НЕОБХОДИМЫЕ 1 УСЛОВИЯ ДЛЯ ПОЛУЧЕНИЯ УДОВЛЕТВОРИТЕЛЬНОЙ ОПЕНКИ

Зимняя сессия

Если на экзамене при ответе на билет или на дополнительный вопрос выяснится, что студент не знает формулировки указанных базовых теорем и понятий, или не понимает их смысла (т.е. как указанные теоремы "работают" при решении конкретной задачи), то преподаватель вправе поставить "2" (даже если студент сносно ответил билет!).

БАЗОВЫЕ ФАКТЫ, ЗНАНИЕ КОТОРЫХ НЕОБХОДИМО ДЛЯ "3"

- 1. Определение решения дифференциального уравнения y' = f(x, y). Определение непродолжаемого решения.
- 2. Что такое задача Коши (для уравнений 1-го порядка, для нормальных систем первого порядка и для уравнений n-го порядка).
- 3. Теоремы Пеано и Пикара (для уравнений 1-го порядка, для нормальных систем первого порядка и для уравнений *n*-го порядка).
 - 4. Определение поля направлений, интегральной линии поля направлений.
 - 5. Сведение уравнения n-го порядка к нормальной системе.
- 6. Теорема существования и единственности решения задачи Коши для системы Y' = A(x)Y + F(x).
- 8. Фундаментальные системы решений (Φ CP). Фундаментальные матрицы и их свойства.
 - 9. Определитель Вронского. Формула Лиувилля-Остроградского.
 - 10. Принцип суперпозиции, связь решений неоднородной и однородной системы.
- 11. Построение частного решения методом вариации произвольных постоянных (для линейных уравнений *n*-го порядка и для систем).
 - 12. Линейное уравнение n-го порядка, сведение к линейной системе.
- 13. Матричная экспонента и её использование для получения формулы общего решения линейных однородных и неоднородных систем уравнений.
 - 14. Класс гладкости решения соответствующий гладкости правой части системы.

БАЗОВЫЕ НАВЫКИ, НЕОБХОДИМЫЕ ДЛЯ "3"

- 1. Решение простейших уравнений 1-го порядка: уравнение с разделяющимися переменными, однородное уравнение, линейное уравнение, уравнение Бернулли, уравнение в полных дифференциалах.
 - 2. Построение картины решений для указанных уравнений.
- 3. Линейное уравнение n-го порядка с постоянными коэффициентами, построение ФСР. Частное решение в случае квазиполиномиальной неоднородности.
 - 4. Построение Φ CP для системы Y' = AY с постоянными коэффициентами.
- 5. Построение решений неоднородных линейных уравнений и систем методом вариации произвольных постоянных.

¹Напомним, что в математике необходимые условия далеко не всегда являются достаточными.