятность того, что при случайном измерении её положения она будет обнаружена в интервале x, x + dx
- 2.3 Найти среднее значение величины x, её среднее квадратичное значение, среднюю квадратичную флуктуацию $\overline{\Delta x^2} = \overline{x^2} \overline{x}^2$ и относительную флуктуацию $\delta x = \sqrt{\overline{\Delta x^2}} / \overline{x}$, если $dw = const \cdot \exp(-\alpha x) dx$, $\alpha > 0$.
- 2.4 Идеальный газ содержит N молекул, заключённых в объёме V. Найти вероятность того, что в выделенной части объёма v содержится n молекул. Рассмотреть предельные случаи:
 - а) $N \gg n$ (малый объём: $v \ll V$);
 - б) среднее число частиц в выделенном объёме велико (малый, но макроскопический объём): $\overline{n} \sim n \gg 1, |\Delta n| = |\overline{n} n| \ll \overline{n}$.

3. Распределение Максвелла

- 3.1 Записать распределение Максвелла в сферической и цилиндрической системах координат. Получить отсюда распределение по абсолютной величине скорости v, распределения по углам $\mathcal G$ и φ .
- 3.2 По распределению Максвелла найти средние значения x-компоненты скорости $\overline{v_x}$, среднеквадратичной скорости $\sqrt{\overline{v^2}}$; определить наиболее вероятную скорость v_m .

- 3.3 Найти распределение частиц газа по энергиям $\varepsilon = mv^2/2$. Рассчитать наиболее вероятную и среднюю энергии. Сравнить их с величинами соответственно $mv_m^2/2$ и $mv^2/2$. Объяснить различие.
- 3.4 Найти относительную флуктуацию $\delta \varepsilon$ энергии одной молекулы идеального газа и относительную флуктуацию δE энергии газа, состоящего из N молекул.
- 3.5 Плёнки некоторых нерастворимых органических кислот и спиртов на воде можно моделировать идеальным двумерным газом. Написать распределение по скоростям в таком газе в декартовых и полярных координатах. Найти среднюю энергию одной молекулы.
- 3.6 Газ состоит из атомов, излучающих свет с длиной волны λ_0 . Найти закон распределения измеряемой в спектроскопе интенсивности излучения газа $I(\lambda)$ в зависимости от длины волны. Учесть эффект Допплера.
- 3.7 Найти распределение по скоростям частиц газа, вылетающих из тонкостенного сосуда через малое отверстие, а также полный поток частиц j, если температура газа в сосуде T, площадь отверстия s.
- 3.8 Рассчитать среднюю и среднеквадратичную скорость частиц в молекулярном пучке, а также их среднюю энергию.
- 3.9 Оценить время τ , за которое Земля потеряет атмосферу. При оценке приближённо считать атмосферу однородным по плотности плоским слоем толщины $h_{s\phi\phi}\cong kT/mg$. $T\cong 300^\circ K$, $g\cong 10$ м/сек 2 , $m=5\cdot 10^{-26}$ кг. За время существования атмосферы принять время в течение которого плотность атмосферы уменьшится в e раз.

Указание. Молекула покидает атмосферу (плоский слой), когда её тепловая скорость больше второй космической скорости $v_2 \cong 11 \, \mathrm{km/cek}$.

3.10 Из малого отверстия площадью s в стенке сосуда происходит стационарное истечение газа в вакуум (в сосуде давление и температура поддерживаются постоянными). Найти распределение плотности частиц n в окружающем сосуд пространстве, если плотность их в сосуде n_0 .

4. Распределение Больцмана

- 4.1 Адиабатической называется атмосфера, в которой давление и плотность в зависимости от высоты удовлетворяют соотношению $p\rho^{-\gamma}=const$. Показать, что температура такой атмосферы линейно уменьшается с высотой. Найти температурный градиент для земной атмосферы.
- $4.2~{\rm Идеальный}$ газ находится в поле тяжести в закрытом сосуде высотой h . Во сколько раз изменится давление на дно сосуда, если его температуру T_0 увеличить в два раза. Масса молекулы m .

