А. В. Довгаль¹, **А. М. Сорокин**^{1, 2}

¹ Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН ул. Институтская, 4/1, Новосибирск, 630090, Россия

> ² Новосибирский государственный университет ул. Пирогова, 2, Новосибирск, 630090, Россия

> > E-mail: dovgal@itam.nsc.ru

РАСПРОСТРАНЕНИЕ ВОЛНОВЫХ ПАКЕТОВ ВОЗМУЩЕНИЙ В ЗОНЕ ОТРЫВА ЛАМИНАРНОГО ПОГРАНИЧНОГО СЛОЯ *

Исследовано развитие пространственных волновых пакетов гармонических во времени колебаний при отрыве ламинарного пограничного слоя за обратным уступом поверхности продольно обтекаемой пластины. Данные получены термоанемометрическим методом в малотурбулентной дозвуковой аэродинамической трубе. Показана возможность распространения генерируемых в области отрыва колебаний против направления внешнего потока, что отличает отрывную зону в условиях ее самовозбуждения от присоединенного пограничного слоя.

Ключевые слова: отрыв пограничного слоя, гидродинамическая неустойчивость, волновые пакеты, самовозбуждение.

Введение

Результаты экспериментальных и расчетных работ последнего времени приводят к выводу о том, что неустойчивые течения с отрывом ламинарного потока от поверхности обтекаемого тела могут сочетать усиление проникающих в них возмущений и генерацию самоподдерживающихся колебаний. В качестве усилителя шума области отрыва ведут себя подобно конвективно неустойчивым слоям сдвига скорости с нарастающими возмущениями завихренности, которые генерируются в течении внешними пульсациями и сносятся в направлении основного потока. Характеристики спектральных составляющих таких возмущений, развивающихся в отрывных зонах, подробно изучены в предшествующих работах и хорошо описываются результатами анализа локальных свойств устойчивости течения

(см. ссылки на оригинальные исследования в работе [1]).

Внутренняя динамика областей отрыва выражается в автоколебаниях, появление которых предсказывают результаты теоретических и численных исследований. Для объяснения самовозбуждения отрывных течений используются анализ устойчивости их локальных профилей скорости в рамках концепции конвективной / абсолютной неустойчивости и расчеты глобальных мод колебаний, описывающих периодические возмущения области отрыва, синхронизованные на протяженном участке течения [2-8]. Представление об осциллирующих отрывных зонах подтверждается экспериментальными работами. Их авторы связывают генерацию крупномасштабных вихревых структур при отрыве потока с неустойчивостью отрывных областей к сходу вихрей [9] и развитием колебаний, харак-

^{*} Работа выполнена при финансовой поддержке РФФИ (проект № 08-01-00027), Министерства образования и науки РФ (грант РНП. 2.1.2.541) в рамках Государственного контракта № 14.740.11.0354.

34

терных для следа за плохообтекаемыми телами [10], подчеркивая их существенное отличие от нарастания возмущений сдвигового слоя.

Подтверждение конкуренции конвективной неустойчивости и самовозбуждения при отрыве ламинарного пограничного слоя было получено в экспериментах [11; 12] для течения за двумерным уступом поверхности продольно обтекаемой пластины. В спектрах пульсаций области отрыва, которая моделировалась при низкой степени турбулентности потока и малых числах Рейнольдса, удалось разделить высокочастотные сносовые возмущения оторвавшегося слоя и низкочастотные колебания отрывной зоны в универсальном диапазоне образования когерентных крупномасштабных вихрей, сопоставив их амплитудно-фазовые характеристики.

Исследования по обсуждаемой тематике продолжены настоящими экспериментами. Цель работы – выяснение того, каким образом может происходить распространение колебаний на протяжении зоны отрыва в режиме ее самовозбуждения. Для этого в условиях, близких принятым в работах [11; 12], изучается поведение малых возмущений ламинарного течения, возбужденных в области отрыва пограничного слоя локальными источниками гармонических колебаний.