- 4.3 Как изменяется с высотой удельный объём v жидкости в поле тяжести? Температуру жидкости считать постоянной, её изотермическая сжимаемость $\kappa_T = -v^{-1} \left(\frac{\partial v}{\partial p} \right)_T$ задана.
- 4.4 Найти распределение плотности газа по радиусу во вращающейся с угловой скоростью ω цилиндрической центрифуге. Внешний радиус центрифуги r_0 , внутренний равен нулю, высота её h. В центрифуге находится N частиц.
- 4.5 В центрифуге радиуса r, вращающейся с угловой скоростью ω , находится смесь двух газов с молекулярными весами μ_1 и μ_2 и количеством молекул N_1 и N_2 . Найти отношение концентраций газов у внешней стенки и на оси центрифуги. Сделать оценки для смесей H_2 D_2 и ^{235}U ^{238}U ; r = 10 см, ω =10 4 1/ $ce\kappa$.
- 4.6 Примесный атом находится в межузельной полости в кристалле с потенциалом $u(r) = ar^4$ (ангармонический потенциал). Найти его среднюю энергию при температуре T
- 4.7 Найти среднюю энергию взаимодействия молекулы, обладающей дипольным моментом d, с зарядом q, отстоящим от неё на большом расстоянии r.

5. Микроканоническое и каноническое распределения. Внутренние степени свободы

- 5.1. Цепочка состоит из N звеньев длины a. Каждое звено может свободно поворачиваться, ориентируясь по или против оси x направленной вверх. Верхний конец цепочки закреплён, к нижнему подвешен груз веса f. Найти зависимость среднего значения длины цепочки от температуры. (Это примитивная модель молекулы каучука. Она «улавливает» необычную зависимость длины молекул от температуры).
- 5.2 Для получения низких ("гелиевых") температур $T_0 \ge 1K$ используют контакт тела с кипящим при низком давлении гелием. Для получения еще более низких температур часто используют метод адиабатического размагничивания. Кристалл, в который введена примесь парамагнитной соли, намагничивают при температуре $T_0 \le 1K$, теплоизолируют, а затем медленно выключают внешнее магнитное поле. Происходит адиабатическое размагничивание кристалла, и он охлаждается. При низких температурах теплоёмкость кристалла $C = AT^3$.

Найти температуру кристалла после выключения магнитного поля. Считать, что атомы примеси имеют спин 1/2.

- 5.3 Найти теплоемкость двухуровневой системы, у которой кратность вырождения возбужденного состояния очень велика, $ln(g_I) >> 1$. Энергия возбужденного состояния равна ε .
- 5.4 Найти, какой вращательный уровень двухатомной молекулы имеет наибольшую заселенность при температуре $T >> T_R$. $kT_R = \hbar^2/2\mu r_0^2$

5.5 Пользуясь законом равнораспределения энергии по степеням свободы, вычислить молярную теплоёмкость n-атомного газа при высоких температурах, $kT\gg\hbar\omega$, где ω -характерные частоты колебаний молекул.

Рассмотреть случаи линейных и нелинейных молекул.

- 5.6 В закрытом сосуде находится один моль идеального газа трёхатомных нелинейных молекул ABC. Под действием света происходит полная диссоциация газа: $ABC \to A + BC$. Найти суммарную теплоёмкость газа в сосуде до и после воздействия света. Температура газа $kT \gg \hbar \omega$, где ω характерные частоты колебаний молекул.
- 5.7 Характеристическая температура колебательного движения молекул O_2 , $\theta = \hbar \omega / k$, равна 2250° К. Какой вклад в молярную теплоёмкость вносит это движение при температуре 300° К? Какая доля всех молекул будет находиться в первом возбуждённом состоянии? Как изменятся результаты, если температура будет 600° К?

Литература

- 1. **Ю.Б. Румер, М.Ш. Рывкин**. Термодинамика, статистическая физика и кинетика. Новосибирск, Изд. НГУ, 2000.
- 2. Г.Л. Коткин. Лекции по статистической физике. Новосибирск: НГУ, 2003.
- 3. Л. Д. Ландау, Е. М. Лифшиц. Статистическая физика. Ч.1, 1978.
- 4. **В.П. Замураев, А.П. Калинина**. Задачи по термодинамике и молекулярной физике. Новосибирск, НГУ, 2001.
- 5. **Г. Коткин, Е.Г. Образовский.** Задачи по статистической физике. Новосибирск, НГУ, 2007.
- 6. Ч. Киттель Статистическая термодинамика. М.: Наука, 1977.
- 7. **Р. Кубо.** Термодинамика, М.: «Мир», 1970.
- 8. **Р. Кубо**. Статистическая механика. М.: «Мир», 1967.