Методика эксперимента

Результаты получены в малотурбулентной дозвуковой аэродинамической трубе T-324 ИТПМ СО РАН. Установка имеет закрытую рабочую часть с поперечным сечением 1×1 м, длиной 4 м, степень турбулентности свободного потока в которой не превышает 0,04 % в диапазоне рабочих скоростей до 100 м/с. Исследовалось отрывное обтекание пограничным слоем двумерного прямоугольного уступа поверхности на стыке двух пластин из полированного оргстекла толщиной 10 мм и шириной 995 мм, помещенных под нулевым углом атаки (рис. 1). Носовая часть передней пластины в продольном сечении имела форму двух сопряженных полуэллипсов, большие полуоси которых имели длину 132 мм, а малые -2 мм с рабочей стороны модели и 8 мм с противоположной. Продольный градиент давления на начальном участке течения регулировался с помощью отклоняемого закрылка, что обеспечивало минимально возможный уровень фоновых пульсаций скорости в предотрывном пограничном слое. Уступ высотой h = 3,0 мм находился в 300 мм от передней кромки модели.

Периодические во времени возмущения отрывной зоны возбуждались через отверстия диаметром 0,5 мм в поверхности модели вблизи ее плоскости симметрии, соединенные пневмотрассой с динамическим громкоговорителем. Одно из отверстий располагалось в 20 мм перед уступом, два других - на расстоянии 29 и 49 мм за ним. Таким образом, пространственные волновые пакеты колебаний заданной частоты последовательно генерировались на различных участках течения включая пограничный слой выше по потоку уступа поверхности и область отрыва. В каждом режиме измерений интенсивность возбуждения подбиралась таким образом, чтобы проследить развитие возмущений с амплитудой в пределах 1÷2 % скорости внешнего потока в максимально протяженной зоне течения.

Средние во времени и пульсационные характеристики течения определялись с помощью термоанемометра постоянной температуры AN 1003 производства компании «A. A. Lab Systems Ltd.». Для перемещения над моделью однониточного датчика термо-

Рис. 2. Профили средней скорости течения в окрестности уступа, измеренные при z = -6,7 (\Box) и z = 6,7 (\bullet)

анемометра использовалось автоматическое координатное устройство. Измерения проводились с переменным шагом от 0,2 до 0,5 мм по нормали к поверхности модели и от 2 до 5 мм в ее плоскости. Сигнал датчика оцифровывался 16-разрядным АЦП и обрабатывался на персональном компьютере в среде MATLAB.

Эксперименты выполнены при скорости внешнего потока над уступом $U_0 = 8,8$ м/с, что соответствует числу Рейнольдса $\operatorname{Re}_h = U_0 h/v = 1$ 670. В принятой ниже системе координат x – расстояние от уступа в направлении основного потока, y – нормальная плоскости модели координата, отсчитываемая от поверхности задней пластины, z – расстояние в поперечном потоку направлении от плоскости x–y, в которой расположен источник колебаний. При последующем изложении полученных данных все пространственные координаты отнесены к высоте уступа.

Результаты

Осредненная во времени структура исследуемого течения показана распределениями продольной компоненты его скорости (рис. 2). Двумерность отрывного обтекания уступа подтверждается хорошим совпадением данных измерений при различных значениях поперечной координаты *z*. В крайнем левом сечении (*x* = -1,3)

изображены профили предотрывного пограничного слоя с толщинами вытеснения δ^*/h и потери импульса θ/h , равными соответственно 0,31 и 0,13. За уступом (*x* > 0) распределения скорости имеют вид характерный для локальных областей отрыва потока. В зоне возвратного течения у поверхности модели, где термоанемометрическая методика не позволяет получить надежные количественные результаты, показано качественное поведение профилей скорости, в настоящих экспериментах не превышающей нескольких процентов U₀. Неустойчивость течения за точкой отрыва вызывает нарастание его фоновых возмущений с интегральной амплитудой и'/U₀, изменяющейся в полосе частот St = fh/U_0 = $3,4 \cdot 10^{-4} \div 3,4 \cdot 10^{-1}$ от 0,3 % на уступе до 3,5 % в крайнем правом сечении (x = 20), что заметно ниже уровня пульсаций на участке турбулизации пристенных пограничных слоев. Таким образом, переход к турбулентности завершается ниже по потоку отрывной области, и в этих условиях она имеет протяженность, близкую к максимальной, которая в течениях рассматриваемой конфигурации составляет примерно 20*h* [13].

В спектрах пульсационной составляющей скорости течения выделяются два диапазона колебаний (рис. 3). Усиление волнового пакета, центральная частота которого изменяется от St $\approx 0,1$ в средине зоны отрыва до St $\approx 0,075$ на участке присоединения,

Рис. 3. Спектры пульсаций по частоте колебаний в максимуме их амплитуды поперек зоны отрыва

Рис. 4. Уровни амплитуды возмущений при возбуждении колебаний в сечении x = -6,7 на частотах St = 0,027 (*a*) и 0,099 (*б*)

вызвано конвективной неустойчивостью оторвавшегося слоя сдвига; нарастание возмущений при St $\approx 0,02$ – самовозбуждением зоны отрыва с генерацией крупномасштабных квазипериодических вихрей. В целом воспроизведенный режим неустойчивости отрывного течения аналогичен изученному в работах [11; 12], где подробно обсуждаются соотношение и характеристики колебаний высоких и низких частот. Опираясь на эти данные, распространение контролируемых возмущений зоны отрыва исследовалось далее при двух частотах возбуждения St = 0,027 и 0,099, представляющих доминирующие компоненты спектрального фона. Характеристики колебаний определялись на указанных частотах в спектральной полосе $\Delta St = 0,00136$.

Пространственное развитие возмущений иллюстрируется уровнями их максимальной по координате у амплитуды u'_f в процентах скорости внешнего потока U_0 (рис. 4–6); положения генератора колебаний отмечены темными круглыми символами. Гармоническое воздействие, оказанное на течение до точки отрыва, приводит к появлению пакетов волн неустойчивости, изображенных на рис. 4. Возбуждаемые колебания выделяются в узкой области по координате z, сносятся вниз по потоку от их источника и проникают из пограничного слоя в отрывную зону, где испытывают пространственное усиление при расплывании волнового пакета в трансверсальном направлении. Перед источником амплитуда возмущений быстро затухает и в пределах $\Delta x = 0,6$ становится ниже 0,01 % скорости внешнего потока - местного уровня фоновых пульсаций на обеих частотах генерации. Аналогичное поведение локализованных возмущений, которое определяется характеристиками устойчивости течения относительно различных составляющих волнового спектра колебаний и его дисперсионными свойствами, было обнаружено при отрыве ламинарного пограничного слоя на модели крыла в экспериментах [14].

Существенно иной отклик течения на его возбуждение зарегистрирован при генерации возмущений в пределах отрывной области. В этом случае амплитуда пульсаций на частоте воздействия увеличивается во всем диапазоне исследования по размаху модели и выше по потоку их источника (см. рис. 5, 6). Одно из возможных объяснений результатов наблюдений - генерация источником акустических колебаний, которые достигают уступа поверхности и преобразуются на нем в волны неустойчивости, нарастающие в направлении основного потока. Другое – распространение возмущений от источника безотносительно конвективной неустойчивости оторвавшегося слоя. Судить об этом позволяет анализ пространственных распределений колебаний. Изменение в направлении потока максимальной

Рис. 5. Уровни амплитуды возмущений при возбуждении колебаний в сечении x = 9,7 на частотах St = 0,027 (*a*) и 0,099 (*б*)

амплитуды искусственно возбужденных и фоновых пульсаций, осредненной по трансверсальной координате на участке течения $-10,0 \le z \le -3,3$ в стороне от генератора колебаний, показано на рис. 7.

Скорость нарастания низкочастотных возмущений, которые выделяются из пульсационного фона при $x > 6\div 8$ (см. рис. 7, *a*), практически совпадает со скоростью усиления высокочастотных волн неустойчивости, возбуждаемых в зоне отрыва естественным шумом потока (кривая нарастания фоновых пульсаций на рис. 7, *б*). Обратим внимание на то, что колебания с частотой St = 0,099 имеют близкие к максимальным пространственные инкременты в спектральном диапазоне неустойчивости оторвавшегося слоя. Соответственно скорость изменения амплитуды при St = 0,027 оказывается значительно выше той, которой в исследуемом тече-

Рис. 6. Уровни амплитуды возмущений при возбуждении колебаний в сечении x = 16,3 на частотах St = 0,027 (*a*) и 0,099 (δ)

нии могут обладать сносовые возмущения столь низкой частоты, генерируемые звуковыми волнами на уступе поверхности. Это дает основание считать доминирующим второй из предложенных путей распространения колебаний.

В случае высокочастотных пульсаций (см. рис. 7, δ) скорости усиления возбуждаемых и фоновых возмущений сравнимы друг с другом, что служит признаком акустической генерации волн неустойчивости вблизи линии отрыва. Вместе с тем относительно быстрое нарастание возмущений, возбуждаемых в сечении x = 16,3, не исключает также непосредственного влияния источника колебаний на их амплитудные распределения аналогично низкочастотному воздействию.

В заключение упомянем результаты расчетных работ [2; 5; 15; 16], предсказываю-

Рис. 7. Изменение вдоль потока амплитуды колебаний, возбужденных в сечениях x = 9,7 (Δ), 16,3 (\circ), и фоновых пульсаций (\blacksquare) на частотах St = 0,027 (a) и 0,099 (δ)

щих рост возмущений во времени и их распространение против направления основного потока в областях отрыва пограничного слоя при появлении абсолютной неустойчивости локальных профилей скорости [17]. Согласно теоретическим данным, это возможно при интенсивности возвратного тока в глубине отрывной зоны, достигающей 15÷20 и более процентов скорости внешнего течения. Для оценки его максимальной величины в настоящих экспериментах можно воспользоваться результатами других исследований, в которых методом PIV (particle image velocimetry) определялось векторное поле скоростей при отрыве пограничного слоя за обратными уступами обтекаемой поверхности. В частности, средняя во времени скорость возвратного тока составляла 5 % при числе Рейнольдса по высоте уступа, равном 1 060 [18], 15÷20 % при Re_h ≈ 5 000 [19] в плоских течениях и достигала 20 % при $\text{Re}_h = 8\ 081$ в осесимметричной зоне отрыва [10]. Следует ожидать, что в данном случае ($\text{Re}_h = 1\,670$) она сравнима с измеренной в работе [18], что заметно меньше ее

расчетных критических значений. Сопоставляя настоящие данные с расчетными, конечно же следует иметь в виду существенные различия теоретической и экспериментальной постановок задачи. В теории под абсолютной неустойчивостью подразумевается определенного вида реакция профилей скорости параллельного течения на локальное импульсное воздействие, тогда как результаты настоящей работы получены для периодических во времени возмущений, генерируемых в течении непараллельном.

Список литературы

1. Бойко А. В., Грек Г. Р., Довгаль А. В. и др. Возникновение турбулентности в пристенных течениях. Новосибирск: Наука, 1999. 328 с.

2. *Hammond D. A., Redekopp L. G.* Local and Global Instability Properties of Separation Bubbles // Eur. J. Mech. B/Fluids. 1998. Vol. 17. No. 2. P. 145–164.

3. *Marquillie M., Ehrenstein U.* On the Onset of Nonlinear Oscillations in a Separating Boundary-Layer Flow // J. Fluid Mech. 2003. Vol. 490. P. 169–188.

4. *Kaiktsis L., Monkewitz P. A.* Global Destabilization of Flow over a Backward-Facing Step // Phys. Fluids. 2003. Vol. 15. No. 12. P. 3647–3658.

5. Wee D., Yi T., Annaswamy A., Ghoniem A. F. Self-Sustained Oscillations and Vortex Shedding in Backward-Facing Step Flows: Simulation and Linear Instability Analysis // Phys. Fluids. 2004. Vol. 16. No. 9. P. 3361– 3373.

6. *Theofilis V., Hein S., Dallmann U.* On the Origins of Unsteadiness and Three-Dimensionality in a Laminar Separation Bubble // Phil. Trans. R. Soc. Lond. A. 2000. Vol. 358. P. 3229–3246.

7. Barkley D., Gomes M. G. M., Henderson R. D. Three-Dimensional Instability in Flow over a Backward Facing Step // J. Fluid Mech. 2002. Vol. 473. P. 167–190.

8. *Theofilis V*. Advances in Global Linear Instability Analysis of Nonparallel and Three-Dimensional Flows // Prog. Aerosp. Sci. 2003. Vol. 39. P. 249–315.

9. Sigurdson L. W., Roshko A. The Structure and Control of a Turbulent Reattaching Flow // Turbulence Management and Relaminarization / Eds. H. W. Liepmann, R. Narasimha. Berlin: Springer, 1988. P. 497–514. 10. *Hudy L. M., Naguib A., Humphreys W. M.* Stochastic Estimation of a Separated-Flow Field Using Wall-Pressure-Array Measurements // Phys. Fluids. 2007. Vol. 19. DOI: 10.1063/1.2472507.

11. Довгаль А. В., Сорокин А. М. Неустойчивость течения в зоне отрыва ламинарного пограничного слоя к сходу периодических вихрей // Теплофизика и аэромеханика. 2001. Т. 8, № 2. С. 189–197.

12. Довгаль А. В., Сорокин А. М. Экспериментальное моделирование периодического вихреобразования при отрыве течения за уступом поверхности // Теплофизика и аэромеханика. 2002. Т. 9, № 2. С. 193–200.

13. Sinha S. N., Gupta A. K., Oberai M. M. Laminar Separating Flow over Backsteps and Cavities. Pt. 1: Backsteps // AIAA J. 1981. Vol. 19. P. 1527–1530.

14. Гилёв В. М., Довгаль А. В., Козлов В. В. Развитие волнового пакета в пограничном слое с градиентом давления // Препринт ИТПМ СО АН СССР. 1984. № 6–84.

15. *Gaster M.* Stability of Velocity Profiles with Reverse Flow // Instability, Transition and Turbulence / Eds. M. Y. Hussaini, A. Kumar, C. L. Street. Berlin: Springer, 1992. P. 212–215.

16. *Alam M., Sandham N. D.* Direct Numerical Simulation of «Short» Laminar Separation Bubbles with Turbulent Reattachment // J. Fluid Mech. 2000. Vol. 410. P. 1–28.

17. *Huerre P., Monkewitz P. A.* Local and Global Instabilities in Spatially Developing Flows // Annu. Rev. Fluid Mech. 1990. Vol. 22. P. 473–537.

18. Boiko A., Dovgal A., Hein S., Henning A. Particle Image Velocimetry of a Low-Reynolds-Number Separation Bubble // Exp. Fluids. 2011. Vol. 50. No. 1. P. 13–21.

19. Scarano F., Riethmuller M. L. Iterative Multigrid Approach in PIV Image Processing with Discrete Window Offset // Exp. Fluids. 1999. Vol. 26. P. 513–523.

Материал поступил в редколлегию 14.06.2011

A. V. Dovgal, A. M. Sorokin

EVOLUTION OF WAVE PACKETS IN A LAMINAR SEPARATION BUBBLE

Wave packets of time-harmonic disturbances in a laminar separated flow behind a backward-facing step on flat plate are investigated. Experimental data are obtained through hot-wire measurements in a low-turbulent subsonic wind tunnel. The results show that the oscillations generated locally in the separation region are transported upstream which makes an essential difference between the separation bubble under self-excitation and the attached boundary layer.

Keywords: boundary layer separation, hydrodynamic instability, wave packets, self-excitation .